Responsive image
博碩士論文 etd-0629107-170409 詳細資訊
Title page for etd-0629107-170409
論文名稱
Title
錫鬚晶成長與鍍錫層電鍍條件的相關性研究
The Relationship of Sn Whisker Growth and Sn-plating Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
158
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-15
繳交日期
Date of Submission
2007-06-29
關鍵字
Keywords
錫鬚晶成長、純錫電鍍、介金屬化合物、界面活性劑、鍍鎳層
Ni underlay, tin whisker growth, intermetallic compound, Sn-plating, surface active agent
統計
Statistics
本論文已被瀏覽 5656 次,被下載 0
The thesis/dissertation has been browsed 5656 times, has been downloaded 0 times.
中文摘要
一般我們常見的電子資訊產品,含多樣主動及被動元件,其封裝積體電路IC是最主要的零件,而其可靠度(reliability)將決定整個產品的壽命和是否可以運作的最主要關鍵。因此必須將晶片有效且可靠的封裝起來,而且由線路接點外接至印刷電路板上運作,這方面的技術統稱電子構裝。
一般在導線架上電鍍材料的選擇,錫鉛合金為最受歡迎的材料,但基於法令與環保意識的高漲,而且鉛有害人體,被禁止使用,因此純錫適合作為替代材料。然而使用純錫會有自發性的錫鬚成長(tin whisker growth)問題,會造成IC短路而使整個元件失效,而現今的元件以輕薄短小為趨勢,接腳和其間距勢必也跟著變小變窄,因此錫鬚成長的問題顯得更為重要。所以探討錫鬚晶的生長行為與如何抑制錫鬚的生長是現今電子封裝產業的重要議題。
而在大部分的文獻研究中,皆認同tin whisker是由於壓應力所造成,瞭解壓應力來源並且加以消除是解決tin whisker的根本之道。文獻提到的壓應力主要來源為(1)介金屬化合物的生成,(2)基材/鍍錫層膨脹係數差異的界面應力,(3)導線架沖切的加工殘留應力等。因此本研究的第一個實驗重點在於Cu/Sn介金屬化合物的形成對錫鬚晶成長的探討,結果發現在室溫下Cu6Sn5的介金屬為主要的相,並且會沿著鍍錫層生長而對鍍錫層產生壓應力,因此藉由whisker的生長來釋放壓應力。
而在本研究的第二到第四個部分將探討不同的鍍錫層電鍍條件(溫度、預先鍍鎳層的選用以及使用不同電鍍錫液的配方)與錫鬚晶成長之間的相關性研究,進而改善抑制錫鬚成長。在溫度對錫鬚晶成長的影響方面,在150°C下,IMC為層狀生長,對鍍錫層是造成張應力,因此沒有觀察到whisker的生長,故將試片在150°C下前處理1小時可以有效的防止錫鬚的生長。在鍍鎳層對錫鬚晶成長的影響方面,在銅基板上加上一層大約1
Abstract
New environmental regulations enforce the electronic industry to replace Pb-Sn solder due to Pb could contaminate our environment. Pure Sn has good material properties such as solderability, conductivity and anti-corrosion. Pure Sn is a good candidate to replace Pb-Sn solder. One of the disadvantages of pure Sn is the whisker growth phenomenon. Whisker problem has become a major concern in electronic industry due to the trend toward component miniaturization and pitch reduction.
It is well understood that the root cause for tin whisker growth is the compressive stress within the tin layer. In the literature, the main stress sources are, (1) the intermetallic layer induced interface stress, (2) the difference of thermal expansion coefficient between Sn layer and substrate and (3) the mechanical residual stress from trim-form operation after tin plating. In our study, we used the electrochemical electrolysis method and Cross-section Polisher (CP) to examine the tin whisker growth mechanism. In the result, we can clearly show the Cu6Sn5 phase grow up in the tin grain boundary regions and demonstrate that the Cu6Sn5 phase formation is the main cause of the tin whisker growth.
We also discuss the relationship of tin whisker growth and tin-plating process parameters that include the temperature effect; Ni underlay effect and tin-plating bath effect. For the temperature effect, the Cu6Sn5 is the major phase at 150°C aging. The mechanism behind its growth mechanism was grain boundary diffusion at the earlier stage and then the bulk diffusion in the later stage. The application of 150°C post-heat treatment could drive the bulk diffusion and form a layer type Cu6Sn5 phase to eliminate the whisker growth. For the Ni underlay effect, the Ni underlay can block the Cu atom diffusion to the tin layer and changed the tin layer stress state from compressive to tensile. Therefore, the tin whisker can be eliminated. For the tin-plating bath effect, in the sulfuric acid base and uses Triton X-100 as the surface active agent, may transform the whisker type to particular tin grain type. Thus, this tin-plating solution can restrain the tin whisker growth.
目次 Table of Contents
壹、前言 1
1-1 研究背景 1
1-2 研究動機 2
貳、文獻回顧 3
2-1 Development of metallic whisker 3
2-2 Cu/Sn and Ni/Sn interfacial reactions 3
2-2-1 Cu/Sn interfacial reactions 4
2-2-2 Ni/Sn interfacial reactions 5
2-3 Whisker growth mechanism 5
2-4 Factors of Whisker Growth 6
2-4-1 Substrate material 6
2-4-2 Plating material 7
2-4-3 Grain Size and Shape 7
2-4-4 Plating thickness 8
2-4-5 Stress 9
2-4-6 Temperature 9
參、實驗方法 11
3-1 錫鬚生長的研究 11
3-1-1 實驗目的 11
3-1-2 試片製作 11
3-1-3 試片處理 12
3-1-4 試片分析 12
3-2 溫度對錫鬚成長影響的研究 12
3-2-1 實驗目的 12
3-2-2 試片製作 12
3-2-3 試片處理 13
3-2-4 試片分析 13
3-3 鍍鎳層對錫鬚生長的影響 13
3-3-1 實驗目的 13
3-3-2 試片製作 13
3-3-3 試片處理 14
3-3-4 試片分析 14
3-4 使用不同配方的鍍錫液對鍍錫層的影響 14
3-4-1 實驗目的 14
3-4-2 試片製作 14
3-4-3 試片處理 15
3-4-4 試片分析 15
肆、研究結果 16
4-1 錫鬚生長的研究 16
4-1-1 室溫下錫鬚生長的觀察 16
4-1-2 室溫下IMC生長的觀察 16
4-2 溫度對錫鬚成長影響的研究 17
4-2-1 150°C前處理一個小時後室溫下表面鍍錫層的觀察 17
4-2-2 150°C下IMC生長的觀察 17
4-3 鍍鎳層對錫鬚生長的影響 18
4-4 使用不同配方的鍍錫液對鍍錫層的影響 19
4-4-1 硫酸base B tin grain growth的觀察 19
4-4-2 硫酸base B IMC生長的觀察 20
伍、研究討論 22
5-1 錫鬚生長的研究 22
5-1-1 錫鬚晶生長機制的探討 22
5-1-2 厚度對錫鬚生長的影響 23
5-1-3 應力的計算 24
5-1-4 錫鬚晶生長長度的估算 24
5-2 溫度對錫鬚晶生長影響的探討 27
5-2-1 150°C前處理一個小時後對錫鬚生長的影響 28
5-2-2 應力的計算 28
5-2-3 150°C下Cu-Sn IMC與孔洞的生長機制 29
5-2-4 150°C下Cu-Sn IMC的生長曲線圖 30
5-2-5 150°C下時效前處理時間的決定 31
5-3 鍍鎳層對錫鬚晶生長影響的探討 31
5-3-1 應力產生的計算 32
5-3-2 Ni-Sn IMC與孔洞的生長機制 32
5-3-3 Ni underlay厚度的決定 33
5-4 使用不同鍍錫液對鍍錫層的影響研究 34
5-4-1 特殊錫晶粒的生長機制 35
5-4-2 溫度對錫晶粒生長的影響 35
5-4-3 鍍鎳層對錫晶粒生長的影響 36
5-5 甲基磺酸base與硫酸base鍍錫層表面結構的比較 37
5-6 Ni-underlay與Non-underlay鍍錫層表面結構的比較 38
5-7 錫鬚生長改善防制的探討 39
陸、結論 41
柒、參考文獻 44
捌、圖 51
參考文獻 References
1. S.M. Arnold, “Growth of Metal Whiskers on Electrical Components,” Proceedings of Electrical Components Conference, pp. 75-82, 1959.
2. T. Kakeshita, K. Shimizu, R. Kawanaka, and T. Hasegawa, “Grain Size effect on Electroplated Tin Coatings on Whisker Growth,” Journal of Materials Science, Vol. 17, pp. 2560-2566, 1982.
3. R. Schetty, “Minimization of Tin Whisker Formation for Lead-Free Electronics Packaging,” Circuit World, Vol. 27, No. 2, pp. 17-20, 2001.
4. R. Schetty, “Electrodeposited Tin Properties and Their on Component Finish Reliability,” 2004 International Conference on the Business of Electronic Product Reliability and Liability, pp. 29-34, 2004.
5. G.T. Galyon, “Annotated Tin Whisker Bibliography and Anthology,” November 2003 (available at http://www.inemi.org/cms/projects/ese/tin_
whisker_activities.html).
6. H.L. Cobb, “Cadmium Whiskers,” Monthly Rev. Am. Electroplaters Soc., Vol. 33, No. 28, pp. 28-30, 1946.
7. K.G. Compton, A. Mendizza, and S.M. Arnold, “Filamentary Growths on Metal Surfaces-Whiskers,” Corrosion, Vol. 7, No. 10, pp. 327-334, 1951.
8. U. Lindborg, “Observations on the Growth of Whisker Crystal from Zinc Electroplate,” Metallurgical Transactions A, Vol. 6A, pp. 1581-1586, 1975.
9. U. Lindborg, “A Model for the Spontaneous Growth of Zinc, Cadmium and Tin Whiskers,” Acta Metallurgica, Vol. 24, No. 2, pp. 181-186, 1976.
10. S.E. Koonce and S.M. Arnold, “Growth of Metal Whiskers,” J. Appl. Phys. (letters to the editor), Vol. 24, No. 3, pp. 365-366, 1953.
11. S.E. Koonce and S.M. Arnold, “Metal Whiskers,” J. Appl. Phys. (letters to the editor), Vol. 25, No. 1, pp. 134-135, 1954.
12. K.N. Tu, “Interdiffusion and Reaction in Bimetallic Cu-Sn Thin films,” Acta Metallurgica, Vol. 21, No. 4, pp. 347-354, April 1973.
13. K.N. Tu and R.D. Thompson, “Kinetics of Interfacial Reaction in Bimetallic Cu-Sn Thin Films,” Acta Metallurgica, Vol. 30, No. 5, pp. 947-952, May 1982.
14. K.N. Tu, “Cu/Sn Interfacial Reactions: Thin-Film Case versus Bulk Case,” Materials Chemistry and Physics, Vol. 46, pp. 217-223, 1996.
15. R.A. Gagliano and M.E. Fine, “Growth of η Phase Scallops and Whiskers in Liquid Tin-Solid Copper Reaction Couples,” JOM, Vol. 53, No. 6, pp. 33-38, 2001.
16. W.J. Tomlinson and H.G. Rhodes, “Kinetics of Intermetallic Compound Growth between Nickel, Electroless Ni-P, Electroless Ni-B, and Tin at 453 to 493K,” Journal of Materials Science, Vol. 22, No. 5, pp. 1769-1772, 1987.
17. S.K. Kang and V. Ramachandran, “Growth Kinetics of Intermetallic Phases at the Liquid Sn and Solid Ni Interface,” Scripta Metallurgica, Vol. 14, pp. 421-424, 1980.
18. R.M. Fisher, L.S. Darken, and K.G. Carroll, “Accelerated Growth of Tin Whiskers,” Acta Metallurgica, Vol. 2, No. 3, pp. 368-372, May 1954.
19. B.Z. Lee and D.N. Lee, “Spontaneous Growth Mechanism of Tin Whiskers,” Acta Metallurgica, Vol. 46, No. 10, pp. 3701-3714, 1998.
20. P. Oberndorff, M. Dittes, L. Petit, C.C. Chen, J. Klerk and E.E. de Kluizenaar, “Tin Whisker on Lead-free Platings,” 2002 Semiconductor Equipment and Materials International, 2002.
21. M. Dittes, P. Oberndorff and L. Petit, “Tin Whisker Formation-Results, Test Methods and Countermeasures,” Proc. Of the 2003 IEEE Elec. Comp. Conf., pp. 822-826, 2003.
22. S.C. Britton, “Spontaneous Growth of Whiskers on Tin Coatings: 20 Years of Observation,” Trans. of the Institute of Metal Finishing, Vol. 52, pp. 95-102, April 1974.
23. B.D. Dunn, “A Laboratory Study of Tin Whisker Growth,” European Space Agency (ESA) Report STR-223, pp. 1-51, September 1987.
24. C. Xu, Y. Zhang, C. Fan, and J.A. Abys, “Understanding Whisker Phenomenon: The Driving Force for Whisker Formation,” Circuitree, pp. 94-105, April 2002.
25. C. Xu, C. Fan, Y. Zhang, and J.A. Abys, “Whisker Prevention,” OnBoard Technology February 2004, pp. 30-34, 2004.
26. 卓致有, “鍍錫層結構與錫鬚晶成長之研究,” 中山大學碩士論文(2004)。
27. C. Xu, Y. Zhang, C. Fan, ans J.A. Abys, “Driving Force for the Formation of Sn Whiskers: Compressive Stress-Pathways for Its Generation and Remedies for Its Elimination and Minimization,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 28, No. 1, pp. 31-35, 2005.
28. M. Rozen, “Practical Whisker Growth Control Methods,” Plating, Vol. 55, No. 11, pp. 1155-1160, November 1968.
29. K.N. Tu, “Irreversible Processes of Spontaneous Whisker Growth in Bimetallic Cu-Sn Thin Reactions,” Phys. Rev. B, Vol. 49, No. 3, pp. 2030-2034, January 1994.
30. 王新建, “IC封裝中金鋁微接點與錫鬚晶的研究,” 中山大學碩士論文(2002)。
31. K.N. Tu and K. Zeng, “Reliability Issues of Pb-free Solder Joint in Electronic Packaging Technology,” 2002 Electronic Components and Technology Conference, pp. 1194-1200, 2002.
32. K.N. Tu, J. Suh, A.T. Wu, N. Tamura and C.H. Tung, “Mechanism and Prevention of Spontaneous Tin Whisker Growth,” Materials Transactions, Vol. 46, No. 11, pp. 2300-2308, 2005.
33. C.Y. Chang and R.W. vook, “The Effect of Surface Aluminum Oxide Films on Thermally Induced Hillock Formation,” Thin Solid Films, Vol. 228, pp. 205-209, 1993.
34. Joseph Haimovich, “Cu-Sn Intermetallic Compound Growth in Hot-Air-Leveled Tin at and below 100°C,” AMP Journal of Technology, Vol. 3, pp. 46-54, November 1993.
35. J.Y. Song, Jin Yu and T.Y. Lee, “Effects of Reactive Diffusion on Stress Evolution in Cu-Sn Films,” Scripta Materialia, Vol. 51, pp. 167-170, 2004.
36. K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano and K.N. Tu, “Kirkendall Void Formation in Eutectic SnPb Solder Joints on Bare Cu and Its Effect on Joint Reliability,” Journal of Applied Physics, Vol. 97, pp. 024508, 2005.
37. M. Dittes and R. Schwarz, “Technical Note-Leadframe Packages with Matte Pure Ton Electroplated Surface Finish,” Infineon Technical Note, Version 1.1, pp. 1-7, 2003.
38. D.C. Yeh and H.B. Huntington, “Extreme Fast-Diffusion System: Nickel in Single-Crystal Tin,” Phys. Rev. Letters, Vol. 53, No. 15, pp. 1469-1472, October 1984.
39. 劉家明, “Sn-3.5Ag無鉛銲料與BGA墊層反應之研究,” 中央大學碩士論文(2000)。
40. Robert E. Reed-Hill, “Physical Metallurgy Principles,” PWS Publishing Company, 1994.
41. M.S. Anand, S.P. Murarka and R.P. Agarwala, “Diffusion of Copper in Nickel and Aluminum,” Journal of Applied Physics, Vol. 36, No. 12, pp. 3860-3862, 1965.
42. R. Ravelo and M. Baskes, “Equilibrium and Thermodynamic Properties of Grey, White, and Liquid Tin,” Physical Review Letters, Vol. 79, No. 13, pp. 2482-2485, 1997.
43. G.T. Galyon and L. Palmer, “An Integrated Theory of Whisker Formation: The Physical Metallurgy of Whisker Formation and the Role of Internal Stresses,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 28, No. 1, pp. 17-30, 2005.
44. W. Zhang, A. Egli, F. Schwager and N. Brown, “Investigation of Sn-Cu Intermetallic Compounds by AFM: New Aspects of the Role of Intermetallic Compounds in Whisker Formation,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 28, No. 1, pp. 85-93, 2005.
45. Jie-Hua Zhao, Peng Su, Min Ding, S. Chopin and P.S. Ho, “Microstructure-based Stress Modeling of Tin Whisker Growth,” 2005 Electronic Components and Technology Conference, Vol. 1, pp. 137-144, 2005.
46. K. Chen and G.D. Wilcox, “Observation of the Spontaneous Growth of Tin Whiskers on Tin-Manganese Alloy Electrodeposits,” Physical Review Letters, PRL 94, 066104, 2005.
47. S. Lal and T.D. Moyer, “Role of Intrinsic Stresses in the Phenomena of Tin Whiskers in Electrical Connectors,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 28, No. 1, pp. 63-74, 2005.
48. J.W. Osenbach, R.L. Shook, B.T. Vaccaro, B.D. Potteiger, A.N. Amin, K.N. Hooghan, P. Suratkar and P. Ruengsinsub, “Sn Whiskers: Material, Design, Processing, and Post-Plate Reflow Effects and Development of an Overall Phenomenological Theory,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 28, No. 1, pp. 36-62, 2005.
49. K.N. Tu and J.C.M. Li, “Spontaneous Whisker Growth on Lead-Free Solder Finishes,” Materials Science and Engineering A, Vol. 409. pp. 131-139, 2005.
50. N. Vo, M. Kwoka and P. Bush, “Tin Whisker Test Standardization,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 28, No. 1, pp. 3-9, 2005.
51. W.J. Boettinger, C.E. Johnson, L.A. Bendersky, K.W. Moon, M.E. Williams and G.R. Stafford, “Whisker and Hillock Formation on Sn, Sn-Cu and Sn-Pb Electrodeposits,” Acta Materialia, Vol. 53, pp. 5033-5050, 2005.
52. K.S. Kim, W.O. Han and S.W. Han, “Whisker Growth on Surface Treatment in the Pure Tin Plating,” Journal of Electronic Materials, Vol. 34, No. 12, pp. 1579-1585, 2005.
53. I. Sakamoto, “Whisker Test Methods of JEITA Whisker Growth Mechanism for Test Methods,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 28, No. 1, pp. 10-16, 2005.
54. K. Whitlaw, F. Crosby and M. Toben, “A New Fine-Grained Matte Pure Tin for Semiconductor Lead-Frame Applications,” Circuit World, Vol. 32, No. 1, pp. 23-30, 2006.
55. R. Evans, “Analysis of the Effects of Tin Whiskers at High Frequencies,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 29, No. 4, pp. 274-279, 2006.
56. K.S. Kim, C.H. Yu and J.M. Yang, “Behavior of Tin Whisker Formation and Growth on Lead-Free Solder Finish,” Thin Solid Films, Vol. 504, pp. 350-354, 2006.
57. B. Jiang and A.P. Xian, “Discontinuous Growth of Tin Whiskers,” Philosophical Magazine Letters, Vol. 86, No. 8, pp. 521-527, 2006.
58. W. Zhang and F. Schwager, “Effects of Lead on Tin Whisker Elimination Efforts toward Lead-Free and Whisker-Free Electrodeposition of Tin,” Journal of The Electrochemical Society, Vol. 153, No. 5, pp. C337-C343, 2006.
59. T. Fang, M. Osterman and M. Pecht, “Statistical Analysis of Tin Whisker Growth,” Microelectronic Reliability, Vol. 46, pp. 846-849, 2006.
60. T. Shibutani, Q. Yu, T. Yamashita and M. Shiratori, “Stress-Induced Tin Whisker Initiation Under Contact Loading,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 29, No. 4, pp. 259-264, 2006.
61. Y. Fukuda, M. Osterman and M. Pecht, “The Effect of Annealing on Tin Whisker Growth,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 29, No. 4, pp. 252-258, 2006.
62. K.S. Kim, C.H. Yu and J.M. Yang, “Tin Whisker Formation of Lead-Free Plated Leadframes,” Microelectronic Reliability, Vol. 46, pp. 1080-1086, 2006.
63. T. Fang, M. Osterman, S. Mathew and M. Pecht, “Tin Whisker Risk Assessment,” Circuit World, Vol. 32, No. 3, pp. 25-29, 2006.
64. V. Schroeder, P. Bush, M. Williams, N. Vo and H.L. Reynolds, “Tin Whisker Test Method Development,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 29, No. 4, pp. 231-238, 2006.
65. T. Fang, S. Mathew, M. Osterman and M. Pecht, “Assessment of Risk Resulting from Unattached Tin Whisker Bridging,” Circuit World, Vol. 33, No. 1, pp. 5-8, 2007.
66. Y. Fukuda, M. Osterman and M. Pecht, “Length Distribution Analysis for Tin Whisker Growth,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 30, No. 1, pp. 36-40, 2007.
67. B. Jiang and A.P. Xian, “Observations of Ribbon-Like Whiskers on Tin Finish Surface,” Journal of Materials Science-Materials in Electronics, Vol. 18, No. 5, pp. 513-518, 2007.
68. T.H. Chuang, H.J. Lin and C.C. Chi, “Rapid Growth of Tin Whiskers on the Surface of Sn-6.6Lu alloy,” Scripta Materialia, Vol. 56, pp. 45-48, 2007.
69. J.W. Osenbach, J.M. DeLucca and B.D. Potteiger, “Sn-Whiskers: Truths and Myths,” Journal of Materials Science-Materials in Electronics, Vol. 18, pp. 283-305, 2007.
70. K.N. Tu, C. Chen and A.T. Wu, “Stress Analysis of Spontaneous Sn Whisker Growth,” Journal of Materials Science-Materials in Electronics, Vol. 18, pp. 269-281, 2007.
71. Y. Fukuda, M. Osterman and M. Pecht, “The Impact of Electrical Current, Mechanical Bending, and Thermal Annealing on Tin Whisker Growth,” Microelectronics Reliability, Vol. 47, pp. 88-92, 2007.
72. J. Smetana, “Theory of Tin Whisker Growth: “The End Game”,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 30, No. 1, pp. 11-22, 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.139.104.214
論文開放下載的時間是 校外不公開

Your IP address is 3.139.104.214
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code