Responsive image
博碩士論文 etd-0629107-193903 詳細資訊
Title page for etd-0629107-193903
論文名稱
Title
藉由非接觸式電場及光調制反射光譜探討氮化鎵磊晶層厚度對表面能帶彎曲的影響
Effect of thickness of epilayer of GaN on nature of band bending by contactless electroreflectance and photoreflectance
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-27
繳交日期
Date of Submission
2007-06-29
關鍵字
Keywords
極化電場、空乏電場、調制光譜
polarization field, depletion field, modulation spectroscopy
統計
Statistics
本論文已被瀏覽 5648 次,被下載 14
The thesis/dissertation has been browsed 5648 times, has been downloaded 14 times.
中文摘要
在GaN的wurtzite結構中,有Ga-或N-polarity二種極性存在,不同的極性有著不同方向的極化電場。本文使用N-polarity、n-type 而磊晶層厚度分別是1.1μm及70nm之GaN,藉由PR (Photoreflect- ance)及CER(Contactless Electroreflectance)的實驗技術,發現厚(thick)的樣品可由摻雜形態(n- or p-type)來決定其表面能帶的彎曲現象,而薄(thin)的樣品可由其極性(polarity)來決定。此結果與理論上的帕松-薛汀格(Poisson-Schrödinger)方程式之解吻合。因此,當樣品夠薄的話,其極化電場將主導樣品的表面電場時,CER的實驗技術將可決定其GaN的極性。
Abstract
The wurtzite GaN has either Ga or N polarity. The direction of polarization, hence it’s associated polarization-induced electric fields (Fp), is determined by the polarity of the sample. In the present work, we prepared both N-face polarity and n-type doping of GaN with thicknesses are 1.1μm and 70nm. Photoreflectacne (PR) and contactless electroreflectance (CER) were used in combination to study the nature of the surface band bending which was found to be determined by the type of doping for the thick sample and by the polarity for the polarity for the thin sample. This is in agreement with a theoretical calculation by Poisson-Schrödinger solver. Hence, CER can determine the polarity of GaN film as long as the sample is thin enough of the Fp to become dominant in the surface region.
目次 Table of Contents
致謝..................................................................................................Ⅰ
摘要..................................................................................................Ⅱ
Abstract..........................................................................................Ⅲ
第一章 導論及相關理論
1.1 前言............................................................................................1
1.2 能帶............................................................................................2
1.3 蝕刻..........................................................................................5
第二章 調制光譜
2.1 調制光譜學簡介........................................................................7
2.2 調制光譜學的機制....................................................................9
2.3 電子躍遷理論..........................................................................10
2.4 介電函數和反射率的關係......................................................13
2.5 低電場調制..............................................................................16
第三章 樣品結構特性分析
3.1 GaN能帶圖.................................................................................19
3.2 GaN結構分析.............................................................................21
3.3 空乏區電場(Fd)的產生機制..................................................24
3.4 極化效應與極化電場..............................................................27
3.5 GaN的蝕刻.................................................................................35
3.6 GaN理論能帶計算.....................................................................39
第四章 實驗設計
4.1 實驗樣品介紹..........................................................................42
4.2 實驗架構與調制原理..............................................................43
4.3 實驗相位分析..........................................................................48

第五章 實驗結果與討論
5.1 實驗圖形分析..........................................................................53
5.2 實驗數據分析..........................................................................55
5.3 薄的樣品的總極化向量的計算..............................................63
5.4 實驗結果討論..........................................................................66
第六章 結論............................................................................................68
Reference................................................................................................69


表格目錄
表3-1 Wurtzite結構的InN、GaN及AlN之自發極化向量、彈性常數與壓電常數..............................................................................................30
表5-1 厚的樣品其PR fitting(n=2)結果............................................56
表5-2 厚的樣品其CER fitting(n=2)結果..........................................56
表5-3 薄的樣品其PR fitting(n=2.5)結果........................................58
表5-4 薄的樣品其CER fitting(n=2.5)結果......................................59
表5-5 薄的樣品其PR fitting(n=2)結果............................................61
表5-6 薄的樣品其CER fitting(n=2)結果..........................................61
表5-7 薄的樣品擬合曲線與實驗數據差值的標準差..........................63

圖表目錄
圖1.1 絕緣體、半導體、導體的能帶示意圖............................................3
圖1.2 半導體的直接與間接電子躍遷....................................................4
圖3.1 GaN能帶結構示意圖....................................................................19
圖3.2 六方晶格中的布里淵區示意圖..................................................20
圖3.3 GaN的Γ點受擾動時產生的能階分裂示意圖............................20
圖3.4 GaN結構示意圖............................................................................21
圖3.5 c/a=1.633時之GaN結構示意圖.................................................22
圖3.6 c/a=1.6259時之GaN結構示意圖...............................................22
圖3.7 GaN立體結構示意圖....................................................................24
圖3.8 p型n型半導體接面能帶示意圖.................................................25
圖3.9 Wurtzite結構示意圖..................................................................30
圖3.10 Ga-及N-face其Psp、Ppe的方向示意圖.......................................31
圖3.11 Ga-及N-face其Psp、Ppe及 的方向示意圖...............................33
圖3.12 厚跟薄的樣品其 及 的方向示意圖...................................34
圖3.13 GaN在NaOH溶液中化學反應示意圖.........................................36
圖3.14 以SEM量測Ga-及N-polarity的GaN蝕刻前後範品結果......37
圖3.15 以SEM量測薄的樣品蝕刻前後結果.........................................38
圖3.16 以AFM量測薄的樣品蝕刻前後結果.........................................39
圖3.17 厚的樣品其能帶圖....................................................................40
圖3.18 薄的樣品其能帶圖....................................................................40
圖4.1 樣品結構圖..................................................................................42
圖4.2 PR實驗裝置圖..............................................................................46
圖4.3 CER實驗裝置圖............................................................................47
圖4.4 厚的樣品外加電壓之電場示意圖..............................................48
圖4.5 薄的樣品外加電壓之電場示意圖..............................................49
圖4.6 厚的樣品照光前及照光後對能帶的影響圖..............................50
圖4.7 薄的樣品照光前及照光後對能帶的影響圖..............................50
圖4.8 相位比較圖..................................................................................52
圖5.1 厚的樣品其PR及CER光譜圖比較..............................................53
圖5.2 薄的樣品其PR及CER光譜圖比較..............................................54
圖5.3 厚的樣品其PR實驗值與擬合(n=2)曲線...................................57
圖5.4 厚的樣品其CER實驗值與擬合(n=2)曲線.................................57
圖5.5 薄的樣品其PR實驗值與擬合(n=2.5)曲線...............................60
圖5.6 薄的樣品其CER實驗值與擬合(n=2.5)曲線.............................60
圖5.7 薄的樣品其PR實驗值與擬合(n=2)曲線...................................62
圖5.8 薄的樣品其CER實驗值與擬合(n=2)曲線.................................62
圖5.9 薄的樣品其Psp及Ppe方向示意圖................................................64
參考文獻 References
1. E. S. Hellman, MRS Internet J. Nitride Semicond. Res. 3,11(1998)
2. B. Daudin, J. L. Rouviére, and M. Arley, Appl. Phys. Lett. 69, 2480 (1996).
3. J. L. Weyher, S. Müller, I. Grzegory, and S. Porowski, J. Cryst. Growth 182, 17 (1997).
4. A. Kazimirov, G. Scherb, J. Zegenhagen, T. –L. Lee, M. J. Bedzyk, M. K. Kelly, H. Angerer, and O.Ambacher, J. Appl. Phys. 84, 1703 (1998).
5. F. Bernardini, V. Fiorentini, and J. Vanderbilt, Phys. Rev. B 56, 10024(1997)
6. X. Yin, X Guo, F. H. Pollak, G. D. Pettit, J. M. Woodall, T. P. Chin, and C. W. Tu, Appl. Phys. Lett. 60, 1336 (1992).
7. Y. S. Huang, F. H. Pollak, S. S. Park, K. Y. Lee, and H. Morkoç, J. Appl. Phys. 94, 899 (2003).
8. C. H. Chang, Dong-Po Wang, C. C. Wu, C. L. Hsiao, and L. W. Tu, Appl. Phys. Lett. 87, 202103 (2005)
9. S. M. Sze, in Semiconductor devices, physics and technology (Wiley, New York, 2002)
10. Serway. Jewett, in Physics for Scientists and Engineers with Modern Physics, 6th Edition (Thomson, 2004)
11. M. Cardona, in Modulation Spectroscopy (Academic, New York, 1969).
12. D. E. Aspnes, in Handbook on Semiconductors, edited by M.Balkanski (North-Holland, New York, 1980), Vol.2, p. 109.
13. F. H. Pollak, in Hand book on Semiconductors, edited by M. Balkanski(North-Holland, New York, 1994).
14. H. Shen and M. Dutta, J. Appl. Phys. 78, 2151 (1995).
15. See, for example, R. N. Bhattacharya, H. Shen, P. Parayanthal, and F.H. Pollak, Phys. Rev. B 37, 4004 (1988).
16. B. O. Seraphin and N. Bottka, Phys. Rev, 145, 628 (1966)
17. D. F. Blossey, Phys. Rev. B 2, 3976 (1970)
18. Hartmut Haug, Stephan W. Koch, in Quantum Theory of the Optical and Electronic Properties of Semiconductor Quantum Physics (1994).
19. P.Y. Yu and M. Cardona, in Fundamentals of Semiconductors:Physics and Materials Properties(New York,1996,springer).
20. O. Madelung, in Semiconductors Group Ⅳ Elements and Ⅲ-Ⅴ Compounds, Springer-Verlag(Berlin Heideberg, New York, 1991).
21. Pearton, S. J, in GaN and Realted Materials, Gordon and Breach, Amsterdam(1997).
22. M. Sumiya, and S. Fuke, MRS Internet J. Nitride semicond. Res. 9, 1 (2004)
23. O. Ambacher, J. Smart, J. R. Shealy, N.G. Weimann, K. Chu, and M. Murphy, J. Appl.Phys. 85, 3222(1998)
24. Kittel. Charles, in Introduction to Solid State Physics, 7th edition. (J. Wiley, 1996).
25. Ben G. StreetMan, and Sanjay Banerjee, in Solid state electronic devices, 5th Edition, (Prentice Hall International, 2000).
26. Sze, S. M. in Semiconductor Devices Physics and Technology, 2nd Edition, (J. Wiley, 2002).
27. U. Karrer, O. Ambacher, and M. Stutzmann, Appl. Phys. Lett. 77, 2012(2000).
28. O. Ambacher, J. Majewski, C. Mishys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Tilak, B. Schaff, and L. F. Eastmann, J. Phys.: Condens. Matter 14, 3399(2002).
29. G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, Appl. Phys. Lett. 70, 3209 (1997).
30. M. Seelmann-Eggbert, J. L. Weyher, H. Obloh, H. Zimmermann, A. Rar, S. Porowski, Appl. Phys. Lett. 71, 2635-2637(1997)
31. D. Li, M. Sumiya, S. Fuke, D. Yang, D. Que, Y. Suzuki, Y. Fukuda, J. Appl. Phys. 90, 4219(2001)
32. Program 1D Poisson/Schrödinger,at http;/www.nd.edu/~gsnider/
33. D. F. Blosey, Phys. Rev. B 2, 1382 (1971)
34. S. Shokhovets, D. Fuhrmann, R. Goldhahn, G. Gobsch, O. Ambacher, M. Hermann, U. Karrer, and M. Eickhoff, Appl. Phys. Lett. 82, 1712 (2003)
35. R. Kudrawiec, M. Syperek, M. Motyka, J. Misiewicz, R. Paszkiewicz, B. Paszkiewicz, B. Paszkiewicz, and M. Tlaczala, J. Appl.Phys. 100, 013501(2006)
36. W. Shan, R. J. Hauenstein, A. J. Fischer, J. J. Song, W. G. Perry, M. D.Bremser, R. F. Davis, and B. Goldenberg, Rhys. Rev. B 54, 1346 (1996)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.16.90
論文開放下載的時間是 校外不公開

Your IP address is 3.145.16.90
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code