Responsive image
博碩士論文 etd-0629111-133823 詳細資訊
Title page for etd-0629111-133823
論文名稱
Title
電腦模擬應用在蛋白質藥物與小分子藥物的探討
Application of Computer Simulation in the Investigation of Protein Drugs and Small Agents
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-17
繳交日期
Date of Submission
2011-06-29
關鍵字
Keywords
新流感病毒、分子動力學、丙型肝炎病毒、水解酵素、普恩蛋白、多巴胺D2受體
Dopamine D2 receptor, H1N1 virus, Lysozyme, Hepatitis C virus, Molecular Dynamics
統計
Statistics
本論文已被瀏覽 5732 次,被下載 0
The thesis/dissertation has been browsed 5732 times, has been downloaded 0 times.
中文摘要
本論文主要為使用分子模擬方法進行電腦輔助藥物設計相關研究,本論文包含蛋白質藥物與小分子藥物設計設計兩大部分。本研究結果冀望能幫助藥物開發學者改良藥物分子,本研究分成兩大部分敘述:
蛋白質藥物:
丙型肝炎病毒核單蛋白與單株抗體19D9D6平均力勢研究:在免疫學研究中,為了了解抗體抗原之間結合活性與機制,研究抗體抗原作用力具有關鍵性的角色。由於傳統使用表面薄膜共振技術與原子力顯微鏡等實驗儀器,實驗方法較為困難且無法測得抗體作用區域上胺基酸構形變化情形;故本研究採用分子模擬方法分離丙型肝炎病毒核單蛋白與單株抗體19D9D6複合體,並觀察分離過程中抗體抗原平均力勢變化。本研究結果顯示在抗體上七個胺基酸(Gly70, Gly72, Gly134, Gly158, Glu219, Gln221 and Tyr314)與14個抗原抗體之間的氫鍵結對於此抗原抗體複合體結合過程中具有重要性,特別是這三個胺基酸(Gly134, Gly158, and Tyr314)在整理計算中有非常顯著的變化,此結果也許可成為日後實驗學家修正抗體結構之分子模擬參考資料。
金色毛髮敘利亞倉鼠普恩蛋白抗原決定部位蛋白與單株抗體3f4 平均力勢研究:在免疫學抗原抗體之間結合活性與機制是相當重要的研究。本研究採用分子模擬方法分離金色毛髮敘利亞倉鼠普恩抗原決定部位蛋白與單株抗體3f4複合體,並觀察分離過程中抗體抗原平均力勢變化。本研究結果顯示在抗體上四個胺基酸與兩個抗原抗體之間的氫鍵結對於此抗原抗體複合體結合過程中具有重要性。
人類水解酵素與單株抗體vhh hl6 平均力勢研究:計算抗原抗體之間結合活性是了解抗原抗體作用機制相當重要的議題。為了深入研究抗原抗體結合機制本研究採用分子模擬方法分離人類水解酵素與單株抗體vhh hl6複合體,並觀察分離過程中抗體抗原平均力勢變化。本研究結果顯示在抗體上六個胺基酸對於此抗原抗體複合體結合過程中具有重要性。

小分子藥物:
藉由SIE方法預測多巴胺D2受體拮抗劑活性:多巴胺D2受體已經被驗證為治療精神分裂症重要標把蛋白質,四氫化萘二醇衍生物具有高度抑制D2受體活性功效;由於缺乏實驗相關D2受體三維結構資訊,故無法由實驗資料中求得四氫化萘二醇衍生物與D2受體結合機制與模型。本研究採用分子模擬方法與蛋白質同源結構模擬方法,建立D2受體與四氫化萘二醇衍生物三維結合結構模型,並由模擬結果中預測出D2受體上五個胺基酸(Asp72, Val73, Cys76, Leu183, and Phe187)為四氫化萘二醇衍生物重要結合點。本研究亦採用溶解作用能(SIE)計算方法求出四氫化萘二醇衍生物與D2受體結合能,並比對文獻中的實驗數據後得到,本結合能計算有統計系數(R2)為0.815之正相關。
結合同元模擬、分子接合與分子動力學方法預測克流感、瑞樂沙與傳統中草藥分子與H1N1流感病毒神經胺酸水解酵素之結合模型:神經胺酸水解酶為治療病毒型流行感冒中重要標把蛋白,克流感與瑞樂沙亦為治療病毒型流行感冒重要藥物。在實驗上亦驗證克流感與瑞樂沙對於治療H1N1新流感病毒有強效的作用性,由於H1N1病毒神經胺酸水解酵素實驗三維結構資訊缺乏,故本研究採用分子模擬方法建立克流感、瑞樂沙與一系列中草藥分子藥物模型,並由結果得到位於神經胺酸水解酵素上,編號為第278號之穀胺酸具有藥物篩選性。
Abstract
This dissertation, studies two specific topics related to the research of computer-aided drug design(CADD) by employing the molecular simulations approach, that of protein drugs and that of small agents. These results can help drug designers to improve their products for treating special diseases. This work is divided into two parts:
Protein drugs:
Potential of mean force of the hepatitis C virus core protein–monoclonal 19D9D6 antibody interaction: Antigen-antibody interactions are critical for understanding antigen-antibody associations in immunology. To shed further light on this question, we studied a dissociation of the 19D9D6-HCV core protein antibody complex structure. However, forced separations in single molecule experiments are difficult, and therefore molecular simulation techniques were applied in our study. The stretching, that is, the distance between the centre of mass of the HCV core protein and the 19D9D6 antibody, has been studied using the potential of mean force calculations based on molecular dynamics and the explicit water model. Our simulations indicate that the 7 residues Gly70, Gly72, Gly134, Gly158, Glu219, Gln221 and Tyr314, the interaction region (antibody), and the 14 interprotein molecular hydrogen bonds might play important roles in the antigen-antibody interaction, and this finding may be useful for protein engineering of this antigen-antibody structure. In addition, the 3 residues Gly134, Gly158 and Tyr314 might be more important in the development of bioactive antibody analogues.
Potential of mean force for syrian hamster prion epitope protein - monoclonal fab 3f4 antibody interaction studies: Simulating antigen-antibody interactions is crucial for understanding antigen-antibody associations in immunology. To shed further light into this question, we study a dissociation of syrian hamster prion epitope protein-fab3f4 antibody complex structure. The stretching (the distance between the center of mass of the prion epitope protein and the fab3f4 antibody) have been studied using potential of mean force (PMF) calculations based on molecular dynamics (MD) and implicit water model. For the complex structure, there are four important intermediates and two inter protein molecular hydrogen bonds in the stretching process. Inclusion of our simulations may help to understand the binding mechanics of the complex structure and will be an important consideration in design of antibodies against the prion disease.
Potential of mean force for human lysozyme - camelid vhh hl6 antibody interaction studies: Calculating antigen-antibody interaction energies is crucial for understanding antigen-antibody associations in immunology. To shed further light into this equation, we study a separation of human lysozyme-camelid vhh hl6 antibody (cAb-HuL6) complex. The c-terminal end-to-end stretching of the lysozyme-antibody complex structures have been studied using potential of mean force (PMF) calculations based on molecular dynamics (MD) and explicit water model. For the lysozyme-antibody complex, there are six important intermediates in the c-terminal extensions process. Inclusion of our simulations may help to understand the binding mechanics of lysozym- cAb-HuL6 antibody complex.

Small agents:
Predictions of binding for dopamine D2 receptor antagonists by the SIE method: The control of tetralindiol derivative antagonists released through the inhibition of dopamine D2 receptors has been identified as a potential target for the treatment of schizophrenia. We employed molecular dynamics simulation techniques to identify the predicted D2 receptor structure. Homology models of the protein were developed on the basis of crystal structures of four receptor crystals. Compound docking revealed the possible binding mode. In addition, the docking analyses results indicate that five residues (Asp72, Val73, Cys76, Leu183, and Phe187) were responsible for the selectivity of the tetralindiol derivatives. Our molecular dynamics simulations were applied in combination with the solvated interaction energies (SIE) technique to predict the compounds' docking modes in the binding pocket of the D2 receptor. The simulations revealed satisfactory correlations between the calculated and experimental binding affinities of all seven tetralindiol derivative antagonists, as indicated by the obtained R2 value of 0.815.
Combining homology modeling, docking, and molecular dynamics to predict the binding modes of oseltamivir, zanamivir, and Chinese natural herb products with the neuramindase of the H1N1 influenza A virus: The neuraminidase of the influenza virus is the target of the anti-flu drugs oseltamivir and zanamivir. Clinical practices show that zanamivir and oseltamivir are effective to treat the 2009 H1N1 influenza virus. Herein, we report the findings of molecular simulations for zanamivir, oseltamivir, and Chinese natural herb products with the neuramindase of the 2009 H1N1 influenza. Our approach theoretically suggests that the Glu278 residue is responsible for the neuramindase of the 2009 influenza drug selectivity.
目次 Table of Contents
Contents ix
List of Figures xii
List of Symbols xv
List of Abbreviations xviii
Chapter 1 Introduction 1
1-1 Introduction to Protein Drugs 1
1-1-1 Review of Protein Drugs 1
1-1-2 Review of Human Camelid Vhh Hl6, Monoclonal Fab 3f4 and Monoclonal 19D9D6 Antibodies 2
1-1-3 Review of Protein Drugs Experimental Design and Computational Modeling 3
1-1-4 Overview of Our Dynamic Binding Hot Spots (DBHS) 4
1-2 Introduction to Small Agents 5
1-2-1 Review of Small Agent Drugs Experimental Design and Computational Modeling 5
1-2-2 Review of Human Dopamine D2 Receptor 6
1-2-3 Review of 2009 H1N1 Influenza A Virus 7
1-3 Outline of the Dissertation 8
Chapter 2 Molecular Simulation Techniques 10
2-1 Introduction 10
2-2 Equations of Motion In Molecular Dynamics Simulations 11
2-3 Empirical Force Field Models 11
2-3-1 Outline of Force Field for Bio-molecule or small agent systems 11
2-3-2 Related CHARMm Potential Energy Functions 12
2-3-3 Related Amber Potential Energy Functions 13
2-4 Statistical Ensembles 14
2-5 Constant temperature dynamics 14
2-5-1 Rescaling of Velocity 14
2-5-2 Heat Bath: weak coupling method 15
2-5-3 Heat Bath: Stochastic collision method 16
2-5-4 Heat Bath: extended system coupling method 16
2-6 Constant Pressure dynamics 17
2-7 Periodic boundary conditions 18
2-8 Treatment of non-bonded interactions 20
2-9 Non-bonded neighbor lists 22
2-10 Solvated interaction energies 22
2-11 Weighted histogram analysis method 23
Chapter 3 Simulations method 25
3-1 Protein drugs simulations 25
3-1-1 Potential of mean force of the hepatitis C virus core protein–monoclonal 19D9D6 antibody interaction 25
3-1-2 Potential of mean force for syrian hamster prion epitope protein - monoclonal fab 3f4 antibody interaction studies 26
3-1-3 Potential of mean force for human lysozyme-camelid vhh hl6 antibody interaction studies 26
3-2 Small agents simulations 30
3-1-1 Predictions of binding for dopamine D2 receptor antagonists by the SIE method 30
3-1-2 Combining homology modeling, docking, and molecular dynamics to predict the binding modes of oseltamivir, zanamivir, and Chinese natural herb products with the neuramindase of the H1N1 influenza A virus 32
Chapter 4 Results and Discussions 40
4-1 Protein drugs simulations 40
4-1-1 Potential of mean force of the hepatitis C virus core protein–monoclonal 19D9D6 antibody interaction 40
4-1-2 Potential of mean force for syrian hamster prion epitope protein - monoclonal fab 3f4 antibody interaction studies 41
4-1-3 Potential of mean force for human lysozyme-camelid vhh hl6 antibody interaction studies 42
4-2 Small agents simulations 61
4-2-1 Predictions of binding for dopamine D2 receptor antagonists by the SIE method 61
4-2-2 Combining homology modeling, docking, and molecular dynamics to predict the binding modes of oseltamivir, zanamivir, and Chinese natural herb products with the neuramindase of the H1N1 influenza A virus 62
Chapter 5 Conclusions 72
5-1 Protein drugs simulations 72
5-1-1 Potential of mean force of the hepatitis C virus core protein–monoclonal 19D9D6 antibody interaction 72
5-1-2 Potential of mean force for syrian hamster prion epitope protein - monoclonal fab 3f4 antibody interaction studies 72
5-1-3 Potential of mean force for human lysozyme-camelid vhh hl6 antibody interaction studies 73
5-2 Small agents simulations 74
5-2-1 Predictions of binding for dopamine D2 receptor antagonists by the SIE method 74
5-2-2 Combining homology modeling, docking, and molecular dynamics to predict the binding modes of oseltamivir, zanamivir, and Chinese natural herb products with the neuramindase of the H1N1 influenza A virus 74
References 75
Publications List 84

參考文獻 References
1. Frederick, B.; Charles, B., The internal secretion of the pancreas. Journal of Laboratory and Clinical Medicine 1922, 7, 251-266.
2. Leader, B.; Baca, Q. J.; Golan, D. E., Protein therapeutics: a summary and pharmacological classification. Nature Reviews Drug Discovery 2008, 7, (1), 21-39.
3. Reichert, J. M., Trends in development and approval times for new therapeutics in the United States. Nature Rev. Drug Discov. 2003, 2, 695-702.
4. Koo, E. H.; Lansbury, P. T.; Kelly, J. W., Amyloid diseases: Abnormal protein aggregation in neurodegeneration. Proceedings of the National Academy of Sciences 1999, 96, (18), 9989-9990.
5. Dumoulin, M.; Last, A. M.; Desmyter, A.; Decanniere, K.; Canet, D.; Larsson, G.; Spencer, A.; Archer, D. B.; Sasse, J.; Muyldermans, S.; Wyns, L.; Redfield, C.; Matagne, A.; Robinson, C. V.; Dobson, C. M., A camelid antibody fragment inhibits the formation of amyloid fibrils by human lysozyme. Nature 2003, 424, (6950), 783-788.
6. Dumoulin, M.; Conrath, K.; Van Meirhaeghe, A.; Meersman, F.; Heremans, K.; Frenken, L. G. J.; Muyldermans, S.; Wyns, L.; Matagne, A., Single-domain antibody fragments with high conformational stability. Protein Science 2002, 11, (3), 500-515.
7. Kaneko, M.; Sugiyama, N.; Sasayama, D.; Yamaoka, K.; Miyakawa, T.; Arima, K.; Tsuchiya, K.; Hasegawa, K.; Washizuka, S.; Hanihara, T.; Amano, N.; Yagishita, S., Prion disease causes less severe lesions in human hippocampus than other parts of brain. Psychiatry and Clinical Neurosciences 2008, 62, (3), 264-270.
8. Wadsworth, J. D.; Powell, C.; Beck, J. A.; Joiner, S.; Linehan, J. M.; Brandner, S.; Mead, S.; Collinge, J., Molecular Diagnosis of Human Prion Disease. In 2008; Vol. 459, pp 197-227.
9. Aguzzi, A.; Sigurdson, C.; Heikenwaelder, M., Molecular Mechanisms of Prion Pathogenesis. Annual Review of Pathology: Mechanisms of Disease 2008, 3, (1), 11-40.
10. Kanyo, Z. F.; Pan, K.-M.; Williamson, R. A.; Burton, D. R.; Prusiner, S. B.; Fletterick, R. J.; Cohen, F. E., Antibody binding defines a structure for an epitope that participates in the PrPC --> PrPSc conformational change. Journal of Molecular Biology 1999, 293, (4), 855-863.
11. Yuan, F. F.; Biffin, S.; Brazier, M. W.; Suarez, M.; Cappai, R.; Hill, A. F.; Collions, S. J.; Sullivan, J. S.; Middleton, D.; Multhaup, G.; Geczy, A. F.; Masters, C. L., Detection of prion epitopes on PrP[c] and PrP[s][c] of transmissible spongiform encephalopathies using specific monoclonal antibodies to PrP. Nature Publishing Group: Basingstoke, ROYAUME-UNI, 2005; Vol. 83, p 632-637.
12. Park, H. J.; Byun, S. M.; Ha, Y. J.; Ahn, J. S.; Moon, H. M., Identification of immunodominant epitopes in the core and non-structural region of hepatitis C virus by enzyme immunoassay using synthetic peptides. 1995; Vol. 16, p 167-81.
13. Choo, Q.; Kuo, G.; Weiner, A.; Overby, L.; Bradley, D.; Houghton, M., Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 1989, 244, (4902), 359-362.
14. Lindenbach, B. D.; Rice, C. M., Unravelling hepatitis C virus replication from genome to function. Nature 2005, 436, (7053), 933-938.
15. Appel, N.; Schaller, T.; Penin, F.; Bartenschlager, R., From Structure to Function: New Insights into Hepatitis C Virus RNA Replication. Journal of Biological Chemistry 2006, 281, (15), 9833-9836.
16. Houghton, M.; Weiner, A.; Han, J.; Kuo, G.; Choo, Q.-L., Molecular biology of the hepatitis C viruses: Implications for diagnosis, development and control of viral disease. Hepatology 1991, 14, (2), 381-388.
17. Ménez, R.; Bossus, M.; Muller, B. H.; Sibaï, G.; Dalbon, P.; Ducancel, F.; Jolivet-Reynaud, C.; Stura, E. A., Crystal Structure of a Hydrophobic Immunodominant Antigenic Site on Hepatitis C Virus Core Protein Complexed to Monoclonal Antibody 19D9D6. The Journal of Immunology 2003, 170, (4), 1917-1924.
18. Riechmann, L.; Clark, M.; Waldmann, H.; Winter, G., Reshaping human antibodies for therapy. Nature 1988, 332, (6162), 323-327.
19. Queen, C.; Schneider, W. P.; Selick, H. E.; Payne, P. W.; Landolfi, N. F.; Duncan, J. F.; Avdalovic, N. M.; Levitt, M.; Junghans, R. P.; Waldmann, T. A., A humanized antibody that binds to the interleukin 2 receptor. Proceedings of the National Academy of Sciences 1989, 86, (24), 10029-10033.
20. Köhler, G.; Milstein, C., Pillars Article: Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 1975, 256 (5517): 495–497. ThJournal of Immunology 2005, 174, (5), 2453-2455.
21. Karagiannis, S. N.; Wang, Q.; East, N.; Burke, F.; Riffard, S.; Bracher, M. G.; Thompson, R. G.; Durham, S. R.; Schwartz, L. B.; Balkwill, F. R.; Gould, H. J., Activity of human monocytes in IgE antibody-dependent surveillance and killing of ovarian tumor cells. European Journal of Immunology 2003, 33, (4), 1030-1040.
22. Darnell, S. J.; Page, D.; Mitchell, J. C., An automated decision-tree approach to predicting protein interaction hot spots. Proteins: Structure, Function, and Bioinformatics 2007, 68, (4), 813-823.
23. Tuncbag, N.; Gursoy, A.; Keskin, O., Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics 2009, 25, (12), 1513-1520.
24. Ofran, Y.; Rost, B., Protein–Protein Interaction Hotspots Carved into Sequences. PLoS Computational Biology 2007, 3, (7), e119.
25. Mitchell, J. C.; Kerr, R.; Ten Eyck, L. F., Rapid atomic density methods for molecular shape characterization. Journal of Molecular Graphics and Modelling 19, (3-4), 325-330.
26. Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A., THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Journal of Computational Chemistry 1992, 13, (8), 1011-1021.
27. Wang, Y. T.; Su, Z. Y.; Chen, C. L., Potential of mean force of the hepatitis C virus core protein-monoclonal 19D9D6 antibody interaction. Biophysical Chemistry 2009, 145, (2-3), 86-90.
28. Wang, Y. T.; Liao, J. M.; Chen, C. L.; Su, Z. Y.; Chen, C. H.; Hu, J. J., Potential of mean force for human lysozyme-camelid vhh hl6 antibody interaction studies. Chemical Physics Letters 2008, 455, (4-6), 284-288.
29. Wang, Y. T.; Su, Z. Y.; Liao, J. M.; Chen, C. L., Potential of mean force for Syrian hamster prion epitope protein - Monoclonal fab 3f4 antibody interaction studies. European Journal of Medicinal Chemistry 2009, 44, (9), 3504-3508.
30. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R., Molecular dynamics with coupling to an external bath. Journal of Chemical Physics 1984, 81, (8), 3684-3690.
31. Smith, C. A.; Kortemme, T., Backrub-Like Backbone Simulation Recapitulates Natural Protein Conformational Variability and Improves Mutant Side-Chain Prediction. Journal of Molecular Biology 2008, 380, (4), 742-756.
32. Gunasekaran, K.; Gomathi, L.; Ramakrishnan, C.; Chandrasekhar, J.; Balaram, P., Conformational interconversions in peptide [beta]-turns: analysis of turns in proteins and computational estimates of barriers. Journal of Molecular Biology 1998, 284, (5), 1505-1516.
33. Lin, S.-K., Pharmacophore Perception, Development and Use in Drug Design. Edited by Osman F. Güner. Molecules 2000, 5, (7), 987-989.
34. Jorgensen, W. L., The Many Roles of Computation in Drug Discovery. Science 2004, 303, (5665), 1813-1818.
35. Azevedo, d. J.; Walter, F.; Dias, R., Computational Methods for Calculation of Ligand-Binding Affinity. Current Drug Targets 2008, 9, 1031-1039.
36. MISSALE, C.; NASH, S. R.; ROBINSON, S. W.; JABER, M.; CARON, M. G., Dopamine Receptors: From Structure to Function. Physiological Reviews 1998, 78, (1), 189-225.
37. Lotharius, J.; Brundin, P., Pathogenesis of parkinson's disease: dopamine, vesicles and [alpha]-synuclein. Nature Reviews Neuroscience 2002, 3, (12), 932-942.
38. Kapur, S.; Mamo, D., Half a century of antipsychotics and still a central role for dopamine D2 receptors. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2003, 27, (7), 1081-1090.
39. Jin, G. Z.; Zhu, Z. T.; Fu, Y., (-)-Stepholidine: a potential novel antipsychotic drug with dual D1 receptor agonist and D2 receptor antagonist actions. Trends in Pharmacological Sciences 2002, 23, (1), 4-7.
40. Neville, M. J.; Johnstone, E. C.; Walton, R. T., Identification and characterization of ANKK1: A novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Human Mutation 2004, 23, (6), 540-545.
41. Payne, S. L.; Johansson, A. M.; Strange, P. G., Mechanisms of ligand binding and efficacy at the human D2(short) dopamine receptor. Journal of Neurochemistry 2002, 82, (5), 1106-1117.
42. Javitch, J. A.; Fu, D.; Chen, J.; Karlin, A., Mapping the binding-site crevice of the dopamine D2 receptor by the substituted-cysteine accessibility method. Neuron 1995, 14, (4), 825-831.
43. Johansson, A. M.; Karlén, A.; Grol, C. J.; Sundell, S.; Kenne, L.; Hacksell, U., Dopaminergic 2-aminotetralins: affinities for dopamine D2-receptors, molecular structures, and conformational preferences. Molecular Pharmacology 1986, 30, (3), 258-269.
44. Takeda, M.; Leser, G. P.; Russell, C. J.; Lamb, R. A., Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proceedings of the National Academy of Sciences 2003, 100, (25), 14610-14617.
45. McKimm-Breschkin, J. L., Resistance of influenza viruses to neuraminidase inhibitors -- a review. Antiviral Research 2000, 47, (1), 1-17.
46. Wang, S. Q.; Du, Q. S.; Chou, K. C., Study of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuraminidases. Biochemical and Biophysical Research Communications 2007, 354, (3), 634-640.
47. Naïm, M.; Bhat, S.; Rankin, K. N.; Dennis, S.; Chowdhury, S. F.; Siddiqi, I.; Drabik, P.; Sulea, T.; Bayly, C. I.; Jakalian, A.; Purisima, E. O., Solvated Interaction Energy (SIE) for Scoring Protein−Ligand Binding Affinities. 1. Exploring the Parameter Space. Journal of Chemical Information and Modeling 2007, 47, (1), 122-133.
48. Frenkel, D.; Smit, B., Understanding molecular simulation : from algorithms to applications. Academic Press: 2002.
49. Weiner, S.; Kollman, P.; Case, D.; Singh, U.; Ghio, C.; G.Alagona; Profeta, S.; Weiner, P., A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society 1984, 106, (A new force field for molecular mechanical simulation of nucleic acids and proteins), 765.
50. Brooks, B.; Bruccoleri, R.; B.Olafson; States, D.; S.Swaminathan; Karplus, M., CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. Journal of Computational Chemistry 1983, 4, 187.
51. Gunsteren, W. F. v.; Berendsen, H. J. C., Groningen Molecular Simulation (GROMOS) Library Manual. Biomos 1987.
52. Lifson, S.; Warshel, A., Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules. Journal of Chemical Physics 1968, 49, 5116.
53. Warshel, A.; Lifson, S., Consistent Force Field Calculations. II. Crystal Structures, Sublimation Energies, Molecular and Lattice Vibrations, Molecular Conformations, and Enthalpies of Alkanes. Journal of Chemical Physics 1970, 53, 582.
54. Levitt, M.; Lifson, S., Refinement of protein conformations using a macromolecular energy minimization procedure. Journal of Molecular Biology 1969, 46, 269.
55. Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell, A. D., CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry 2010, 31, (4), 671-690.
56. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A., Development and testing of a general amber force field. Journal of Computational Chemistry 2004, 25, (9), 1157-1174.
57. Halgren, T. A., Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry 1996, 17, (5-6), 490-519.
58. Brooks, C. L. I.; Pettitt, B. M.; Karplus, M., Structural and Energetic effects of Truncating Long Ranged Interactions in Ionic and Polar Fluids. Journal of Chemical Physics 1985, 83 5897.
59. Steinbach, P. J.; Brooks, B. R., New Spherical-Cutoff Methods for Long-Range Forces in Macromolecular Simulation. . Journal of Computational Chemistry 1994, 15 667.
60. Prevost, M.; Lippens, G.; Wodak, S., Computer Simulations of Liquid Water: Treatment of Long-range Interactions. Molecular Physics. 1990, 71 587.
61. Levitt, M.; Hirshberg, M.; Sharon, R.; Daggett, V., Molecular Dynamics of Macromolecules in Water. Chemica Scripta A 1989, 29 197.
62. Brooks, C. L. I.; Pettitt, B. M.; Karplus, M., Structural and Energetic Effects of Truncating Long Ranged Interactions in Ionic and Polar Fluids. Journal of Chemical Physics 1985, 83 5897.
63. Smith, P. E.; Pettitt, M. B., Peptides in Ionic Solutions: A Comparison of the Ewald and Switching Function techniques. . Journal of Chemical Physics 1991, 95, 8430.
64. Loncharich, R. J.; Brooks, B. R. The Effects of Truncating Long-Range Forces on Protein Dynamics. Proteins: Structure, Function, and Bioinformatics 1989, 6 32.
65. Mackerell, A. D., Empirical force fields for biological macromolecules: Overview and issues. Journal of Computational Chemistry 2004, 25, (13), 1584-1604.
66. Frenkel, D.; Smit, B., Understanding Molecular Simulation from Algorithms to Applications. (Academic, New York, 2002).
67. Leach, A. R., Molecular Modeling, Principles and Applications. (2/E., Addison Wesley Longman Limited 2001).
68. Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C., Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics 1977, 23, (3), 327-341.
69. Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics. 1984, 81, 511-519.
70. Hoover, W. G., Canonical dynamics: Equilibrium phase-space distributions. Physical Review A 1985, 31, (3), 1695.
71. Parker, E. N., Tensor Virial Equations. Physical Review 1954, 96, (6), 1686.
72. Norberg, J.; Nilsson, L., On the truncation of long range electrostatic interactionsin DNA. Biophysical Journal 2000, 79, 1537-1553.
73. Norberg, J.; Nilsson, L., Advances in biomolecular simulations: methodology and recent applications. Quarterly Reviews of Biophysics 2003, 36, (3), 257-306.
74. Beck, D. A. C.; Armen, R. S.; Daggett, V., Cutoff size need not strongly influence moleuclar dynamics results for solvated polypeptides. Biochemistry 2005, 44, (2), 609-616.
75. Beck, D. A. C.; Armen, R. S.; Daggett, V., Cutoff Size Need Not Strongly Influence Molecular Dynamics Results for Solvated Polypeptides†. Biochemistry 2004, 44, (2), 609-616.
76. Haile, J. M., Molecular Dynamics Simulation : elementary methods. (John Wiley & Sons, New York, 1992).
77. Allen, M. P.; Tildesley, D. J., Computer Simulation of Liquids. (Clarendon Press, Oxford, 1987).
78. Perdih, A.; Bren, U.; Solmajer, T., Binding free energy calculations of <i>N</i>-sulphonyl-glutamic acid inhibitors of MurD ligase. Journal of Molecular Modeling 2009, 15, (8), 983-996.
79. Bren, U.; Mart&iacute;nek, V.; Flori&aacute;n, J., Free Energy Simulations of Uncatalyzed DNA Replication Fidelity:&#8201; Structure and Stability of T&#8226;G and dTTP&#8226;G Terminal DNA Mismatches Flanked by a Single Dangling Nucleotide. The Journal of Physical Chemistry B 2006, 110, (21), 10557-10566.
80. &Aring;qvist, J.; Medina, C.; Samuelsson, J.-E., A new method for predicting binding affinity in computer-aided drug design. Protein Engineering 1994, 7, (3), 385-391.
81. Purisima, E. O., Fast summation boundary element method for calculating solvation free energies of macromolecules. Journal of Computational Chemistry 1998, 19, (13), 1494-1504.
82. Purisima, E. O.; Nilar, S. H., A simple yet accurate boundary element method for continuum dielectric calculations. Journal of Computational Chemistry 1995, 16, (6), 681-689.
83. Bhat, S.; Purisima, E. O., Molecular surface generation using a variable-radius solvent probe. Proteins: Structure, Function, and Bioinformatics 2006, 62, (1), 244-261.
84. Menez, R.; Housden, N. G.; Harrison, S.; Jolivet-Reynaud, C.; Gore, M. G.; Stura, E. A., Different crystal packing in Fab-protein L semi-disordered peptide complex. Acta Crystallographica Section D 2005, 61, (6), 744-749.
85. Anandakrishnan, R.; Onufriev, A., Analysis of Basic Clustering Algorithms for Numerical Estimation of Statistical Averages in Biomolecules. Journal of Computational Biology 2008, 15, (2), 165-184.
86. Gordon, J. C.; Myers, J. B.; Folta, T.; Shoja, V.; Heath, L. S.; Onufriev, A., H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic acids research 2005, 33, (Web Server issue), W368-71.
87. Eghiaian, F.; Grosclaude, J.; Lesceu, S.; Debey, P.; Doublet, B.; Tr&eacute;guer, E.; Rezaei, H.; Knossow, M., Insight into the PrPC → PrPSc conversion from the structures of antibody-bound ovine prion scrapie-susceptibility variants. Proceedings of the National Academy of Sciences of the United States of America 2004, 101, (28), 10254-10259.
88. Grundt, P.; Husband, S. L. J.; Luedtke, R. R.; Taylor, M.; Newman, A. H., Analogues of the dopamine D2 receptor antagonist L741,626: binding, function, and SAR. Bioorg. Med. Chem. Lett. 2007, 17, (null), 745.
89. Imhof, R.; Godel, T.; Burkard, W. P.; Keller, H. H.; Da, P. M.; Scherschilicht, R., New insight into structural and stereochemical requirements for selective, high affinity ligands at the dopamine D2 receptor. Neurochemistry International 1992, 20, (null), 75S.
90. Naijue, Z.; Li, L.; Stevens, C. L. K., A CoMFA study of Dopamine D2 Receptor Agonists and X-Ray Crystal Structure of Quinelorane Dihydrochloride Dihydrate, R(&#8722;)-Apomorphine Hydrochloride and R(&#8722;)-N-n-Propylnorapomorphine Hydrochloride. Struct. Chem. 2004, 6, (null), 553.
91. Chidester, C. G.; Lin, C. H.; Lahti, R. A.; Haadsma-Svensson, S. R.; Smith, M. W., Comparison of 5-HT1A and dopamine D2 pharmacophores. X-ray structures and affinities of conformationally constrained ligands. Journal of Medicinal Chemistry 1993, 36, (10), 1301-1315.
92. Gr&ouml;zinger, M.; Dragicevic, A.; Hiemke, C.; Shams, M.; M&uuml;ller, M. J.; H&auml;rtter, S., Melperone is an Inhibitor of the CYP2D6 Catalyzed O-demethylation of Venlafaxine. Pharmacopsychiatry 2003, 36, (01), 3,6.
93. Szarfman, A.; Tonning, J. M.; Levine, J. G.; Doraiswamy, P. M., Atypical Antipsychotics and Pituitary Tumors: A Pharmacovigilance Study. Pharmacotherapy 2006, 26, (6), 748-758.
94. Seeman, P.; Watanabe, M.; Grigoriadis, D.; Tedesco, J. L.; George, S. R.; Svensson, U.; Nilsson, J. L.; Neumeyer, J. L., Dopamine D2 receptor binding sites for agonists. A tetrahedral model. Molecular Pharmacology 1985, 28, (5), 391-399.
95. Mewshaw, R. E.; Verwijs, A.; Shi, X.; McGaughey, G. B.; Nelson, J. A.; Mazandarani, H.; Brennan, J. A.; Marquis, K. L.; Coupet, J.; Andree, T. H., New generation dopaminergic agents. 5. heterocyclic bioisosteres that exploit the 3-OH-N1-phenylpiperazine dopaminergic template. Bioorganic & Medicinal Chemistry Letters 1998, 8, (19), 2675-2680.
96. Martin, Y. C.; Bures, M. G.; Danaher, E. A.; DeLazzer, J.; Lico, I.; Pavlik, P. A., A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists. Journal of Computer-Aided Molecular Design 1993, 7, (1), 83-102.
97. Heidbreder, C. A.; Newman, A. H., Current perspectives on selective dopamine D3 receptor antagonists as pharmacotherapeutics for addictions and related disorders. Annals of the New York Academy of Sciences 2010, 1187, (1), 4-34.
98. Bertolino, A.; Fazio, L.; Di Giorgio, A.; Blasi, G.; Romano, R.; Taurisano, P.; Caforio, G.; Sinibaldi, L.; Ursini, G.; Popolizio, T.; Tirotta, E.; Papp, A.; Dallapiccola, B.; Borrelli, E.; Sadee, W., Genetically Determined Interaction between the Dopamine Transporter and the D2 Receptor on Prefronto-Striatal Activity and Volume in Humans. The Journal of Neuroscience 2009, 29, (4), 1224-1234.
99. Altschul, S. F.; Madden, T. L.; Sch&auml;ffer, A. A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D. J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research 1997, 25, (17), 3389-3402.
100. Hanson, M. A.; Cherezov, V.; Griffith, M. T.; Roth, C. B.; Jaakola, V.-P.; Chien, E. Y. T.; Velasquez, J.; Kuhn, P.; Stevens, R. C., A Specific Cholesterol Binding Site Is Established by the 2.8 &Aring; Structure of the Human [beta]2-Adrenergic Receptor. Structure 2008, 16, (6), 897-905.
101. Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H.-J.; Yao, X.-J.; Weis, W. I.; Stevens, R. C.; Kobilka, B. K., GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor Function. Science 2007, 318, (5854), 1266-1273.
102. Rasmussen, S. G. F.; Choi, H.-J.; Rosenbaum, D. M.; Kobilka, T. S.; Thian, F. S.; Edwards, P. C.; Burghammer, M.; Ratnala, V. R. P.; Sanishvili, R.; Fischetti, R. F.; Schertler, G. F. X.; Weis, W. I.; Kobilka, B. K., Crystal structure of the human [bgr]2 adrenergic G-protein-coupled receptor. Nature 2007, 450, (7168), 383-387.
103. Thompson, J. D.; Gibson, T. J.; Plewniak, F.; Jeanmougin, F.; Higgins, D. G., The CLUSTAL_X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Nucleic acids research 1997, 25, (24), 4876-4882.
104. Mart&iacute;-Renom, M. A.; Stuart, A. C.; Fiser, A.; S&aacute;nchez, R.; Melo, F.; &#352;ali, A., COMPARATIVE PROTEIN STRUCTURE MODELING OF GENES AND GENOMES. Annual Review of Biophysics and Biomolecular Structure 2000, 29, (1), 291-325.
105. Sali, A.; Blundell, T. L., Comparative Protein Modelling by Satisfaction of Spatial Restraints. Journal of Molecular Biology 1993, 234, (3), 779-815.
106. Fiser, A.; Do, R. K. G.; &#352;ali, A., Modeling of loops in protein structures. Protein Science 2000, 9, (9), 1753-1773.
107. Laskowski, R. A.; MacArthur, M. W.; Moss, D. S.; Thornton, J. M., PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 1993, 26, (2), 283-291.
108. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R., Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology 1997, 267, (3), 727-748.
109. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Laham, A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., Gaussian 03, Revision C.02. In 2003.
110. Wang, J. M.; Wang, W.; Kollman, P. A., Antechamber: An accessory software package for molecular mechanical calculations. Abstracts of Papers of the American Chemical Society 2001, 222, (null), U403-U403.
111. Wolber, G.; Dornhofer, A.; Langer, T., Efficient overlay of small organic molecules using 3D pharmacophores. Journal of Computer-Aided Molecular Design 2006, 20, (12), 773-788.
112. Cui, Q.; Sulea, T.; Schrag, J. D.; Munger, C.; Hung, M.-N.; Na&iuml;m, M.; Cygler, M.; Purisima, E. O., Molecular Dynamics--Solvated Interaction Energy Studies of Protein-Protein Interactions: The MP1-p14 Scaffolding Complex. Journal of Molecular Biology 2008, 379, (4), 787-802.
113. Eramian, D.; Shen, M.-y.; Devos, D.; Melo, F.; Sali, A.; Marti-Renom, M. A., A composite score for predicting errors in protein structure models. Protein Science 2006, 15, (7), 1653-1666.
114. Colovos, C.; Yeates, T. O., Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science 1993, 2, (9), 1511-1519.
115. Ewing, T. J. A.; Kuntz, I. D., Critical evaluation of search algorithms for automated molecular docking and database screening. Journal of Computational Chemistry 1997, 18, (9), 1175-1189.


電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.146.255.127
論文開放下載的時間是 校外不公開

Your IP address is 3.146.255.127
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code