Responsive image
博碩士論文 etd-0629108-160527 詳細資訊
Title page for etd-0629108-160527
論文名稱
Title
以觸媒焚化和蓄熱式觸媒焚化處理氣相揮發性有機物之研究
Treatment of Gaseous Volatile Organic Compounds by Catalytic Incineration and a Regenerative Catalytic Oxidizer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
266
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-16
繳交日期
Date of Submission
2008-06-29
關鍵字
Keywords
甲苯、礫石觸媒、蓄熱式觸媒焚化系統、揮發性有機物、異丙醇
toluene, isopropyl alcohol (IPA), volatile organic compounds (VOCs), gravel catalyst, regenerative catalytic oxidizer (RCO)
統計
Statistics
本論文已被瀏覽 5710 次,被下載 15
The thesis/dissertation has been browsed 5710 times, has been downloaded 15 times.
中文摘要
揮發性有機物(volatile organic compounds, VOCs)為常見的空氣污染物,其本身不但會造成人體健康的危害,而且也可能形成光化學煙霧造成人體的不適。另外,當大氣中有氮氧化物存在時,VOCs更可能與之反應而衍生出高臭氧的問題。異丙醇和甲苯都是常見的VOCs,在工業上廣泛地運用為溶劑使用,然其高毒性往往對人體造成傷害。因此,本研究選擇異丙醇和甲苯為目標污染物進行研究。本研究主要以觸媒焚化和蓄熱式觸媒焚化系統(RCO)來進行處理VOCs的探討。首先,進行塊狀觸媒的製備與研發,並於觸媒焚化系統進行篩選和操作參數的探討,之後進一步將效能較佳和成本較低廉的觸媒運用於RCO系統,並針對RCO系統的處理效能、成本效益和操作條件進行討論。本研究發展出的礫石(gravel, (G))觸媒-10 wt%CuCo/(G)觸媒RCO系統有好的觸媒處理效能和成本效益。茲將本研究的成果摘錄如下:
1. 陶瓷觸媒焚化處理氣相異丙醇
以共沉澱法、溼含浸法和臨界含浸法製備活性金屬負載量5~20 wt%的Cu和CuCe陶瓷(ceramic honeycomb, 簡稱(CH))觸媒焚化處理異丙醇的研究,研究發現溼含浸法製備的20 wt%CuCe/(CH)觸媒在空間流速=12000hr-1、進流異丙醇濃度=1600 ppm、氧氣濃度=21%和相對溼度=25%的操作條件下,TC50(CO2產率達50%之溫度)的溫度為245℃,TC95(CO2產率達95%之溫度)的溫度為370℃,顯示20 wt%CuCe/(CH)觸媒有很好的異丙醇處理效能。另外,在操作條件探討的部分,研究發現CO2的產率會隨著操作溫度和氧氣濃度的增加而上升,但隨著進流異丙醇濃度、空間流速和溼度的增加而遞減。最後,由觸媒穩定性試驗也可論證20 wt%CuCe/(CH)觸媒的高穩定性。
2. 分子篩觸媒焚化處理氣相甲苯
以溼含浸法製作的金屬比例(Cu:Co、Cu:Mn和Mn:Co莫耳比1:1、純Cu、純Co和純Mn)及金屬負載量為5 wt%和10 wt%的分子篩(molecular sieve, 簡稱(MS))觸媒焚化處理甲苯的研究部份,發現以溼含浸法製備的10 wt%CuCo/(MS)觸媒有最佳的甲苯處理效能,在空間流速=12000hr-1、進流甲苯濃度=900 ppm、氧氣濃度=21%和相對溼度=26%的操作條件下,T50的溫度為295℃而T95的溫度為425℃,顯示10 wt%CuCo/(MS)觸媒有極佳的甲苯處理效能。另外,同樣發現甲苯轉化率會隨著操作溫度和氧氣濃度的增加而提升,但隨著進流甲苯濃度和空間流速的增加而遞減。最後,以SEM和EDS等儀器觀察觸媒穩定性試驗前後的觸媒,並沒有衰敗的情況發生。
3. 銅和銅鈷蜂巢式陶瓷觸媒RCO系統處理異丙醇
探討20 wt% CuCo/(CH)和20 wt% Cu/(CH)觸媒RCO系統的研究部分,研究發現20 wt%CuCo/(CH)觸媒RCO系統有較佳的CO2產率,進氣流速的增加而導致處理效能降低的趨勢較不明顯,且進氣濃度的提升反而增加觸媒處理效能等優點。另外,在成本效益的探討方面,研究顯示熱回收率會隨著氣體流速的增加而減少,排氣溫差和壓損會隨著加熱區溫度和進氣流速的增加而提升。20 wt%CuCo/(CH)觸媒RCO系統在不同操作情況下,其熱回收率大約分佈在87.8~91.2%,排氣溫差的分佈大約為22.1~35.1℃。最後,20 wt%CuCo/(CH)RCO系統經過48小時長時間測試,CO2產率並沒有明顯的變動,顯示此RCO系統有相當不錯的穩定性表現。
4. 不同載體之銅鈷觸媒RCO系統處理甲苯
由10 wt%CuCo/(G)、10 wt%CuCo/(MS)和20 wt% Cu/(CH)觸媒RCO系統的研究,結果發現10 wt% CuCo/(G)觸媒RCO系統有較佳甲苯處理效能,在加熱區溫度400℃時,可達到95%以上的甲苯轉化率;且進氣流速和進氣濃度的提升對10 wt%CuCo/(G)觸媒RCO系統所造成的負面影響較為輕微。在成本效益的探討部分,研究顯示10 wt%CuCo/(G)觸媒RCO系統能有較佳的熱回收率、低排氣溫差和低壓損的表現,熱回收率的分佈為90.2~92.9%,排氣溫差的範圍為18.2~30.9℃,因此有較佳的成本效益表現。最後, 10 wt%CuCo/(G)觸媒RCO系統的操作現象探討發現(1)10 wt%CuCo/(G)觸媒有高度的CO2選擇性;(2) 熱回收率會隨著切換時間的增長而遞減,而排氣溫差會隨著切換時間的增長而增大;(3) 電動閥切換時間對壓損所造成的影響較不明顯;(4) 10 wt%CuCo/(G)觸媒有極佳的穩定性表現。
Abstract
Volatile organic compounds (VOCs) can detrimentally affect human health directly and indirectly. However, the main environmental concern of VOCs involves the formation of smog. In the presence of nitrogen oxides, VOCs are the precursors to the formation of ground level ozone. Isopropyl alcohol (IPA) and toluene are extensively used in industry as solvents. They are all highly toxic to animals and humans. Accordingly, IPA and toluene are strongly associated with problems of VOCs.
Catalytic incinerations and a regenerative catalytic oxidizer (RCO) were adopted to decompose VOCs herein. Various catalysts were prepared and developed in this study. The screening test of catalytic activity and the influences of the operational parameters on VOCs removal efficiencies were widely discussed through catalytic incinerations of VOCs. The more effective and cheaper catalysts through above discussions of catalytic incineration were selected. And they were utilized in an RCO to investigate their performance in VOCs oxidation and RCO operations. Experimental results demonstrate that 10 wt%CuCo/(G) catalyst performed well in an RCO because it has the excellent performance in incineration efficiency and economic efficiency. The achievements of this study are summarized as follows:
(1) Treatment of isopropyl alcohol (IPA) using ceramic honeycomb(CH) catalyst
The eighteen ceramic honeycomb catalysts we prepared by various methods (co-precipitation, wet impregnation and incipient impregnation), various metal weight loadings (5 ~ 20 wt %), and various metals (Cu and CuCe) were used in the experiment. The results indicate that 20 wt%CuCe/(CH) catalyst prepared by wet impregnation had the best performance in CO2 yield because TC50 and TC95 were 245℃ and 370℃, respectively, under the following operating conditions; a space velocity of 12000 hr-1, an inlet IPA concentration of 1600 ppm, an oxygen concentration of 21%, and a relative humidity of 25%. Given the operational parameters of IPA oxidation experiments, the CO2 yields increased with higher temperature and oxygen concentration, but decreased with inlet IPA concentration, space velocity and the relative humidity increased. Moreover, the stability test results show that the 20 wt%CuCe/(CH) catalyst had excellent stability.
(2) Treatment of toluene using molecular sieve(MS) catalyst
Molecular sieve catalysts with various metals (Cu, Co, Mn, CuMn, CuCo, MnCo) and various loadings (5~10 wt %) were produced by wet impregnation to treat toluene. The results indicate that 10 wt%CuCo/(MS) had the best performance in toluene conversion because T50 and T95 were 295℃ and 425℃, respectively, at an influent concentration of toluene of 900 ppm, an oxygen concentration of 21%, a space velocity of 12000 hr-1, and a relative humidity of 26%. The conversions of toluene increased with the reaction temperature and the influent concentration of oxygen, but decreased as the initial concentration of toluene and the space velocity increased. Moreover, we did not find any decay between the fresh and used catalysts using SEM and EDS.
(3) Treatment of isopropyl alcohol (IPA) using Cu/(CH) and CuCo/(CH) catalysts
We used the 20 wt% CuCo/(CH) and 20 wt% Cu/(CH) catalysts in a pilot RCO to test IPA oxidation performance under various conditions. The best catalyst was selected, and the economic efficiency of RCO and the phenomenon of RCO operations were more widely discussed. The results demonstrate that 20 wt% CuCo/(CH) catalyst performed well in an RCO because it was effective in treating IPA, with a CO2 yield of up to 95%. It also had the largest tolerance of variations in inlet IPA concentration and gas velocity. The 20 wt% CuCo/(CH) catalyst in an RCO also performed well in terms of TRE, pressure drop and selectivity to CO2. The thermal recovery efficiency (TRE) decreased as gas velocity increased. The temperature difference (Td) and pressure drop increased with gas velocity and heating zone temperature. The TRE range was from 87.8 to 91.2 % and the Td ranged from 22.1~35.1℃under various conditions. Finally, the stability test results indicate that the 20 wt% CuCo/(CH) catalyst was very stable at various CO2 yields and temperatures.
(4) Treatment of toluene using CuCo/(CH) catalysts with various carriers
In this work, three catalysts (10 wt%CuCo/(G)、10 wt%CuCo/(MS) and 20 wt% Cu/(CH)) were prepared by wet impregnation, and used in an RCO to test their performance in incineration efficiency and economic efficiency under various operational conditions. Then the best catalyst was selected and the phenomenons of RCO operations were further investigated. Experimental results demonstrate that 10 wt%CuCo/(G) catalyst performed well in an RCO because it is effective in treating toluene with a toluene conversion of up to 95% at the heating zone temperature (Tset) = 400℃ under various conditions. The 10 wt% CuCo/(G) catalyst had the greatest tolerance against the effects of inlet toluene concentration and gas velocity, and exhibited the best performance in terms of TRE , Td and pressure drop. The TRE range was from 90.2 to 92.9 % and Td ranged from 18.2 to 30.9℃ under various conditions at Tset = 300~400℃. Moreover, when 10 wt% CuCo/(G) catalyst was used in an RCO, the results demonstrate that (1) high selectivity to CO2 ; (2) decrease in TRE and increase in Td as increasing the shifting time; (3) an insignificant effect of shifting time on pressure drop and (4) excellent stability of 10 wt% CuCo/(G) catalyst in a long period test.
目次 Table of Contents
目 錄
頁數
摘要 I
Abstract V
目錄 IX
圖目錄 XVII
表目錄 XXII
第一章 緒論 1-1
1-1 研究緣起 1-1
1-2 研究目的及內容 1-2
第二章 文獻回顧 2-1
2-1 揮發性有機物(VOCs)介紹 2-1
2-1-1異丙醇介紹 2-2
2-1-2甲苯介紹 2-3
2-2 VOCs 處理技術介紹 2-5
2-2-1直接焚化法 2-11
2-2-2觸媒焚化法 2-11
2-2-3蓄熱式焚化法 2-12
2-2-4蓄熱式觸媒焚化法 2-12
2-2-5吸附法 2-14
2-2-6吸收法 2-14
2-2-7冷凝法 2-15
2-2-8生物處理法 2-16
2-3觸媒探討 2-16
2-3-1觸媒製備方式 2-18
2-3-2載體選擇 2-20
2-3-2-1載體特性 2-20
2-3-2-2載體效應 2-22
2-3-3活性金屬 2-23
2-4 RCO系統特性 2-25
2-4-1觸媒種類特性 2-25
2-4-2蓄熱材 2-30
2-4-3 RCO系統之熱回收率 2-33
2-4-4 RCO系統之熱傳 2-34
2-5 VOCs觸媒焚化效能影響操作參數 2-34
2-5-1操作溫度 2-34
2-5-2 VOCs種類與濃度 2-36
2-5-3空間流速 2-40
2-5-4 CO2和水氣 2-42
2-5-5觸媒活性衰退 2-42
第三章 研究方法與實驗設備 3-1
3-1研究架構及實驗流程 3-1
3-1-1研究架構 3-1
3-1-2實驗流程 3-3
3-1-2-1蜂巢式陶瓷觸媒焚化處理氣相異丙醇 3-9
3-1-2-2分子篩觸媒焚化處理氣相甲苯 3-10
3-1-2-3銅和銅鈷蜂巢式陶瓷觸媒RCO系統處理異丙醇 3-12
3-1-2-4不同載體之銅鈷觸媒RCO系統處理異丙醇及甲苯 3-14
3-2觸媒製備與實驗步驟 3-16
3-2-1觸媒焚化系統觸媒製備 3-16
3-2-2觸媒焚化系統實驗步驟 3-18
3-2-3 RCO系統觸媒製備 3-22
3-2-4 RCO系統實驗步驟 3-22
3-3實驗設備 3-24
3-3-1觸媒焚化系統設備 3-24
3-3-2 RCO系統設備 3-28
3-4分析方法 3-33
3-4-1檢量線建立 3-33
3-4-2蓄熱材物理性質 3-35
3-4-3觸媒物理性質 3-36
3-5分析設備 3-38
3-6研究用之試藥及氣體 3-41
第四章 結果與討論 4-1
4-1蜂巢式陶瓷觸媒焚化處理氣相異丙醇 4-1
4-1-1蜂巢式陶瓷觸媒活性篩選 4-1
4-1-1-1不同負載量Cu/(CH)觸媒探討 4-2
4-1-1-2不同負載量CuCe/(CH)觸媒探討 4-3
4-1-1-3 Cu/(CH)和CuCe/(CH)觸媒探討 4-7
4-1-2蜂巢式陶瓷觸媒焚化參數 4-13
4-1-2-1蜂巢式陶瓷觸媒空白試驗 4-13
4-1-2-2蜂巢式陶瓷觸媒異丙醇進流濃度試驗 4-15
4-1-2-3蜂巢式陶瓷觸媒空間流速試驗 4-17
4-1-2-4蜂巢式陶瓷觸媒進流氧氣濃度試驗 4-19
4-1-2-5蜂巢式陶瓷觸媒水氣含量試驗 4-21
4-1-3蜂巢式陶瓷觸媒活性衰敗試驗 4-23
4-1-3-1蜂巢式陶瓷觸媒長時間衰敗試驗 4-23
4-1-3-2蜂巢式陶瓷觸媒表面變化觀察 4-23
4-2分子篩觸媒焚化處理氣相甲苯 4-26
4-2-1分子篩觸媒活性篩選 4-26
4-2-1-1不同負載量Mn/(MS)、Cu/(MS)和Co/(MS)觸媒探討 4-27
4-2-1-2不同負載量MnCu/(MS)、MnCo/(MS)和CuCo/(MS)觸媒探討 4-29
4-2-1-3單一金屬氧化物和混合金屬氧化物分子篩觸媒探討 4-31
4-2-2分子篩觸媒焚化參數 4-36
4-2-2-1分子篩觸媒空白試驗 4-36
4-2-2-2分子篩觸媒甲苯進流濃度試驗 4-38
4-2-2-3分子篩觸媒空間流速試驗 4-38
4-2-2-4分子篩觸媒進流氧氣濃度試驗 4-41
4-2-3分子篩觸媒活性衰敗試驗 4-43
4-2-3-1分子篩觸媒長時間衰敗試驗 4-43
4-2-3-2分子篩觸媒SEM/EDS表面變化觀察 4-43
4-3銅和銅鈷蜂巢式陶瓷觸媒RCO系統處理異丙醇 4-46
4-3-1蜂巢式陶瓷觸媒RCO系統處理效能探討 4-46
4-3-1-1空白測試 4-47
4-3-1-2進氣流速試驗 4-47
4-3-1-3進氣濃度試驗 4-50
4-3-2蜂巢式陶瓷觸媒RCO系統成本效益探討 4-53
4-3-2-1熱回收率和排氣溫差探討 4-53
4-3-2-2壓損探討 4-54
4-3-3 20 wt%CuCo/(CH)觸媒RCO系統操作現象探討 4-57
4-3-3-1床體溫度的變化 4-57
4-3-3-2 20 wt%CuCo/(CH)觸媒選擇性試驗 4-59
4-3-3-3 20 wt%CuCo/(CH)觸媒RCO系統穩定性試驗 4-61
4-3-4 20 wt%CuCo/(CH)觸媒SEM/EDS儀器驗證探討 4-62
4-4不同載體之銅鈷觸媒RCO系統處理甲苯 4-64
4-4-1銅鈷觸媒RCO系統處理效能探討 4-64
4-4-1-1空白測試 4-65
4-4-1-2進氣流速試驗 4-65
4-4-1-3進氣濃度試驗 4-66
4-4-2銅鈷觸媒RCO系統成本效益探討 4-70
4-4-2-1熱回收率和排氣溫差探討 4-70
4-4-2-2壓損探討 4-74
4-4-3 10 wt%CuCo/(G)觸媒RCO系統操作現象探討 4-76
4-4-3-1 10 wt%CuCo/(G)觸媒RCO系統觸媒選擇性 4-76
4-4-3-2床體溫度的變化 4-77
4-4-3-3電動閥切換時間對熱回收率、排氣溫差和壓損的影響 4-79
4-4-3-4不同揮發有機物種(異丙醇和甲苯)處理測試 4-81
4-4-3-5 10 wt%CuCo/(G)RCO系統穩定性試驗 4-83
4-4-4 10 wt%CuCo/(G)觸媒表面特性分析 4-83
4-5成本效益評估 4-86
4-5-1觸媒製備成本 4-86
4-5-2 RCO和RTO系統操作費用評估 4-88
第五章 結論與建議 5-1
5-1結論 5-1
5-1-1蜂巢式陶瓷觸媒焚化處理氣相異丙醇 5-1
5-1-2分子篩觸媒焚化處理氣相甲苯 5-2
5-1-3銅和銅鈷蜂巢式陶瓷觸媒RCO系統處理異丙醇 5-3
5-1-4不同載體之銅鈷觸媒RCO系統處理甲苯 5-5
5-1-5成本效益評估 5-6
5-2建議 5-7
參考文獻 參-1
附錄A 口試委員意見答覆 A-1
附錄B 實驗設備與觸媒實景 B-1
附錄C 研究數據彙整 C-1
附錄D 作者基本資料 D-1

圖目錄
頁數
圖2-1 國內外有機廢氣處理技術分類 2-8
圖2-2 VOCs排氣處理方法其廢氣流量與濃度之關係 2-10
圖2-3 VOCs處理技術的相對處理成本與濃度之關係 2-10
圖2-4 RTO系統 2-13
圖2-5 有機物觸媒氧化反應機制示意圖 2-17
圖2-6 Fe、Al、Zn、Al2O3、stone 及ZnCl2不同溫度之蓄熱量 2-32
圖2-7 觸媒焚化的反應速率和反應溫度之關係 2-36
圖3-1 整體研究流程圖 3-4
圖3-2 蜂巢式陶瓷觸媒焚化處理異丙醇流程圖 3-5
圖3-3 分子篩觸媒焚化處理甲苯流程圖 3-6
圖3-4 銅和銅鈷蜂巢式陶瓷觸媒RCO系統處理異丙醇流程圖 3-7
圖3-5 不同載體之銅鈷觸媒RCO系統處理異丙醇及甲苯流程圖 3-8
圖3-6 觸媒製備之沉澱裝置 3-20
圖3-7 觸媒煅燒裝置示意圖 3-21
圖3-8 觸媒焚化系統設備 3-27
圖3-9 RTO與RCO實驗設備 3-29
圖4-1 不同製備方法和負載量之Cu/(CH)觸媒處理異丙醇的CO2產率變化 4-5
圖4-2 不同製備方法和不同負載量的CuCe/(CH)觸媒處理異丙醇 的CO2產率變化 4-6
圖4-3 不同製備方法和不同負載量的Cu/(CH)和CuCe/(CH)觸媒處理異丙醇的CO2產率變化 4-10
圖4-4 溼含浸法製備之不同負載量CuCe/(CH)觸媒在不同溫度下處理異丙醇的CO2產率變化 4-11
圖4-5 20 wt%CuCe/(CH)觸媒、Blank和Ceramic honeycomb在不同溫度下處理異丙醇的CO2產率變化 4-14
圖4-6 不同溫度下異丙醇進流濃度對觸媒焚化的影響 4-16
圖4-7 不同溫度下空間流速對觸媒焚化異丙醇的影響 4-18
圖4-8 不同溫度下進流氧氣濃度對觸媒焚化異丙醇的影響 4-20
圖4-9 不同溫度下相對溼度對觸媒焚化異丙醇的影響 4-22
圖4-10 不同溫度下觸媒長時間操作的觸媒活性變化 4-24
圖4-11 20 wt%CuCe/(CH)觸媒的SEM影像 4-24
圖4-12 不同負載量之Mn/(MS)、Cu/(MS)和Co/(MS)觸媒在不同溫度下甲苯轉化率的變化 4-28
圖4-13 不同負載量之MnCu/(MS)、MnCo/(MS)和CuCo/(MS)觸媒在不同溫度下甲苯轉化率的變化 4-30
圖4-14 不同負載量之單一金屬和混合金屬氧化物分子篩觸媒在不同溫度下甲苯轉化率的變化 4-33
圖4-15 不同負載量CuCo/(MS)觸媒在不同溫度下甲苯轉化率的變化 4-34
圖4-16 10 wt%CuCo/(MS)觸媒、Blank和Molecular sieves在不同 溫度下處理甲苯轉化率的變化 4-37
圖4-17 不同溫度下甲苯進流濃度對甲苯轉化率的影響 4-39
圖4-18 不同溫度下空間流速對甲苯轉化率的影響 4-40
圖4-19 不同溫度下進流氧氣濃度對甲苯轉化率的影響 4-42
圖4-20 不同溫度下觸媒長時間操作的觸媒活性變化 4-44
圖4-21 10 wt%CuCo/(MS)觸媒的SEM影像 4-45
圖4-22 不同觸媒在不同加熱區溫度下處理異丙醇的CO2產率變化 4-48
圖4-23 不同觸媒在不同加熱區溫度和進氣流速下處理異丙醇的CO2產率變化 4-49
圖4-24 不同觸媒在不同加熱區溫度和進氣濃度下處理異丙醇的CO2產率變化 4-52
圖4-25 在不同的操作條件下RTO和RCO系統的壓損變化 4-56
圖4-26 20 wt%CuCo/(CH)觸媒RCO系統在不同操作條件下穩定狀態時的床體溫度分佈 4-58
圖4-27 IPA轉化率和產物的選擇性在不同溫度下的變化 4-60
圖4-28 20 wt%CuCo/(CH)觸媒RCO系統在不同加熱區溫度下48小時長時間測試的CO2產率變化 4-61
圖4-29 20 wt%CuCo/(CH)觸媒的SEM影像 4-63
圖4-30不同觸媒在不同加熱區溫度下處理甲苯的轉化率變化 4-67
圖4-31 不同觸媒在不同加熱區溫度和進氣流速下處理甲苯的轉化率變化 4-68
圖4-32 不同觸媒在不同加熱區溫度和進氣濃度下處理甲苯的轉化率變化 4-69
圖4-33不同觸媒在不同加熱區溫度和進氣流速下的排氣溫差變化 4-73
圖4-34 在不同的操作條件下RTO和RCO系統的壓損變化 4-75
圖4-35 10 wt%CuCo/(G)觸媒RCO系統在不同操作條件下穩定狀態時的床體溫度分佈 4-78
圖4-36 在不同電動閥切換時間下對熱回收率、排氣溫差和壓損的影響 4-80
圖4-37不同操作條件下處理異丙醇和甲苯的CO2產率變化 4-82
圖4-38 10 wt%CuCo/(G)觸媒RCO系統在不同加熱區溫度下長時間測試的甲苯轉化率變化 4-84
圖4-3910 wt%CuCo/(G)觸媒的SEM影像 4-85
表目錄
頁數
表2-1 VOCs處理技術之優缺點 2-9
表2-2 觸媒貴重金屬與金屬氧化物比較 2-24
表2-3 觸媒特性對觸媒焚化影響之文獻彙整(1/3) 2-27
表2-3 觸媒特性對觸媒焚化影響之文獻彙整(2/3) 2-28
表2-3 觸媒特性對觸媒焚化影響之文獻彙整(3/3) 2-29
表2-4 蓄熱材相關文獻彙整 2-31
表2-5 蓄熱材質比熱計算公式 2-32
表2-6 操作溫度對觸媒焚化影響之文獻彙整 2-37
表2-7 VOCs種類與濃度變化對觸媒焚化影響之文獻彙整(1/2) 2-38
表2-7 VOCs種類與濃度變化對觸媒焚化影響之文獻彙整(2/2) 2-39
表2-8 空間流速對觸媒焚化影響之文獻彙整 2-41
表2-9 CO2和水氣對觸媒焚化影響之文獻彙整 2-44
表2-10觸媒中毒形式與防治方法 2-45
表2-11觸媒活性衰退對觸媒焚化影響之文獻彙整(1/2) 2-46
表2-11觸媒活性衰退對觸媒焚化影響之文獻彙整(2/2) 2-47
表3-1 蜂巢式陶瓷觸媒焚化操作參數及範圍 3-10
表3-2 分子篩觸媒焚化操作參數及範圍 3-12
表3-3 RTO與RCO系統設備規格 3-28
表3-4 礫石物理性質 3-37
表3-5 觸媒物理性質 3-37
表4-1 自製20種Cu/(CH)和CuCe/(CH)觸媒之TC50和TC95 4-12
表4-2 蜂巢式陶瓷觸媒EA元素分析和BET比表面積分析 4-25
表4-3 自製的14種分子篩觸媒之T50和T95 4-35
表4-4 10 wt% CuCO/(MS)觸媒之EDS分析結果 4-45
表4-5 20 wt%CuCo/(CH)觸媒RCO和RTO系統在不同操作條件下的熱回收率和排氣溫差 4-55
表4-6 20 wt% CuCO/(CH)觸媒之EDS分析結果 4-63
表4-7 RCO和RTO系統在不同操作條件下的熱回收率和排氣溫差 4-71
表4-8 10 wt% CuCo/(G)觸媒之EDS分析結果 4-85
表4-9 觸媒製備成本估算 4-87
表4-10 RCO和RTO系統的操作費用 4-92
參考文獻 References
潘忠柏,以蓄熱式焚化爐處理含氮揮發性有機物之氮氧化物生成研究,國立中山大學環境工程研究所,2005。
范雅淳,醇類在Pt/BN觸媒上之深度氧化,國立台灣大學化學工程研究所碩士論文,2001。
李秉傑、邱宏明、王奕凱「非均勻系催化原理與應用」,渤海堂文化公司,1993。
李定粵,觸媒的原理與應用,正中書局,1990。
李昆展,以稻穀灰分初濕含浸製備擔體銅觸媒之研究,國立中央大學化學工程研究所碩士論文,2001。
李文廷,以Pt/Al2O3觸媒焚化處理醇類及甲基硫纇之研究,國立成功大學環境工程研究所碩士論文,1994。
劉國棟,VOC管制趨勢展望,工業污染防治,第48期,p.15-31,1993。
盧裕倉,以觸媒氧化法處理含揮發性有機物煙道氣之研究,國立中山大學環境工程研究所碩士論文,2000。
郭建光,李忠,奚紅霞,何莼,王伯光,CeO2添加對CuO沸石催化劑催化氧化VOCs的影響,高校化學工程學報,第19卷,第6期,2005。
黑正明,以蓄熱式焚化爐處理含氯揮發性有機物之操作性能研究,國立中山大學環境工程研究所,2002。
黃柏仁,以蓄熱式觸媒焚化設施處理排氣中揮發性有機物質之理論解析與驗證,國立中山大學環境工程研究所碩士論文, 1998。
黃思蓴,電子半導體業揮發性有機物排放處理之本土化全自控生物濾床模組設備研發, 國科會/ 環保署科技合作研究計畫NSC87 – 2218 - E- 216-002 期末報告,1998。
洪文雅,揮發性有機廢氣處理技術簡介,台灣環保產業雙週刊,2003。
洪文雅,揮發性有機廢氣處理技術之規劃實務,綠色技術發展研究中心,2002。
行政院環保署網站http://www.epa.gov.tw/。
許世杰,生物濾床應用於高科技產業揮發性有機廢氣之研究,新竹縣環保局2003年高科技產業研討會論文集,pp39~47,2003。
周明顯、黃柏仁、鄭文熙,以蓄熱式觸媒焚化設施處理排氣中揮發性有機物質之理論解析與驗證,第十五屆空氣污染控制技術研討會論文集,1998。
張慶璋,溫度效應對一氧化氮在銅/碳煙觸媒上還原反應行為之探討, 國立中山大學化學研究所碩士論文,1999。
張書豪、張木彬,科學園區空氣污染物排放特性之探討,國立中央大學環境工程研究所研究成果報告,1999。
鄭福田,空氣污染防治(九)-臭味問題,工業污染防治,第3卷,第1期,第59-64頁,1994。
鄭乙任,影響觸媒焚化的主要因素及操作維護注意事項之探討,工業污染防治報導,第132期,2000。
朱小容、陳郁文,工業廢氣特殊處理技術,化工資訊,第68-78頁,2003。
朱信、柯子星、曾庭科,以Pt/ã-Al2O3 觸媒焚化處理甲基異丁基酮之研究, 第十六屆空氣污染控制技術研討會論文集, 第189-195頁,1999 。
臭氣處理程序設計評估技術,工研院化工所,1991。
陳文杰、陳建華、張瑞進,有機氣體蓄熱燃燒介紹,工業污染防治,第74 期,2000。
沈明宗,實廠蓄熱式焚化爐處理排氣中揮發性有機物之操作性能研究,國立中山大學環境工程研究所,2001。
燃燒原理與污染控制,甲級空氣污染防制專責人員訓練班教材,2008年1月。
顏駿翔,添加Mn/γ-Al2O3於觸媒濕式氧化程序處理 2,4-二氯酚水溶液之研究,國立中山大學環境工程研究所碩士論文,2001。
吳榮宗,工業觸媒概論,國興出版社,1998。
Abdullah, A. Z., Bakar,M. Z. A., Bhatia, S., Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium- copper supported on modified H-ZSM-5 catalyst, Journal of Hazardous Materials. Vol. 129, 39–49, 2006.
Afandizadeh S., Foumeny, E. A., Design of packed bed reactors: guides to catalyst shape, size, and loading selection, Applied Thermal Engineering. Vol. 21, 669-682, 2001.
Alifanti, M., Florea, M., Pârvulescu, V. I., Ceria-based oxides as supports for LaCoO3 perovskite; catalysts for total oxidation of VOC, Applied Catalysis B: Environmental. Vol. 70, 400–405, 2007.
Álvarez-Galván, M. C., Pawelec, B., de la Peña O’Shea, V.A., Fierro, J. L. G., Arias, P. L., Formaldehyde/methanol combustion on alumina-supported manganese-palladium oxide catalyst, Applied Catalysis B: Environmental. Vol. 51, 83–91, 2004.
Anna, M. P., Destruction of trichloroethylene (TCE) and trichloromethane (TCM) in the presence of selected VOCs over Pt-Pd-based catalyst, Catalysis Today. Vol. 119, 301–304, 2007.
Anna, M. P., Mendyka, B., Catalytic oxidation of chlorinated hydrocarbons in two-component mixtures with selected VOCs, Catalysis Today. Vol. 90, 139–144, 2004.
Ataloglou, T., Vakros, J., Bourikas, K., Fountzoula, C., Kordulis, C., Lycourghiotis, A., Influence of the preparation method on the structure–activity of cobalt oxide catalysts supported on alumina for complete benzene oxidation, Applied Catalysis B: Environmental. Vol. 57, 299–312, 2005.
Baek, S. W., Kim, J. R., Ihm, S. K., Design of dual functional adsorbent/catalyst system for the control of VOC’s by using metal-loaded hydrophobic Y-zeolites, Catalysis Today. Vol. 93-95, 575–581, 2004.
Beatriz de Rivas, Jose I. Gutiérrez-Ortiz, Rubén Lŏpez-Fonseca, Juan R. González-Velasco, Analysis of the simultaneous catalytic combustion of chlorinated aliphatic pollutants and toluene over ceria-zirconia mixed oxides, Applied Catalysis A: General. Vol. 314, 54–63, 2006.
Beauchet, R., Magnoux, P., Mijoin, J., Catalytic oxidation of volatile organic compounds (VOCs) mixture (isopropanol/o-xylene) on zeolite catalysts, Catalysis Today. Vol. 124, 118–123, 2007.
Blasin-Aube, V., Belkouch, J., Monceaux, L., General study of catalytic oxidation of various VOCs over La0.8Sr0.2MnO3+x perovskite catalyst-influence of mixture , Applied Catalysis B:Environmental. Vol. 43, No. 2, 175-186, 2003.
Burch, R., Urbano, F. J., Loader, P. K., Methane combustion over palladium catalysts: the e.ect of carbon dioxide and water on activity. Applied Catalysis A: General. Vol. 123,173–184, 1995.
Centeno, M. A., Paulis, M., Montes, M. Odriozola, J. A., Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts, Applied Catalysis A: General. Vol. 234, , No. 1-2, 65–78, 2002.
Cheng, W. H., Chou, M. S., Lee, W. S., Huang, B. J., Applications of low-temperature regenerative thermal oxidizers to treat volatile organic compounds, Journal of Environmental Engineering. Vol. 128, No. 4, 313-319, 2002.
Choi, B. S. , Yi, J. Simulation and optimization on the regenerative thermal oxidation of volatile organic compounds, Chemical Engineering Journal. Vol. 76, 103-114, 2000.
Chou, M. S., Hei, C. M., Huang Y. W., Regenerative Thermal Oxidation of Airborne N, N-Dimethylformamide and Its Associated Nitrogen OxidesFormation Characteristics, Air & Waste Management Association. Vol. 57, 991-999, 2007.
Chou, M. S., Hei, C. M., Performance study on the treatment of gas-borne chlorohydrocarbons by a regenerative thermal oxidizer, Journal of the Chinese Institute of Environmental Engineering. Vol. 14, No. 2, 73-82, 2004.
Chu, H., Hao, G. H., Tseng, T. K., Laboratory study of poisoning of a MnO/Fe2O3 catalyst by dimethyl sulfide and dimethyl disulfide Journal of Hazardous Materials. Vol. 100, 301–316, 2003.
Chu, H., Lee, W. T., The effect of sulfur poisoning of dimethyl disulfide on the catalytic incineration over a Pt/Al2O3 catalyst, Science of the Total Environment. Vol. 209, 217 - 224, 1998.
Dai, Q., Wang, X., Lu, G., Low-temperature catalytic destruction of chlorinated VOCs over cerium oxide, Catalysis Communications. Vol. 8, 1645–1649, 2007.
Dai, Q.,Wang, X., Lu, G., Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation, Applied Catalysis B: Environmental. Vol. 81, 192–202, 2008.
Daté, M., Haruta M., Moisture Effect on CO Oxidation over Au/TiO2 Catalyst, Journal of Catalysis.Vol. 201, No. 2, 221-224, 2001.
Delphine, R., Park, G., Emmanuel, T., Catalytic behaviour of Cl-free and Cl-containing Pd/Al2O3 catalysts in the total oxidation of methane at low temperature, Applied Catalysis A:General. Vol. 203, 90-102, 2000.
Devinny J. S., Deshusses M. A., Webster T. S., Biofiltration for air pollution control, Lewis Publishers. 1998.
Don, J. A., Feenstra L., Odour abatement through biofitration, In Proceedings of Symposium on Characterization and Control of Odoriferous Pollutants in Process Industrirs : Lonvain-La Neuve (Belgium), 1984.
Enricom, T., Gianpiero, G., Thorsten, B., Achim H., Monolithic catalysts with ‘high conductivity’ honeycomb supports for gas/solid exothermic reactions: characterization of the heat-transfer properties, Chemical Engineering Science. Vol. 59, 4941-4949, 2004.
Gallardo-Amores, J. M., Armaroli, T., Ramis, G., Finocchio, E., Busca, G., A study of anatase–supported Mn oxide as catalysts for 2-propanol oxidation, Applied Catalysis B: Environmental. Vol. 22, 249–259, 1999.
Gandhe, Aditi R., Rebello, Jeanette S., Figueiredo, J. L., Fernandes, J. B., Manganese oxide OMS-2 as an effective catalyst for total oxidation of ethyl acetate, Applied Catalysis B: Environmental. Vol. 72, 129–135, 2007.
García, T., Solsona, B., Taylor, S. H., Naphthalene total oxidation over metal oxide catalysts, Applied Catalysis B: Environmental. Vol. 66, No. 1-2, 92-99, 2006.
Gennkoplis, C. J., Transport Process and Unit Operation, Third Edition, Prentice-Hall Inc., U.S.A., 1995.
Gil, A., Gandía, L. M., Korili, S. A., Effect of the temperature of calcination on the catalytic performance of manganese- and samarium-manganese-based oxides in the complete oxidation of acetone, Applied Catalysis A: General. Vol. 274, 229–235, 2004.
Gil. A., A. Diaz., L. M. Gandia, M. Montes, Influence of the Preparation Method and Nature of the Suppor on the Stability of Nickel Catalyst, Applied Catalysis:A General. Vol. 109, No. 2, 355-361, 1994.
Golodets, G. I. Heterogeneous Catalytic Reactions Involving Molecular Oxygen, New York, Elsevier, 1983.
Guerreiro-Ruiz, A., Rodrigz-Ramoz I., Fierro, Dehydrogenation of Methanol to Methyl Formate over Supported Copper Catalyst, Applied. Catalysis:A General. Vol. 72, No. 1, 119-128, 1994.
Guisnet, M. P., Magnoux, D. P., Catalytic oxidation of volatile organic compounds 1. Oxidationof xylene over a 0.2 wt% Pd/HFAU(17) catalyst. Applied Catalysis B: Environmental. Vol. 20, 1-13, 1999.
Hu, R., Cheng, Y., Xie, L. Y., Wang, D. H., Effect of Doped Ag on Performance of Manganese Oxide Octahedral Molecular Sieve for CO Oxidation, Chinese Journal of Catalysis. Vol. 28, No. 5, 463-468, 2007.
Huang, H., Liu, Y., Tang, W., Chen, Y. Catalytic activity of nanometer La1-xSrxCoO3 (x = 0, 0.2)perovskites towards VOCs combustion, Catalysis Communications. Vol. 9, 55–59, 2008.
Huang, T. J. Effect of Calcination Condition on Surface Properties of Copper/Alumina Catalysts, Journal of the Chinese.1. Ch.E.21, No. 5, 1990.
Jin, L. Y., Lu, J. Q., Luo, M. F., Xie, G. Q., He, M., CeO2-Y2O3 Washcoat and Supported Pd Catalysts for theCombustion of Volatile Organic Compounds (VOCs), ACTA PHYSICO-CHIMICA SINICA.Vol. 23, No. 11, 1691-1695, 2007.
Jose I. Gutiérrez-Ortiz, Beatriz de Rivas, Rubén López-Fonseca, Juan R. González-Velasco., Catalytic purification of waste gases containing VOC mixtures with Ce/Zr solid solutions, Applied Catalysis B: Environmental. Vol. 65, 191–200, 2006.
Jose I. Gutiérrez-Ortiz, Beatriz de Rivas, Rubén López-Fonseca, Susana Martín , Juan R. González-Velasco., Structure of Mn–Zr mixed oxides catalysts and their catalytic performance in the gas-phase oxidation of chlorocarbons, Chemosphere. Vol. 68, No. 6, 1004-1012, 2007.
Kim, S. C., Nahm, S. W., Shim, W. G., Lee, J. W., Moon, H., Influence of physicochemical treatments on spent palladium based catalyst for catalytic oxidation of VOCs, Journal of Hazardous Materials. Vol. 141, 305–314, 2007.
Kim, S. C., The catalytic oxidation of aromatic hydrocarbons over supported metal oxide, Journal of Hazardous Materials. Vol. 91, 285–299, 2002.
Ku a y ski, M., Ommen, J. G. van, Trawczy ski, J., Walendziewski, J., Catalytic combustion of trichloroethylene over TiO2-SiO2 supported catalysts, Applied Catalysis B: Environmental. Vol. 36, No. 3, 239-247, 2002.
Li, W. B., Chu, W. B., Zhuang, M., Hua, J., Catalytic oxidation of toluene on Mn–containing mixed oxides prepared in reverse microemulsions, Catalysis Today. Vol. 93-95, 205-209, 2004.
Liotta, L.F., Carlo, G. Di, Pantaleo, G., Deganello, G., Merlone Borla, E., Pidria, M., Honeycomb supported Co3O4/CeO2 catalyst for CO/CH4 emissions abatement: Effect of low Pd–Pt content on the catalytic activity, Catalysis Communications. Vol. 8, 299–304, 2007.
Lopez-Fonseca R., Cibrián, S., Gutiérrez-Ortiz, J. I., González-Velasco, J. R., Effect of Pd addition on the catalytic performance of H-ZSM-5 zeolite in chlorinated VOCs combustion, Studies in Surface Science and Catalysis. Vol. 142, 847-854, 2002.
Lu, C. Y., Wen, M. Y., Chen, L. I., Application of polyol process to prepare AC-supported nanocatalyst for VOC oxidation, Applied. Catalysis:A General. Vol. 325, No. 1, 163-174, 2007.
Mario, A., Pietropaolo, M., Numerical evaluation of the energetic performances of structured and random packed beds in regenerative thermal oxidizers, Applied Thermal Engineering. Vol. 27, 762-770, 2007.
Morales, M. R., Bibiana P., Cadús L. E., Combustion of volatile organic compounds on manganese iron or nickel mixed oxide catalysts, Applied Catalysis B: Environmental. Vol. 74, 1–10, 2007.
Morales, M. R., Bibiana P., Cadús L. E., Evaluation and characterization of Mn–Cu mixed oxide catalysts for ethanol total oxidation: Influence of copper content, Fuel. 2007. In press.
Oliveira, L.C.A., Lago, R. M., Fabris, J. D., Sapag, K., Catalytic oxidation of aromatic VOCs with Cr or Pd-impregnated Al-pillared bentonite: Byproduct formation and deactivation studies, Applied Clay Science.2007. In press.
Padilla, A.M., Corella, J., Toledo, J.M., 1999. Total oxidation of some chlorinated hydrocarbons with commercial chromia based catalysts, Applied Catalysis B:Environmental. Vol.22, 107–121.
Pope, D., Walker, D.S., Moss, R.L., Evaluation of Cobalt Oxide Catalysts for the Oxidation of Low Concentration of Organic Compounds, Atmospheric Environment. Vol. 10, No. 6, 951-956, 1976.
Radian C., Control techniques for volatile organic emission from stationary source, USEPA, EPA-450/2-78-022, 1978.
Scirè, S., Minicò, S., Crisafulli, C., Satriano, C., Pistone, A., Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts. Applied Catalysis B: Environmental. Vol. 40, 43–49, 2003.
Shaikh R. A., Chandrasekar, G., Biswas, Kalidas., Choi, J. S., Son W. J., Jeong , S. Y., Ahn, W. S., Tetralin oxidation over chromium-containing molecular sieve catalysts, Catalysis Today, Vol. 132, 52–57, 2008.
Spivey, J. J., Complete Catalytic Oxidation of Volatile Organics, Industrial Engineering Chemical Research. Vol. 26, No.11, 2165 -2180, 1987.
Stoylkova, T. Yu, Chanev, Chr. D., Lechert, H. T., Bezouhanova, C. P., Oxidative conversion of n-heptane over molecular sieves, Applied Catalysis A: General. Vol. 203, 121–126, 2000.
Strots, V. O., Bunimovich, G. A., Roach, C. R., Matros, Y. S., Regenerative catalytic oxidizer technology for VOC control. Reaction Engineering for Pollution Prevention. 113.
Taylor, S.H., Hutchings, G. J., Palacios, M. L., Lee, D.F., The partial oxidation of propane to formaldehyde using uranium mixed oxide catalysts, Catalysis Today. Vol. 81,171–178, 2003.
Tichenor, A., Palazzolo, M. A., Destruction of Volatile Organic compounds via Catalytic Incineration, Environment Progress. Vol. 6, No. 3, 172-176, 1987.
Tidahy, H. L., Siffert S., Lamonier, J. F., Cousin, R., Zhilinskaya, E. A., Aboukaïs, A., Su, B.-L., Canet, X., Weireld, G., Frère, M., Giraudon, J.-M., Leclercq, G., Influence of the exchanged cation in Pd/BEA and Pd/FAU zeolites for catalytic oxidation of VOCs, Applied Catalysis B: Environmental. Vol. 70, No. 1-4, 377-383, 2007.
Tidahy, H. L., Siffert, S., Wyrwalski, F., Lamonier, J. F., Aboukaïs, A., Catalytic activity of copper and palladium based catalysts for toluene total oxidation, Catalysis Today. Vol. 119, No. 1-4, 317-320, 2007.
Tsou, J., Magnoux, P., Guisnet, M., M. Órfão, J. J., Figueiredo, J. L. Catalytic oxidation of volatile organic compounds: Oxidation of methyl-isobutyl-ketone over Pt/zeolite catalysts, Applied Catalysis B: Environmental. Vol. 57, No. 2, 117-123, 2005.
Wang, C. H., Al2O3-supported transition-metal oxide catalysts for catalytic incineration of toluene, Chemosphere. Vol. 55, 11-17, 2004.
Wang, C. H., Lin, S. S., Chen, C. L., Weng, H. S., Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydrocarbons, Chemosphere. Vol. 64, 503-509, 2006.
Wang, J. L., Cao H. Y., Zhong, J. B., Gong, M. C., Yan, S. H., Liu, Z. M., Shen, M., Chen, Y. Q., Effect of Metal Oxide Doping into Ce0.5Zr0.5O2 on Catalytic Activity of MnOx /γ-Al2O3/CeO0.45 ZrO0.45M0.1Ox, (M = Y , La , Mn) Honeycomb Catalysts, Journal of Rare Earths, Vol. 25, 111 – 113, 2007
Wollner, A., Lange, F., Schmelz, H., Knozinger, H. Characterization of Mixed Copper-Manganese Oxides Supported on Titania Catalysts for Selective Oxidation of Ammonia, Applied Catalysis A: General. Vol. 94, No. 1, 181-203, 1993.
Wu, J. C. S., Lin, Z. A., Pan, J. W., Rei, M. H. A novel boron nitride supported Pt catalyst for VOC incineration, Applied Catalysis A: General. Vol. 219, 117–124, 2001.
Wyrwalski, F., Lamonier, J. F., Siffert, S., Aboukais, A., Additional effects of cobalt precursor and zirconia support modifications for the design of efficient VOC oxidation catalysts, Applied Catalysis B: Environmental. Vol. 70, 393-399, 2007.
Yan L., Zhaobin W., Zhaochi F., Oxidative Destruction of Chlorobenzene and o-Dichlorobenzene on a high active catalyst :MnOx/TiO2-Al2O3, Journal of Catalysis. Vol. 202, No 1, 200-204 , 2001.
Yang, K. S., Choi, J. S., Chung, J. S., Evaluation of wire-mesh honeycomb containing porous Al/Al2O3 layer for catalytic combustion of ethyl acetate in air, Catalysis Today. Vol. 97, 159–165, 2004.
Zimowska, M., Michalik-Zym, A., Janik, R., Machej, T., Gurgul, J., Socha, R. P., Podobin´ski, J., Serwick, E. M., Catalytic combustion of toluene over mixed Cu–Mn oxides, Catalysis Today Vol. 119, 321-326, 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.19.31.73
論文開放下載的時間是 校外不公開

Your IP address is 3.19.31.73
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code