Responsive image
博碩士論文 etd-0629109-173138 詳細資訊
Title page for etd-0629109-173138
論文名稱
Title
可調式Y型光子晶體波導之設計
Design of Tunable Y-Shaped Photonic Crystal Waveguides
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-24
繳交日期
Date of Submission
2009-06-29
關鍵字
Keywords
聚苯胺、液晶、可調式、光子晶體波導
Tunable, Liquid crystals, Polyaniline, Photonic crystal waveguides
統計
Statistics
本論文已被瀏覽 5716 次,被下載 4
The thesis/dissertation has been browsed 5716 times, has been downloaded 4 times.
中文摘要
光子晶體是介電常數在空間中呈現週期性變化的結構,它的主要特性是存在光子能隙,能夠在特定的頻率範圍內禁止光在其中的傳播。而傳統光子晶體,其光能隙的特性在光子晶體結構製作完成之後,便難再利用外在因素調變,因此發展可應用於光積體電路中的可調式光子晶體波導元件是相當重要的。
在本論文中,我們利用了模態能隙的效應,設計了含聚苯胺類電流變液體的二維可調式Y型光子晶體波導。藉由施加外加電壓於特定的區域,便能夠控制Y型波導中光的傳播方向。此外,我們也提出了一個含聚苯胺類電流變液體的可調式多通道光子晶體波導。我們接著研究了含液晶之可調式波導結構,藉由改變液晶的方向和孔洞的尺寸,我們成功地得到了以液晶為單一線缺陷之二維光子晶體波導的傳播特性。我們也模擬了以液晶當作線性缺陷的二維Y型光子晶體波導,並探討其可調式的光傳播現象。最後,我們考慮了含有液晶的三維Y型光子晶體平板波導,並探討液晶分子排列及平板厚度對其光特性之影響。
Abstract
Photonic crystals (PCs) are structures with spatially periodic variations in dielectric constants. The prime property of PCs is the existence of the photonic band gaps (PBGs) which could prohibit the propagation of light within a certain frequency range. Once the PC structures are fabricated, it is hard to tune their optical properties for the fixed geometries. Thus, it is important to develop tunable PC waveguide devices for the applications in the photonic integrated circuits.
We utilize the mode-gap effect to design two-dimensional (2-D) tunable Y-shaped PC waveguides with the polyaniline type electrorheological (ER) fluids. The propagation of light on the Y-shaped waveguide can be controlled by applying the electric field in specific regions. Besides, we also propose a tunable multi-channel PC waveguide with the polyaniline type ER fluids. We then investigate the tunable propagation characteristics of a 2-D single line-defect PC waveguide with liquid crystals (LCs) by varying the direction of LCs and the hole sizes. We also simulate the tunable optical properties of a 2-D Y-shaped PC waveguide utilizing LCs. Finally, we consider a 3-D Y-shaped PC slab waveguide with LCs. The effects of the direction of LCs and the slab thickness are discussed.
目次 Table of Contents
1 Introduction 1

1.1 Overview 1

1.2 Chapter Outline 4

2 Numerical Methods 7

2.1 Introduction 7

2.2 Plane Wave Expansion Method 7

2.3 Finite-Difference Time-Domain Method 10

3 Tunable Photonic Crystal Waveguides Using Polyaniline Type Electrorheological Fluids 15

3.1 Mode-Gap Effect 15

3.2 Properties of Polyaniline Type Electrorheological Fluids 17

3.3 Tunable Y-Shaped Waveguides 18

3.4 Tunable Multi-Channel Waveguides 21

4 Tunable Photonic Crystal Waveguides Using Liquid Crystals 50

4.1 Optical Properties of Liquid Crystals 50

4.2 2-D Single Line-Defect PC Waveguides with LCs 51

4.3 2-D Tunable Y-Shaped Waveguides with LCs 53

4.4 3-D Tunable Y-Shaped Waveguides with LCs 55

5 Conclusions 87

Bibliography 89
參考文獻 References
[1] Baba, T., A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electron., vol. 38, pp. 743−752, 2002.
[2] Bell, P. M., J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun., vol. 85, pp.306−322, 1995.
[3] Busch, K., and S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett., vol. 83, pp. 967−970, 1999.
[4] Chandrasekhar, S., Liquid crystals. New York: Cambridge Univ. Press, 1995.
[5] Chen, C. C., H. D. Chien, and P. G. Luan, “Photonic crystal beam splitters,” Appl. Opt., vol. 43, pp. 6188−6190, 2004.
[6] Chien, F. S., Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express, vol. 12, pp. 1119−1125, 2004.
[7] Djavid, M., A. Ghaffari, F. Monifi, and M. S. Abrishamian, “Heterostructure photonic crystal channel drop filters using mirror cavities,” J. Opt. A: Pure Appl. Opt., vol. 10, pp. 055203−055210, 2008.
[8] Djavid, M., F. Monifi, A. Ghaffari, and M. S. Abrishamian, “Heterostructure wavelength division demultiplexers using photonic crystal ring resonators,” Opt. Comm., vol. 281, pp. 4028−4032, 2008.
[9] Fan, S., P. R. Villeneuve, and J. D. Joannopolous, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B, vol. 59, pp. 15882−15892, 1999.
[10] Hao, T., “Electrorheological fluids,” Adv. Mater., vol. 24, pp. 1847−1857, 2001.
[11] Javan, A. R. M., and N. Granpayeh, “Terahertz wave switch based on photonic crystal ring resonators,” Opt. Quant. Electron., vol. 40, pp. 695−705, 2008.
[12] Joannopoulos, J. D., S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light. New York: Princeton Univ. Press, 2008.
[13] John, S., “Strong localization of photons in certain disordered dielectric super lattices,” Phys. Rev. Lett., vol. 58, pp. 2486−2489, 1987.
[14] Johnson, S. G., S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Guided modes in photonic-crystal slabs,” Phys. Rev. B, vol. 60, pp. 5751−5758, 1999.
[15] Johnson, S. G., S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B, vol. 62, pp. 8212−8222, 2000.
[16] Kuo, H. F., “The design of multi-channel wavelength division multiplexing based on two-dimensional photonic crystals,” M. S. Thesis, Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, June 2007.
[17] Leung, K. M., and Y. F. Liu, “Photon band structures: the plane-wave method,” Phys. Rev. B, vol.41, pp.10188−10190, 1990.
[18] Li, J., “Terahertz modulator using photonic crystals,” Opt. Comm., vol. 269, pp. 98−101, 2007.
[19] Lin, D. D., Z. J. Zhang, B. Y. Zhao, L. S. Chen, and K. Hu, “Rapid synthesis of porous polyaniline and its application in electrorheological fluid,” Smart Mater. Struct., vol. 15, pp. 1641−1645, 2006.
[20] Lin, H. B., R. J. Tonucci, and A. J. Campillo, “Two-dimensional photonic bandgap optical limiter in the visible,” Opt. Lett., vol. 23, pp. 94−96, 1998.
[21] Liu, C. Y., and L. W. Chen, “Tunable field-sensitive polarizer using hybrid conventional waveguides and photonic crystal structures with nematic liquid crystals,” Opt. Comm., vol. 256, pp. 114−122, 2005.
[22] Liu, C. Y., and L. W. Chen, “Tunable photonic crystal waveguide coupler with nematic liquid crystals,” IEEE Pho. Tech. Lett., vol. 16, pp. 1849−1851, 2004.
[23] Liu, C. Y., and L. W. Chen, “Tunable photonic-crystal waveguide Mach-Zehnder interferometer achieved by nematic liquid-crystal phase modulation,” Opt. Express, vol. 12, pp. 2616−2624, 2004.
[24] Liu, C. Y., Y. T. Peng, and L. W. Chen, “Creation of tunable bandgaps in a three dimensional anisotropic photonic crystal modulated by a nematic liquid crystal,” Phys. B: Condensed matter, vol. 388, pp. 124−129, 2007.
[25] Notomi, M., K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett., vol. 87, pp. 253901−253904, 2001.
[26] Quadrat, O., and J. Stejskal, “Polyaniline in electrorheology,” J. Ind. Eng. Chem., vol. 12, pp. 352−361, 2006.
[27] Rajic, S., J. L. Corbeilb, and P. G. Datskos, “Feasibility of tunable MEMS photonic crystal devices,” Ultramicroscopy, vol. 97, pp. 473−479, 2003.
[28] Sakoda, K., Optical properties of photonic crystals. Berlin: Springer Series, 2001.
[29] Shih, M. H., W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Two-dimensional photonic crystal Mach–Zehnder interferometers,” Appl. Phys. Lett., vol. 84, pp. 460−462, 2004.
[30] Sluckin, T. J., D. A. Dunmur, and H. Stegemeyer, Crystals that flow − classic papers from the history of liquid crystals. London: Taylor & Francis, 2004.
[31] Smith, G. S., M. P. Kesier, J. G. Maloney, and B. L. Shirely, “Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors,” Microwave Opt. Technol. Lett., vol. 11, pp.169−174, 1996.
[32] Snjezana, T. H., C. M. Sterke, and M. J. Stell, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express, vol. 14, pp. 12451−12456, 2006.
[33] Snjezana, T. H., C. M. Sterke, M. J. Stell, and D. J. Moss, “High-Q cavities in photosensitive photonic crystals,” Opt. Lett., vol. 32, pp. 542−544, 2007.
[34] Song, B. S., S. Noda, T. Asano, and Y. Akahane, “Ultra-high Q photonic double-heterostructure nanocavity,” Nature Mater., vol. 4, pp. 207−210, 2005.
[35] Song, B. S., T. Asano, and S. Noda, “Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities,” J. Phys. D: Appl. Phys., vol. 40, pp. 2629−2634, 2007.
[36] Song, B. S., T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett., vol. 85, pp. 4591−4593, 2004.
[37] Sun, Y. H., “The designs of logic gates and drop filter based on photonic crystals,” M. S. Thesis, Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, June 2007.
[38] Taflove, A., and S. C. Hagness, Computational electrodynamics: the finite- difference time-domain method. Boston: Artech House, 2005.
[39] Takano, H., B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express, vol. 14, pp. 3491−3496, 2006.
[40] Takeda, H., and K. Yoshino, “Tunable photonic band schemes of opals and inverse opals infiltrated with liquid crystals,” J. Appl. Phys., vol. 92, pp. 5658−5662, 2002.
[41] Takeda, H., and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals composed of semiconductors depending on temperature,” Opt. Comm., vol. 219, pp. 177−182, 2003.
[42] Takeda, H., and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev. B, vol. 67, pp. 073106-1−073106-4, 2003.
[43] Valsov, Y., and S. McNab, “Losses in single mode silicon-on-insulator strip waveguides and bends,” Opt. Express, vol. 12, pp. 1622−1631, 2004.
[44] Wu, Q., E. Schonbrun, and W. Park, “Tunable superlensing by a mechanically controlled photonic crystal,” J. Opt. Soc. Am. B, vol. 23, pp. 479−484, 2006.
[45] Yablonovitch, E., “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, pp. 2059−2062, 1987.
[46] Yee, K. S., “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Ant. and Propa., vol. 14, pp. 302−307, 1966.
[47] Yoshino, K., Y. Kawagishi, M. Ozaki, and A. Kose, “Mechanical tuning of the optical properties of plastic opal as a photonic crystal,” Jpn. J. Appl. Phys., vol. 38, pp. 786−788, 1999.
[48] Yoshino, K., Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett., vol. 75, pp. 932−934, 1999.
[49] Yu, C. P., and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express, vol. 12, pp. 6165−6177, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.138.102.178
論文開放下載的時間是 校外不公開

Your IP address is 3.138.102.178
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code