Responsive image
博碩士論文 etd-0629107-002121 詳細資訊
Title page for etd-0629107-002121
論文名稱
Title
整合鐵氧磁體程序與輔助方法處理並資源化重金屬廢液
Integrating ferrite process with auxiliary methods to treat and resource heavy metal waste liquid
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
168
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-05-16
繳交日期
Date of Submission
2007-06-29
關鍵字
Keywords
重金屬、資源化、鐵氧磁體程序、螯合劑、Fenton氧化法、CO轉化、鐵氧磁體觸媒、EDTA
heavy metal, resourced, ferrite process, ferrite catalyst, CO conversion, Fenton oxidation, chelating agent, EDTA
統計
Statistics
本論文已被瀏覽 5664 次,被下載 2601
The thesis/dissertation has been browsed 5664 times, has been downloaded 2601 times.
中文摘要
本研究從三個方向提升鐵氧磁體程序(ferrite process, FP)的價值:首先是藉由FP污泥資源化生產觸媒以扭轉FP成本較高的劣勢;其次是發展延長反應式鐵氧磁體程序(extended reaction ferrite process, ERFP)及淘洗程序以增進FP的效能;第三是整合Fenton氧化法作為FP的前處理程序以解決螯合劑影響FP的困擾。
在測試了六種以FP製作的鐵氧磁體觸媒(MxFe(3-x)O4 , M = Cu, Zn, Mn, Ni, Cr, Fe)後發現:Cu/Fe莫耳比為 1/2.5 的銅鐵氧磁體觸媒(Cu-ferrite catalyst)只需要140℃的反應溫度就能夠在空間速度為 6000 hr-1 的條件下,把入口濃度4000 ppm的CO完全轉化為CO2 。而且即使O2 濃度減少至只剩1 %,鐵氧磁體觸媒的催化性能仍不受影響,顯示其對於氧化反應有極佳的發展潛力。
另一方面,為了利用FP發展一套可以處理大多數重金屬廢液的程序,吾人配製了極端複雜的模擬廢液,其中包含十種常見的重金屬:Cd、Pb、Cu、Cr、Zn、Ag、Hg、Ni、Sn、Mn濃度各為0.002 M。實驗數據指出雖然傳統的FP無法完整處理此種廢液,但應用ERFP可以處理至滿足法規要求。ERFP延長段的FeSO4加藥方式以間歇式優於連續式,最佳的操作參數在初始段為:pH= 9、FeSO4加藥量= 0.2 mol/L、溫度= 90 oC、空氣供應量= 3 L/min/L、反應時間= 40 min;在延長段為:間歇式投藥,每5 min一次,每公升廢液投入10 mL 1M-FeSO4 溶液、pH= 9、溫度= 90 oC、空氣供應量= 3 L/min/L、反應時間= 80min。淘洗程序可適度節省ERFP的費用並進一步確保污泥品質能符合毒性特性溶出程序(toxicity characteristic leaching procedure ,TCLP)之標準,建議在pH 2.88至4之間操作,淘洗時間為6小時。
實驗結果亦確認了先使用Fenton氧化法分解去除螯合劑再以FP處理重金屬,可完全解決螯合劑干擾的問題。Fenton/ ERFP串聯程序中Fenton氧化法去除EDTA最佳的條件組合如下: pH= 2、亞鐵離子初始濃度[Fe2+]0 = 1×10-2 M 、過氧化氫添加速率= 5×10-4 mol/min/L,此反應可在10 min內完成。
最後,基於研究的心得歸納出應用FP及輔助方法處理重金屬廢液的實施策略,並且實際處理多種實場廢液都獲得令人滿意的成效。
Abstract
This work increased the value of ferrite process (FP) in three directions: firstly, changed the inferiority of FP on cost by transforming the FP sludge into a catalyst; secondly, used ERFP and elutriation to promote the performance of FP; thirdly, developed Fenton oxidation as a pretreatment step for avoiding the interference from chelating agents.
Six ferrite catalysts (MxFe(3-x)O4, M = Cu, Zn, Mn, Ni, Cr or Fe) formed from FP were tested. Experimental results indicate that the Cu-ferrite catalyst with a Cu/Fe ratio of 1/2.5 can completely convert CO to CO2 at an inlet CO concentration of 4000 ppm and a space velocity of 6000 hr-1 were held at 140℃. The catalytic performance of Cu-ferrite did not reduce even when the concentration of O2 was just 1%. This work proves that the ferrite catalysts have good potential for catalyzing oxidation.
For developing FP for effectively treating almost all heavy metal waste liquid, hence an extremely difficult treating target- simulated waste liquid was designed. It contains ten heavy metals - Cd, Pb, Cu, Cr, Zn, Ag, Hg, Ni, Sn and Mn, each at a concentration of 0.002 M. Although conventional FP could not be used to treat the simulated waste liquid completely, the enhanced FP, i.e. ERFP, could be used to satisfy regulatory limits. FeSO4 can be added in the extended stage of ERFP intermittently rather than continuously. The optimum operating parameters in the initial stage are pH = 9 , FeSO4 dosage = 0.2 mol/L, temperature = 90 oC, air supply rate = 3 L/min/L and reaction time = 40 min; in the extended stage, they are intermittent dosing, adding 10 mL 1M-FeSO4 solution per liter waste liquid every 5 min, pH = 9, temperature = 90 oC, air supply rate = 3 L/min/L and reaction time = 80min. Elutriation was conducted to reduce the cost of ERFP and ensure that the sludge met Toxicity Characteristic Leaching Procedure (TCLP) standards. An operating pH from 2.88 to 4 and an elutriation time of 6 h were recommended.
Used Fenton oxidation to decompose chelating agent in waste liquid and then treated heavy metal by FP, this research showed that under proper operational conditions Fenton/ ERFP could completely solve the chelating agent interference problem. The best condition for decreasing EDTA using the Fenton method was: pH = 2, ferrous ion initial concentration [Fe2+]0 = 1×10-2M, hydrogen peroxide addition rate = 5×10-4 mol/min/L and reaction time = 10 min.
Lastly, a lot of real waste liquids were treated satisfactorily by applying the results of this study.
目次 Table of Contents
摘要…………………………………………………………………………I
Abstract………………………………………………………………….. III
目錄…………………………………………………………………..……V
圖目錄……………………………………………………………………XI
表目錄……………………………………..……………………………XIII
第一章序論……………………………………………………………... 1-1
1-1 研究緣起……………………...…………………………………... 1-1
1-2 研究目的及架構…………………………………………..………1-4
1-2-1 鐵氧磁體污泥資源化產製觸媒….............................................. 1-4
1-2-2 鐵氧磁體程序的改良………………………………………...…1-5
1-2-3 整合Fenton氧化法作為鐵氧磁體程序的前處理方法………..1-5

第二章文獻回顧……………………………………………...……..….. 2-1
2-1 重金屬廢液之定義及傳統的處理程序………………..……….... 2-1
2-1-1 重金屬廢水/廢液……………………………………………..…2-1
2-1-2 重金屬廢液的傳統處理程序…………………………….…..... 2-3
2-2 鐵氧磁體程序之理論與相關研究…………………………….…. 2-4
2-2-1 鐵氧磁體程序…………………….…………...…………….…..2-4
2-2-2 鐵氧磁體的基本性質……………....……………………….…. 2-9
2-2-3 鐵氧磁體的合成方法………………………..……………….. 2-14
2-2-4 鐵氧磁體程序之影響因子………………………………...…. 2-16
2-3 鐵氧磁體觸媒與觸媒焚化技術…………..……………….……. 2-19
2-3-1 鐵氧磁體觸媒之相關研究………………….……………….. 2-19
2-3-2 觸媒焚化技術…………………………………………...……. 2-21
2-3-3 轉化一氧化碳為二氧化碳……………………………….……2-23
2-4 EDTA之基本特性及相關研究……………………………..….. 2-26
2-4-1 EDTA之基本特性……………………………………..…….. 2-26
2-4-2 EDTA之應用概況………………………………………...….. 2-29
2-4-3 處理EDTA之相關研究…………………………………….…. 2-30
2-5 Fenton氧化法…………………………………………….……... 2-31
2-5-1 Fenton氧化原理與應用………………………………………. 2-31
第三章鐵氧磁體污泥資源化產製觸媒………………………………... 3-1
3-1 研究方法………………………………..……………………...…. 3-1
3-1-1 鐵氧磁體觸媒之合成……………………...……………………3-1
3-1-1-1 FP反應設備………………………………………………….. 3-1
3-1-1-2 觸媒合成之程序及條件……………………….…………..... 3-3
3-1-2 觸媒反應設備………………………………………..…………3-5
3-1-2-1 觸媒反應器………………………………………………...... 3-5
3-1-2-2 氣體成分分析……………………………………….……..... 3-5
3-1-3 實驗規劃……… ………………………………………..………3-7
3-1-3-1 活性金屬篩選………………..……………………………..... 3-7
3-1-3-2 M/Fe對催化效果的影響……………….………………….…3-7
3-1-3-3 O2濃度對催化效果的影響……………………………..……. 3-7
3-1-3-4 CO2濃度對催化效果的影響…………………………………3-8
3-1-3-5 溼度對催化效果的影響……………………………………... 3-8
3-1-3-6 觸媒表面性質分析………………………………………….. 3-8
3-1-3-7 鐵氧磁體粒徑分布………………………………….………. 3-9
3-2 結果與討論…………………………………………...…………. 3-10
3-2-1 活性中心金屬種類的選擇……………………………..…….. 3-10
3-2-2 M/Fe對催化效果的影響………………………………………3-12
3-2-3 O2濃度對催化效果的影響…………………………………... 3-15
3-2-4 CO2濃度對催化效果的影響………………………………..... 3-21
3-2-5 溼度對催化效果的影響…………………………………..….. 3-23
3-2-6 觸媒表面性質分析………………………………………….... 3-23
3-2-7 鐵氧磁體粒徑分布…………………………..……………….. 3-25
3-2-8 應用FP 衍生ferrite catalyst的潛力………………………… 3-26
第四章鐵氧磁體程序的改良………………………………….……….. 4-1
4-1 研究方法……………………………………………………….…. 4-1
4-1-1 混雜性重金屬模擬廢液的配製……………………………….. 4-1
4-1-2 分析方法……………………………………………………….. 4-3
4-1-3 反應設備……………………………………………………….. 4-4
4-1-4 以傳統式FP處理混雜性重金屬廢液………………….………4-5
4-1-5 以ERFP處理混雜性重金屬廢液………………………………4-7
4-1-6 以淘洗法處理污泥…………………………………………….. 4-9
4-2 結果與討論………………………………………………..……. 4-10
4-2-1 以傳統式FP處理混雜性重金屬廢液…………………………4-10
4-2-2 以ERFP處理混雜性重金屬廢液……………………….……4-18
4-2-3 以淘洗法處理FP污泥……………………………..…………4-23
4-2-4 綜合討論…………………………………………………..….. 4-27
第五章整合Fenton氧化法作為鐵氧磁體程序的前處理方法……….. 5-1
5-1 研究方法…………………………………………………….……5-1
5-1-1 Fenton 氧化法分解 EDTA……………………………….……5-1
5-1-1-1 反應設備………………………………………………….….. 5-1
5-1-1-2 以Fenton 氧化法分解 EDTA實驗操作………………….…5-4
5-1-1-3 pH值對Fenton氧化法去除EDTA的影響…………………5-5
5-1-1-4 Fe2+添加量對Fenton氧化法去除EDTA的影響……………5-6
5-1-1-5 H2O2添加量對Fenton氧化法去除EDTA的影響……….…5-6
5-1-2 以Fenton / FP串聯處理含EDTA之重金屬廢液………..….. 5-6
5-1-2-1 模擬廢液的配製……………………..…………..…………... 5-6
5-1-2-2 Fenton氧化法反應條件…………………………………….. 5-7
5-1-2-3 FP反應條件………………………………………..…………5-7
5-1-2-4 TCLP實驗方法………………………………………………5-8
5-1-2-5 溶液中重金屬分析前處理………………………………….. 5-8
5-2 結果與討論 ……………………………………………………... 5-9
5-2-1 pH值對Fenton氧化法處理EDTA之影響………………….... 5-9
5-2-2 亞鐵離子添加量對處理效果之影響……………………….…. 5-9
5-2-3 過氧化氫添加量對處理效果之影響……………………….... 5-12
5-2-4 以Fenton / FP 處理含EDTA 及重金屬之廢水……………..5-14
第六章以鐵氧磁體程序與輔助方法處理實場廢液的實施策略……... 6-1
6-1 FP與輔助技術的實施策略…………………………………….…6-1
6-1-1 前處理的實施策略……………………….…………………..…6-1
6-1-2 FP及污泥處理方案的實施策略………………………………..6-4
6-2 以FP與輔助技術處理實場廢液………………………………... 6-6
6-2-1 以FP處理印刷電路板業蝕刻銅廢液並製作觸媒……………6-6
6-2-2 以FP和ERFP結合淘洗處理重金屬實驗室廢液……………6-8
6-2-2-1 實驗室廢液的特性…………………………………………... 6-8
6-2-2-2 以FP結合淘洗處理重金屬實驗室廢液………………….…6-9
6-2-3 以Fenton/FP串聯處理金屬表面處理廠廢液……………..…6-12
第七章結論與建議………………………………………….......……... 7-1
7-1 鐵氧磁體污泥資源化產製觸媒之研究成果……………………. 7-1
7-2 FP程序的改良之研究成果……………………………………….7-3
7-3 整合Fenton氧化法作為FP的前處理方法之研究成果………...7-4
7-4 展望與建議………………………………………………………. 7-5
參考文獻…………………………………………………………….…參-1
附錄:口試委員意見答覆及處理………………………………………附-1
參考文獻 References
王月鳳,「重金屬離子之鐵氧磁體化研究」,成功大學碩士論文。(1995)
王能誠,「二氧化碳還原用鐵氧磁體觸媒之製備及其特性研究」,國立成功大學博士論文。(2002)
余樹楨,「晶體之結構與性質」,國立編譯館,pp.300-303。(2003)
宋宏凱,「電鍍廢水鐵氧磁體法及其安定性之研究」,國立成功大學環境工程研究所碩士論文。(1993)
林舜隆,「利用電動力法處理人工合成重金屬污染土壤之研究」,國立中山大學環境工程研究所碩士論文。(1996)
林正雄,「鐵氧體軟磁材料」,磁性技術手冊,pp.133-158。(2002)
吳在賢;蔡敏行,「電鍍廢水Ferrite 化處理之研究」,國科會專題研究計劃研究報告。(1992)
吳海山,「鐵氧磁體化法處理不?袗?酸洗廢水」,成功大學碩士論文。(1998)
金重勳,「軟磁技術簡介」,實用磁性材料,pp.117-132。(2002)
陳文泉,「重金屬廢水鐵氧磁體法處理之基礎研究」,國立成功大學環境工程研究所碩士論文。(1992)
唐敏注,「通訊用軟磁材料之特性及應用」,工業材料,105,pp. 42-50。(1995)
張芳淑;高思懷;吳嘉麗,「pH 值在Fenton 系統中所扮演的角色探討」,第20屆廢水處理技術研討會論文集,pp.6-61 - 6-67頁。(1995)
奧田胤明;石原敏夫,「フエライト法による重金屬廢水の處理」,NEC 技報,Vol.37,No.9。(1984)
廖志祥;康世芳;柏雪翠,「Photo-Fentont程序參數對氫氧自由基濃度之影響」,第23屆廢水處理技術研討會論文集,pp.534~541。(1998)
鄭武輝;廖錦聰,「簡介鐵氧磁體」,工業技術,27,pp.24~32。(1976)
鄭鎮東,「易磁化的磁性材料-磁蕊材料」,磁性技術手冊,pp.3-1~3-10。(1999)
歐新榮,「局限空間作業之一氧化碳中毒案例剖析」勞工安全衛生簡訊,65 期。(2004)
蔡敏行;李伯興;胡紹華,「含重金屬污泥資源化關鍵技術」,泥渣廢棄物資源化技術研討會論文集,pp. 47-64。(2002)
黃契儒,「電鍍廢水鐵氧磁體化及前處理研究」,成功大學碩士論文。(1993)。
黃鈺軫;杜秋慧;宮敏;林忠義;林傳倫;張景順,「實驗室重金屬廢液鐵氧磁體化法處理之研究」,第二十八屆廢水處理技術研討會。(2003)
黃定加,「物理化學」,高立圖書有限公司。(1989)
董正釱;陳秋玟;王玫驊,「利用亞鐵離子催化過氧化氫處理二硝酚水溶液反應行為之研究」,第19屆廢水處理技術研討會論文集。(1994)
董慕愷;陳郁文,「奈米金觸媒」,科學發展,390期。(2005)
Agelidis, T.; Fytianos, K.; Vasilikiotis, G. “Lead Removal from Wastewater by Cementation Utilizing a Fixed Bed of Iron Spheres”, Environmental Pollution, Vol. 50, pp. 243-251. (1988)
Alder, A.C.; Siegrist, H.; Gujier, W.; Giger, W., “Behaviour of NTA and EDTA in biological wastewater treatment”, Water Research, Vol. 24,
pp. 733. (1990)
Anna, G. “Hydrogen peroxide photolysis, Fenton reagent and photo-Fenton for the degradation of nitrophenols: a comparative study”, Chemosphere, Vol.46, pp.913-922. (2002)
Anon “Encyclopaedia of chemical science”, Princenton Van Nostrant, p.533. (1964)
Barbeni, M.; Minero, C.; Pelizzetti, E.; Borgarello, E.; Serpone, N. “Chemical Degradation of Chlorophenols with Fenton’s Reagent”, Chemosphere, Vol.16, pp.2225-2237.(1987)
Bandyopadhyay, G.; Fulrath, R. M. “Processing Parameters and Properties of Lithium Ferrites Spinel”, Journal of the American Ceramic Society. Vol. 57, No. 4, 182-186. (1974)
Barrado, E.; Prieto, F.; Vega, M.; Fernandez-polanco, F., “Optimization of the operational variables of a medium-scale reactor for
metal-containing wastewater purification by ferrite formation”, Water Research. Vol. 32, No. 10, 3055-3061. (1998)
Base, F. C.; Robert, J.; Mesmer, E., “The Hydrolysis of Cations”, Robert E. Krieger Publishing Company, Malabar, Florida. (1986)
Benite, F. J.; Acero, J. L.; Real, F. J.; Leal, A. I., “ The role of hydroxyl radicals for the decomposition of p-Hydroxy Phenylacetic acid in aqueous solutions ”, Water Research., Vol.35, No. 5, pp.1338-1343. (2001)
Bishop, D. F.; Stem, G.; Fleischman, M., “Chemical Degradation of Chlorophenols with Fenton’s Reagent”, I & Ec Process Design and
Development, Vol.7, pp.110. (1968)
Bond, G. C., “Heterogeneous Catalysis Principles and Applications”, Oxford University Press, 2nd edition. (1990)
Bonsdorf, G.; Langbein, H.; Knese, K., “Investigations into Phase Formation of LiFe5O8 from Decomposed Freeze-Dried Li-Fe Formates”, Materials Research Bulletin. Vol. 30, No. 2, 175-181. (1995)
Burrell, D. C. “Atomic Spectrometric Analysis of Heavy Metal Pollutants in water”, Ann Arbor science Publishers, Ann Arbor, Michigan, p.19~45, (1974)
Carberry, J. B.; Yang S. Y., “Enhancement of PCB congener Biodegradation by Pre-oxidation with Fenton’s Reagent”, Langmuir, Vol. 10, pp.3880-3886. (1994)
Chen, H. J.; Lee C., “Effect of the Type of Chelating Agent and Deposit Morphology on the Kinetics of the Copper-Aluminum Cementation System”, Langmuir, Vol. 10, pp.3880-3886.( 1994)
Chien, C.; Chuang, W. P.; Huang, T. J., “Effect of Heat-treatment Conditions on Cu-Cr/γ-Alumina Catalyst for Carbon Monoxide and Propene Oxidation", Applied Catalysis A: General 131, 73-87.(1995)
Chow, G. M.; Gonsalves, K. E. “Nanomaterials: Synthesis, Properties and Applications”, A. S. Edelstein and R. C. Cammarata ed., Ch. 3, Philadelphia, PA: Institute of Physics Pub. (1996)
Denahui, F. B.; Hooper, R. M.; Wragg, A. A., “Cementation of Copper
on Packed-Beds of Iron Particles – some mass transfer and morphological aspects”, Chemistry and Industry, Vol.17, pp.571-574. (1986)
Deer, W. A.; Howie, R. A.; Zussman, J.,” An Introduction to the
Rock-forming Minerals”, 2nd edition. (1992)
Djokic, S. S., “Cementation of Copper on Aluminum in
Alkaline-Solutions”, Journal of the Electrochemical Society, Vol. 143,
No. 4, pp.1300-1305. ( 1996)
Feitknecht, W.; Gallagher, K. J. “Mechanisms for the oxidation of Fe3O4
“,Nature. Vol. 228, 548-549. (1970)
Gallard, H. ; Latt J., “Kinetic modeling of Fe(III)/H2O oxidation reactions
in dilute aqueous solution using atrazine as a model organic
compound”, Wat Ras., Vol. 34, NO. 12, pp.3107-3116. (2000)
Gardiner, J. “Complexation of trace metals by EDTA in natural waters”,
Water Research, Vol. 10 pp.507. (1976)
Gil, A.; Diaz, A.; Gandia, L. M.; Montes, M. “Influence of the
Preparation Method and Nature of the Suppor on the Stability of
Nickel Catalyst”, Applied Catalyst A: General. Vol. 109, No.2,
355-361. (1994)
Goldman, A., “Modern Ferrite Technology”, New York: Van Nostrand
Reinhold. 21-44. (1990)
Gokon, N.; Shimada, A.; Kaneko, H.; Tamaura, Y.; Ito, K.; Ohara, T.,
“Magnetic coagulation and reaction rate for the aqueous ferrite
formation reaction”, Journal of Magnetism and Magnetic Materials.,
Vol. 238, pp.45-77. (2002)
Guaita, F. J.; Beltran, H.; Cordoncillo, E.; Carda, J. B.; Escribano, P.,
“Influence of The Precursors on The Formation and The Properties of
ZnFe2O4,” Journal of the European Ceramic Society. Vol. 19, 363-372.
(1999)
Hamada, S.; Kuma, K., “Preparation of γ-FeOOH by Aerial Oxidation of
Iron(II) Chloride Solution”, Bulletin of the chemical society of Japan.,
Vol. 49, No. 12, pp.3695-3696. (1976)
Huang, C. P.; Dong, C. D., “Advanced Chemical Oxidation: Its Present
Role and Potential Feture in Hazardous Waste Treatment”, Waste
Management., Vol. 13, pp.361-377. ( 1993)
Hwang, C.S.; Wang, N.C. “Preparation and Characteristics of Ferrite
Catalysts for Reduction of CO2” Materials Chemistry and Physics. 88,
258. (2004)
Ichinose, N.; Ozaki, Y.; Kashû S., Superfine Particle Technology, Ch. 3
and Ch. 4, Springer-Verlag London Limited. 1992.
James, J. S., “Complete Catalytic Oxidation of Volatile Organics”,
Industrial Engineering Chemical Research. Vol. 26, No.11, 2165-2180,
(1987)
Jandova, J.; Stefanowicz T.; Niemczykova, R., “Recovery of
Cu-concentrates from waste galvanic copper sludges”,
Hydrometallurgy, Vol. 57, pp.77-84. (2000)
Janson, W. et al., “Purification and Characterization of EDTA
Monooxygenase from the EDTA-degrading BNCl”, Journal of
bacteriology , Vol. 180, No. 15, pp.3823-3827. (1998)
Johnson, M. D., “Development of Organic Assisted Magnetite Formation
for the Remediation of Metal Contaminants”, Technical Completion Report. ( 1997)
Kaneko, K; Takei, K.; Tamaura, Y. ; Kanzaki T.; Katsura T., “The
Formation of the Cd-bearing Ferrite by the Air Oxidation of an
Aqueous Suspension”, Bulletin of the chemical society of Japan., Vol.
52, No. 4, pp.1080-1085. (1979)
Kang, M.; Song, M. W.; Lee, Chang. H.,“ Catalytic carbon monoxide
oxidation over CoOX/CeO2 composite catalysts”, Applied Catalysis A:
General 251, 143-156. (2003)
Kanzaki, T.; Nakajima, J. I.; Tamaura, Y.; Katsura, T., “Formation of
Zn-bearing Ferrite by Air Oxidation of Aqueous Suspension”, Bulletin
of the Chemical Society of Japan. 54,135. (1981)
Kiyama, M., “Condition for the Formation of Fe3O4 by the Air Oxidation
of Fe(OH)2 Suspensions”, Bulletin of the chemical society of Japan.,
Vol. 47, No. 7, pp.1646-1974. (1974)
Kiyama, M; Takada, T, “The Hydrolysis of Ferric Complexes Magnetic
and Spectrophotometric Studies of Aqueous Solutions of Ferric Salts”,
Bulletin of the chemical society of Japan., Vol. 46, pp.1680-1686.
(1973)
Kodama, T.; Wada, Y.; Yamamoto, T.; Tsuji M.; Tamaura, Y., “CO2
Decomposition to Carbon by Ultrafine Ni(II)-bearing Ferrite at
300℃”, Materials Research Bulletin. Vol. 30, No. 8, 1039-1048. (1995)
Kuo,K.W., “Decolorizing dye wastewater with Fenton’s reagent”, Water
Research., Vol. 26, pp. 881-889. ( 1992)
Ku, Y.; Chen, C. H., “Removal of Chelated Copper from Wastewaters by
Iron Cementation”, Ind.Eng.Chem.Res., Vol. 31, pp. 1111-1115.
( 1992)
Ku, Y.; Wu, M. H.; Shen Y. S., “Mercury removal from aqueous
solutions by zinc cementation”, Waste Management., Vol. 22, pp.
721-726. (2002)
Lapedes, D. N., “Dictionary of scientific and Technical Terms”,
McGraw-Hill, New York, p.674. (1974)
Lewsaca, R. M., “Monitoring of Heavy metals in Philipping Rivers Bay
Waters and Lakes” symp. proc. Int. conf. Heavy Metals Environ,
Toronto, p.285~307. (1975)
Liao, C. H.; Kang, S. F.; Wu, F. A., “Hydroxyl radical scavenging role of
chloride and Bicarbonate ions in the H2O2/UV process”, Chmosphere.,
Vol. 14, pp.1193-1200. (2001)
Lindsey, M. E.; Tarr, M. A., “Quantiation of hydroxyl radical during
Fenton oxidation following a single addition of iron and peroxide”,
Chemosphere., Vol. 41, pp.409-417 (2000)
Lopez-Delgado, A.; Lopez, F. A., “Synthesis of Nickel-Chromium-Zinc
Ferrite Powders from Stainless Steel Pickling Liquors”, Journal of Materials Research. Vol. 14, No. 8, 3427-3432. (1999)
Lunar, L.; Sicilia D.; Rubio, S.; Perez-Bendito D.; Nickel, U.,
“Degradation of photographic developers by Fenton reagent:
comdition optimization and kinetics for metol oxidation”, Water
Research., Vol. 34, No. 6, pp.1791-1802. (2000)
Mandaokar, S. S.; Dharmadhikari, D. M., “Retrieval of heavy metal ions
from solution via Ferritisation”, Environmental Pollution., Vol. 83,
pp.277-282. ( 1994)
Mathew, T.; Rao, B. S. ; Gopinath, C. S., “Tertiary Butylation of Phenol
on Cu1-xCoxFe2O4: Catalysis and Structure-activity Correlation”,
Journal of Catalysis. 222, 107. (2004)
Matyi, R. J.; Schwartz, L. H.; Butt, J. B., “Particle Size, Particle Size
Distribution, and Related Measurements of Supported Metal
Catalysts”, Catalysis Reviews: Science and Engineering. Vol. 29, No.1,
41-99. (1987)
McCammon, J. B., McKenzie, L.E.; Heinzman, M. “Carbon Monoxide
Poisoning Related to the Indoor Use of Propane-Fueled Forklifts in
Colorado Workplaces”, Appl. Occup. Environ. Hyg. 11, 192. (1996)
McCurrie, R. A. “Ferromagnetic Materials Structure and Properties”,
Academic Press Inc., San Diego, (1994)
Mehmet, E.; Fikret, T., “Chromium Removal from Aqueous Solution by
The Ferrite Process”, Journal of Hazardous Materials B. Vol. 109, 71-77. (2004)
Mishra, R.; Biest O. O. V. D.; Thomas, G., “Materials Loss and High
Temperature Phase Transition in Lithium Ferrite”, Journal of the
American Ceramic Society. Vol. 61, 121-126. (1978)
Moon, D. K.; Mauyama, T.; Osakada, K.; Yamamoto, T., “Chemical
Oxidation of Polyamilime by Radical Generating Reagents, O2, H2O2
FeCl3 Catalyst, and Dobenzoyl Peroxide”, Chemistry Letters,
pp.1633-1636. (1991)
Neža Finžgar ; Domen Leštan, “Heap leaching of Pb and Zn
contaminated soil using ozone/UV treatment of EDTA extractants”,
Chemosphere, Vol. 63, 1736–1743. (2006)
Nguyen, H. H.; Tran, T.; Wong, P. L. M., “A Kinetic study of the
cementation of gold from cyanide solutions onto copper”,
Hydrometallurgy, Vol. 46, pp.55-69. (1997)
Nishamol, K.; Rahna K. S.; Sugunan S. “Selective Alkylation of Aniline
to N-methyl Aniline Using Chromium Manganese Ferrospinels”,
Journal of Molecular Catalysis A: Chemical. Vol. 209, 89-96. (2004)
Nojiri, N.; Tanaka, N.; Sato, K.; Sakai Y., “Electrolytic Ferrite Formation
System for Heavy Metal Removal”, Journal of the Water Pollution
Control Federation. Vol. 52, 1898-1906. (1980)
Nosier, S. A.; Sallam S. A., “Removal of lead ions from wastewater by cementation on a gas-sparged zinc cylinder”, Separation and
Purification Technology, Vol. 18, pp. 93-101. (2000)
Notemann B. “Total degradation of EDTA by mixed cultures and a
bacterial isolate”, Appl Environ Microbiol, Vol. 58, pp.671. (1992)
Okuda, T., “Removal of Heavy Metals from Wastewater by Ferrite
Co-orecioitation”, Filtration and Separation. Vol. 12, No. 5, 472-478.
(1975)
Oscar, P. P.; Yoshiaki, U., “Ambient-temperature Precipitation of Zn Ions
from Aqueous Solutions as Ferrite-type Compounds” Hydrometallurg.
63, 235. (2002)
Park, T.J.; Lee, K. H.; Jung, E. J.; Kim, C. W., “Removal of Refractory
Organic and Color in Pigment Wastewater with Fenton Oxidation”,
Wat. Sci. Tech., 39(10-11), 189-192. ( 1999)
Patterson, J. W.; Jancuk, W. A., “Cementation Treatment of Copper in
Wastewater”, Proc.Ind.Waste Conf, Vol. 32, pp.853-865. (1977)
Perez, O. P.; Umetsu, Y.; Sasaki, H., “Precipitation and densification of
magnetic iron compounds from aqueous solution at room
temperature”, Hydrometallurgy, Vol. 50, pp.223-242. (1998)
Perez, O. P.; Yoshiaki., “ORP-monitored magnetite formation from
aqueous solutions at low temperatures”, Hydrometallurgy, Vol. 55,
pp.35-56. (2000)
Peshev, P., “Preparation of Spinel Lithium Ferrite by Thermal Treatment of Spray-dried Formates”, Materials Research Bulletin. Vol. 3, 1167.
(1978)
Peter, J. S., Karl, P., “Ferrite Plating: a Chemical Method Preparing
Magnetic Films at 24-100℃ and Its Applications”, Electrochemica
Acta. No. 45, 3337-3343. (2000)
Pope, D.; Walker, D. S.; Moss, R. L., “Evaluation of Cobalt Oxide
Catalysts for the Oxidation of Low Concentration of Organic
Compounds”, Atmospheric Environment. Vol. 10, No. 6, 951-956.
(1976)
Ridgley, D. H.; Lessoff, H.; Childress, J. D., “Effect of Lithium and
Oxygen Losses on Magnetic and Crystallographic Properties of Spinel
Lithium Ferrite”, Journal of the American Ceramic Society. Vol. 53,
No. 6, 304-311. (1970)
Ritter, J. J.; Maruthamuthu, P., “Synthesis of NiFe2O4 by a Metal-organic
Method”, Journal of Materials Synthesis and Processing. Vol. 3, No.
5, 331-337. (1995)
Sedlek, D. L.; Andren, A. W., “Oxidation of Chlorobenzene with
Fenton’s Reagent”, Environ. Sci. Technol., Vol. 25, pp.777-782.
(1991)
Smith, J.S.; Brandon, S., “Morbidity from Acute Carbon Monoxide
Poisoning at Three Year Follow-up”, Br. Med. J. 318. (1973)
Spivey, J. J. “Complete Catalytic Oxidation of Volatile Organics”, Industrial & Engineering Chemistry Research. Vol. 26, 2165-2180.
(1987)
Sreekumar, K.; Mathew, T.; Mirajkar, S.P.; Sugunan, S.; Rao, B.S., “A
Comparative Study on Aniline Alkylation Activity Using Methanol
and Dimethyl Carbonate as the Alkylating Agents over Zn-Co-Fe
Ternary Spinel Systems”, Applied Catalysis A:General. 201, L1.
(2000)
Sreekumar, K.; Sugunan, S., “Ferrospinels Based on Co and Ni Prepared
via A Low Temperature Route as Efficient Catalysts for The Selective
Synthesis of O-cresol And 2,6-xylenol from Phenol and Methanol”,
Journal of Molecular Catalysis A: Chemical. Vol. 185, 259-268(2002)
Stefanowicz, T.; Osinska, M.; Stefania, N., “Copper recovery by the
cementation method”, Hydrometallurgy, Vol. 47, pp.69-90. (1997)
Tamaura, Y.; Katsura, T.; Rojarayanont, S.; Yoshida, T; Abe, H., “Ferrite
process; Heavy metal ions treatment system”, Water.Sci.Tech , Vol.
23,pp1893-1900. (1991a)
Tamaura, Y.; Tu, P. Q.; Rojarayanont, S.; Abe, H., “Stabilization of
Hazardous Materials into Ferrites”, Wat.Sci.,Tech. 23, 399. (1991b)
Tao, S.; Gao, F.; Liu, X.; Sorensen, O. T., “Preparation And Gas Sensing
Properties of CuFe2O4 at Reduced Temperature”. Materials Science
and Engineering. B: Solid-state Materials for Advanced Vol. 77,
172-176. (2000)
Thom, S. R.; Keim, L. W., “Carbon Monoxide Poisoning: A Review.
Epidemiology, Pathophysiology, Clinical Findings, and Treatment
Options Including Hyperbaric Oxygen Therapy”; Clin. Tox. 27,141.
(1989).
Tsuji, M.; Kodama, T.; Yoshida, T.; Kitayama, Y.; Tamaura, Y.
Preparation and CO2 Methanation Activity of an Ultrafine Ni (II)
Ferrite Catalyst. Journal of Catalysis. 164, 315. (1996)
Tsuji, T., “Ferrite-Technology Applications and Their Expansion from
Electronics to Civil Engineering Fields”, Inter. Conf. On Ferrites, Part
Ι, ΙΙ. 573-581. (1985)
Tucker, M. D.; Barton, L. L.; Thomson, B. M.; Wagener, B. M.; Aragon,
A., “Treatment of waste containing EDTA by chemical oxidation”,
Waste Management, vol. 19, pp. 477-482. (1999)
Wang, W.; Xu, Z.; Finch, J., “Fundamental Study of an Ambient
Temperature Ferrite of Acid Mine Drainage”, Environmental Science
Technolygy. Vol. 30, 2604-2608. (1996)
Xia, Y.; Armstrong, T.; Prado, F.; Manthiram, A., “Sol-gel Synthesis,
Phase Relationships, And Oxygen Permeation Properties of
Sr4Fe6-xCoxO13+δ(0≦x≦3)”, Solid State Ionics. Vol. 130, 81-90.
(2000)
Yamanobe, Y.; Yamaguchi, K.; Matsumoto, K.; Fuji, T., “Magnetic Properties of Sodium-Modified Iron-Oxide Powders Synthesized by
Sol-Gel Method”, Japanese Journal of Applied Physics. Vol. 30, No.
3, 478-483. (1991)
Zhou, R. X.; Jiang, X. Y.; Mao, J. X.; Zheng, X. M. “Oxidation of Carbon
Monoxide Catalyzed by Copper-zirconium Composite Oxides”,
Applied Catalyst A: General. Vol. 162, 213-222. (1997)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code