Responsive image
博碩士論文 etd-0629111-172134 詳細資訊
Title page for etd-0629111-172134
論文名稱
Title
以不織布過濾及生物濾床去除原水之濁度和有機物
Removal of turbidity and organic matter from raw water using nonwoven and biofilter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
137
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-14
繳交日期
Date of Submission
2011-06-29
關鍵字
Keywords
總有機碳、濁度、水處理、不織布過濾、生物處理、三鹵甲烷
biotreatment, turbidity, THMs, TOC, nonwoven filtration, water treatment
統計
Statistics
本論文已被瀏覽 5665 次,被下載 0
The thesis/dissertation has been browsed 5665 times, has been downloaded 0 times.
中文摘要
國內水源因氣候變遷造成極端化,當颱風頻繁時,易使得原水濁度飆高。淨水場的原水是以河川為主,當原水濁度升高,水中有機物含量因而變化加劇,也可能造成消毒過程中產生過量的消毒副產物。近年來薄膜方法被廣泛用於水處理,但缺點是成本昂貴及使用壽命不長,故本研究目的為使用便宜之不織布搭配生物處理單元(簡稱本系統),探討濁度、總有機碳(total organic carbon, TOC)、生物可利用有機碳(assimilable organic carbon, AOC)、三鹵甲烷生成潛勢(trihalomethanes formation potential, THMFP)之去除效果。
實驗結果顯示,原水在中高濁度以下時,本系統的濁度去除率皆可達到99%,出流水濁度皆在2 NTU以內,符合國內飲用水水質標準。採用21片厚度的不織布,濁度去除率達到約90%;入流水在低碳濃度時,隨著空床停留時間增加,生物處理單元處理有機物之效率上升,去除率約達39%,而在高碳濃度時,去除率達到約77%。
在TOC去除率方面,以三種不同有機物濃度的原水測試,發現原水(I) TOC去除率約為26.41%,其濃度由1169.9 μg/L降至856.9 μg/L、原水(Ⅱ) TOC去除率約為19.65%,其濃度由680.8 μg/L降至521 μg/L及原水(Ⅲ) TOC去除率約為48.78%,其濃度由1819 μg/L降至936.5 μg/L,可知本系統對於有機物的去除具有一定的效果。
在AOC去除率方面,分別為原水(I)的50.83%(可將59.51 μg acetate-C/L降至28.42 μg acetate-C/L)、原水(Ⅱ)的50.97%(可將73.08 μg acetate-C/L降至35.8 μg acetate-C/L)及原水(Ⅲ)的65.07%(可將226.60 μg acetate-C/L降至81.19 μg acetate-C/L),三組測試結果AOC去除率皆在50%以上。而文獻建議處理後清水的AOC限值為50 μg acetate-C/L,加長生物理單元的空床停留時間應可降至標準之內。
在THMs及THMFP(代表前驅物質)方面,原水(Ⅰ)的THMs去除率約50.22%(可將34.64 μg/L降至17.56 μg/L),原水(Ⅱ)及原水(Ⅲ)的THMFP去除率分別為46.83%(可將34.18 μg/L降至18.27 μg/L)及51.81%(可將81.49 μg/L降至39.25 μg/L),國內飲用水水質標準THMs 是80 μg/L,由此顯示本系統能夠有效的去除水中已生成之THMs,也可有效降解THMs的前驅物質。
Abstract
Extreme rainfall in raw water resource is greatly caused by climate change in Taiwan now. When typhoons are occurred, the turbidity in raw water is caused a high concentration frequently. In Taiwan the raw water, used by water treatment plants, comes from majorly river water. Most water treatment plants use chlorine disinfection; the disinfection process also produced excess disinfection by-products when raw water contains high turbidity and organic matter. In recent years, membrane method is widely being applied in water purification, but shortcomings were the higher price and not longer life. The purpose of this study is to investigate the treatment efficiency of turbidity, TOC, AOC, THMs and THMFP by using cheap nonwoven and biofilter (denoted as This System).
In this study we used the base weight of 35 g/m2 nonwoven in filtration experiments for turbidity removal. Experimental results show turbidity removal by this system was nearly 90% when inlet turbidity is under moderate condition. The turbidity of treated water in effluent is all below 2 NTU that is compliance with national drinking water quality standards. Turbidity removal was about 90% using nonwoven with 21 pieces. Removal of organic matter is about 39% using biofilter when influent was in the low concentration of TOC. The removal rate is about 77% when the high TOC concentration in influent.
In removal of TOC, TOC removal of raw water (I) was about 26.41%. The concentration of TOC was reduced from1169.9 μg/L to 856.9μg/L. The TOC removal of raw water (Ⅱ) was about 19.65%. The concentration of TOC was reduced from 680.8μg/L to 521μg/L. The TOC removal of raw water (Ⅲ) was about 48.78%. The concentration of TOC was reduced from 1819 μg/L to 936.5μg/L.
In removal of AOC, the removal rate of raw water (I) was about 50.83%. The concentration of AOC was from 59.51 μg acetate-C/L to 28.42 μg acetate-C/L). The removal of raw water (Ⅱ) was about 50.97%. The concentration of AOC was from 73.08 μg acetate-C/L to 35.8 μg acetate-C/L. The removal of raw water (Ⅲ) was about 65.07%. The concentration of AOC was from 226.60 μg acetate-C/L to 81.19 μg acetate-C/L. The suggested limit level of AOC in treated water is 50μg acetate-C/L Longer empty bed contact time of biofilter should enable the concentration below 50 μg acetate-C/L. Removal of AOC increased with increased the empty bed contact time of biofilter .
In removal of THMs and THMFP (denoted as precursors), the raw water (I) : THMs removal was about 50.22%. The concentration of THMs was reduced from 34.64 μg/L to 17.56 μg/L. The raw water (Ⅱ): THMFP removal was about 46.83%. The concentration of THMs was reduced from 34.18 μg/L to 18.27 μg/L. The raw water (Ⅲ): THMFP removal was about 51.81%. The concentration of THMFP was reduced from 81.49 μg/L to 39.25 μg/L. They were all lower than national standard of drinking water (THMs 80 μg/L).
Thus, this system can effectively remove turbidity, TOC, THMs and THMs precursors in raw water.
目次 Table of Contents

目錄
誌謝 i
摘要 ii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 高濁度原水 3
2.1.1 高濁度原水來源及水質特性 3
2.1.2 高濁度原水對淨水程序之影響 4
2.2 自然水體中有機物之分類及特性 6
2.2.1 水中有機物的來源影響與組成 6
2.2.2 腐植質之基本性質 7
2.2.3 去除有機物之方法 9
2.3 消毒副產物 11
2.3.1 三鹵甲烷的來源及種類 12
2.3.2 三鹵甲烷之生成潛勢 14
2.3.3 三鹵甲烷的危害及管制標準 17
2.4 薄膜及不織布介紹 18
2.4.1 薄膜分類 18
2.4.2 薄膜結構特性 19
2.4.3 薄膜的過濾機制 22
2.4.4 不織布的結構及過濾機制 23
2.5 生物處理方法之介紹 25
2.5.1 生物處理系統的種類 25
2.5.2 生物處理單元去除有機物之機制 30
第三章 研究方法 33
3.1 實驗流程之規劃 33
3.2 水質項目與分析方法 34
3.2.1 pH與水溫 34
3.2.2 導電度 35
3.2.3 總溶解固體 35
3.2.4 總有機碳 35
3.2.5 溶解性有機碳 36
3.2.6 UV254 36
3.2.7 生物可利用有機碳 36
3.2.9 三鹵甲烷生成潛勢 46
3.2.10 濁度 48
3.3 實驗方法 49
3.3.1 人工原水配置 49
3.3.2 不織布處理單元之實驗方式 49
3.3.3 生物處理單元之實驗方式 50
3.3.4 三種不同的實驗原水 50
3.3.5 不織布過濾單元串連生物處理單元之實驗方式 50
第四章 結果與討論 52
4.1 不織布去除濁度之操作條件及效能 52
4.1.1 片數對濁度去除率之影響 53
4.1.2 流量對濁度去除率之影響 54
4.1.3 不同濁度之入流水對不織布阻塞之探討 55
4.1.4 不織布更換頻率 59
4.2 生物單元去除腐植酸之操作條件及效能 60
4.2.1 人工配製之腐植酸特性 60
4.2.2 操作條件 61
4.2.3 生物活性碳對人工原水腐植酸之處理效能 62
4.3以不織布過濾串連生物單元之出水水質變化探討 64
4.3.1 濁度 65
4.3.2 TOC 70
4.3.3 DOC 76
4.3.4 UV254 82
4.3.5 THMs 91
4.3.6 AOC 99
第五章 結論與建議 105
5.1 結論 105
5.2 建議 107
參考文獻 108
參考文獻 References
178, 52
Teksoy, A., Alkan, U., Baskaya, H. S. (2008). Influence of the treatment process combinations on the formation of THM species in water. Sep Purif Technol, 61, 447-454
Thurman, E. M. (1985). Organic geochemistry of natural water. Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht.
Thurman, E. M. (1986). Organic geochemistry of natural waters. Martinus Nijhoff/Dr W. Junk Publishers.
Timms, S., Slade, J. S. and Fricker, C. R. (1995). Removal of cryptosporidium by slow sand filtration, Water science and Technology, 31, 81-84
TSI (2002). Mechanisms of filtration for high efficiency fibrous filters application Note ITI-041
Tung, H. H., Unz, R. F. and Xie, Y. F. (2009). Evidences of HAAs Biodegradation in GAC Filtration, Journal of Environment Management, 19, 59-66
Turbak A. F. (1993). Nonwovens: theory, process, performance, and testing, Tappi Press, Atlanta, Georgia, 193
Trussell, R. R. and Umphres, M. D. (1978). The formation of trihalomethanes. Journal American Water Works Association, 70, 604-611
Tsai, Y. T., Weng, Y. H., Lin, A. Y. C. and Li, K. C. (2011). Electro-microfiltration treatment of water containing natural organic matter and inorganic particles. Desalination, 26, 133-138
Van Der Kooij D. (1995). Significance and assessment of the biological stability of drinking water. The Handbook of Environmental Chemistry. J. Hrubec, 5, ed., Springer-Verlag, Berlin, Germany. 89-102.
Van Der Kooij, D. and Veenendaal, H. R. (1995). Determination of the concentration of easily assimilable organic carbon (AOC) in drinking water with growth measurements using pure bacterial cultures. SWE 95.002, KIWA, Nieuwegein, Netherlands.

Van Der Kooij, D. (1990). Assimilable organic carbon (AOC) in drinking water. in Drinking Water Microbiology, G. A. Mcfeter, ed., Springer-Verlag, New York.
Van der Kooij, D., Hijnen, W. A. M. and Kruithof, J. C. (1989). The effect of ozonation, biological filtration and distribution on the concentration of easily assimilable organic carbon (AOC) in drinking water. Ozone: Science and Engineering, 11, 297-311
Van Der Kooij, D., Visser, A. and Hijnen, W. A. M. (1982). Determining the concentration of easily assimilable organic carbon in drinking water.” Journal American Water Works Association, 74, 540-545
Villanueva, C. M., Gagniere, B., Monfort, C., Nieuwenhuijsen, M. J. and Cordier, S. (2007). Sources of variability in levels and exposure to trihalomethanes. Environmental Research, 103, 211-220
Vieira, P., Coelho, S. T. and Loureiro, D. (2004). Accounting for the influence of initial chlorine concentration, TOC, iron and temperature when modelling chlorine decay in water supply. Journal of Water Supply: Research and Technology - Aqua 53, 453-467
Villanueva, C. M., Cantor, K. P., Cordier, S., Jaakkola, J. J. K., King, W. D. and Lynch, C. F. (2004). Disinfection byproducts and bladder cancer: a pooled analysis. Epidemiology 15, 357-367
Wang, G. S., Deng, Y. C., Lin, T. F. (2007). Cancer risk assessment from trihalomethanes in drinking water. Science of the Total Environment, 387, 86-95



Watanabe, Y., Okabe, S., Arata, T. and Haruta, Y. (1991). Study on the performance of an up-flow aerated biofilter(UAB) in municipal wastewater treatment. Water science and Technology. 23, 567-576
Warton, B., Heitz, A., Joll, C. and Kagi, R. (2006). A new method for calculation of the chlorine demand in natural and treated waters. Water Research, 40, 2877-2884
Weber-Shirk, M. L. and Dick, R. I. (1997). Physical-Chemical Mechanisms In Slow Sand Filters, American Water Works Association, 89, 87-100
Widrig, D. L., Gray, K. A. and McAuliffe, K. S. (1996). Removal of Algal-Derived Organic Material by Preozonation and Coagulation: Monitoring Changes in Organic Quality by Pyrolysis-GC-MS. Water Research, 30, 2621-2632
WHO (2005). Trihalomethanes in drinking water: background document for development of WHO guidelines for drinking water quality. World Health Organisation.
Yahya, M. T., Cluff, C. B. and Gerba, C. P. (1993). Virus Removal By Slow Sand Filtration and Nanofiltration, Water science and Technology, 27, 445-448
姚仁泰,(2007),過濾系統組合對原水濁度去除效能之研究,國立成功大學地球科學研究所。
秦靜如,(2008),Physical and Chemical Processes in Environmental Engineering,國立中央大學環境工程研究所教材。
翁韻雅,(2003),以高分子凝聚劑處理高濁度原水之研究,國立成功大學環境工程研究所。
張王冠、洪仁陽、張敏超、邵信,(2001),Web-MBR 廢水處理操作參數之研究,第十三屆環境工程年會廢水研討會論文集。
張敏超、彭明鏡、洪仁陽、張王冠、邵信,(2001),Web-MBR 廢水處理程序降低膜材積垢方式之初步探討,第十三屆環境工程年會廢水研討會論文集。
洪仁陽、周珊珊、邵信、鄒文源、張王冠、張敏超,(2005),多孔性擔體濾除高濁度原水前處理之研究,第22屆自來水研究發表會論文集。
鄒文源、張王冠、洪仁陽、彭明鏡、陳誼彰、蕭碧蓮、周珊珊,(2005),高濁度原水不織布膜過濾技術評估,第22屆自來水研究發表會論文集。
蔡宇庭,(2006),水中天然有機物與濁度對外加電場薄膜處理程序之影響研究,國立台灣大學環境工程學研究所。
郭學文,(2001),以阻力串聯模式分析腐植酸對超濾薄膜滲流率之衰減,國立台灣大學環境工程學研究所。
黃永富,(2010),高分子凝聚劑處理淨水場高濁度原水成效之研究,國立中央大學環境工程研究所。
劉嘉宏,(2006),混凝劑種類對低濁度原水混凝影響之研究,國立成功大學環境工程研究所。
陳怡萱,(1999),高錳酸鉀對混凝程序中去除有機物及鐵、錳之影響,國立成功大學環境工程研究所。
邱仁杰,(2001),進水式生物濾床處理污水營養物質之研究,國立中央大學環境工程學研究所。
高肇藩,(1990),給水工程:慢砂池之操作。
盧至人,(1992),吸附能力及生物分解能力對飽和活性碳生物再生的影響,中國環境工程學刊。

林志墩,(1999),生物濾床處理都市污水碳氮之研究,國立中央大學環境工程研究所。
經濟部工業局,(1995),廢水處理功能生物診斷技術。
洪碧霞,(2010),以活性碳生物程序去除水處理系統中生物可利用有機碳及消毒副產物潛勢之研究,國立中山大學環境工程研究所。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.239.239.71
論文開放下載的時間是 校外不公開

Your IP address is 3.239.239.71
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code