Responsive image
博碩士論文 etd-0629112-111445 詳細資訊
Title page for etd-0629112-111445
論文名稱
Title
鈦合金/碳纖維/聚醚醚酮奈米複材積層板承受低速衝擊後疲勞作用與機械性質探討
Tensile and Fatigue Responses of Ti/APC-2 Nanocomposite Laminates after Low-Velocity Impact
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-22
繳交日期
Date of Submission
2012-06-29
關鍵字
Keywords
複材積層板、拉伸、疲勞、低速衝擊、ANSYS/LS-DYNA
low-velocity impact, Composite laminates, fatigue, tension, ANSYS/LS-DYNA
統計
Statistics
本論文已被瀏覽 5654 次,被下載 1050
The thesis/dissertation has been browsed 5654 times, has been downloaded 1050 times.
中文摘要
本文主要目的為探討鈦合金/碳纖維/聚醚醚酮奈米複材積層板在室溫下承受衝擊後機械性質之變化,此外運用有限元素套裝軟體ANSYS/LS-DYNA模擬低速衝擊過程,並將實驗與模擬兩者結果進行討論與驗證,最後分析整個衝擊過程產生的變形量、塑變區域與結構內部能量之變化。
文中主要分為兩大部分:第一部分為將複材積層板放置於地板上,並距離地板1m、2m之高度,以一鋼球以自由落體的方式衝擊積層板,再檢測衝擊後積層板的機械性能與疲勞性質,此外運用光學顯微鏡量測衝擊後積層板表面之凹陷;第二部分則運用有限元素套裝軟體ANSYS/LS-DYNA模擬鋼球衝擊積層板之過程,並互相比較模擬結果與實驗結果,且進一步分析鋼球衝擊積層板時,鋼球動能與積層板內能的變化。
經由實驗結果可以得知,未承受衝擊之Ti/APC-2複材積層板試片,抗拉強度皆比承受1m、2m衝擊後的試片強度來的高,此外無論有無添加奈米粉SiO2的積層板,在承受2m衝擊後其強度都會降低,然而低速衝擊效應對積層板之抗疲勞性質並無太多損失。比較兩種高度衝擊造成之凹陷深度與塑變區域其數值解析與實驗結果,兩種高度衝擊造成之凹陷深度與實驗結果誤差百分比,約為5.4%~12.4%,而衝擊造成之凹陷直徑誤差百分比則為5.21%~8.98%,誤差皆在可接受的範圍。在能量變化方面、無論衝擊高度為1m或2m,與鋼球衝擊接觸之鈦合金皆有最高的內能吸收曲線,鄰近衝擊端的APC-2也有較大的內能變化,因此在無精密儀器量測積層板內部能量的情況下,本文研究之數值解仍可提供積層板在承受低速衝擊時,其內部能量之變化關係,同時從實驗結果可知,即使衝擊造成之損傷很明顯,但積層板之機械性質、抗疲勞性並無因低速衝擊而有明顯的減少。
Abstract
The aim of this thesis is to investigate Ti/APC-2 nanocomposite laminates mechanical properties after low velocity impact. The finite element analysis with software ANSYS/LS-DYNA is used to analyze the size of damage and plastic zone and internal energy of laminates during low velocity impact. Finally, the numerical results and experimental data are in good agreement.
The work can be divided into two parts: the first is to fabricate the hybrid composite laminates and place the samples on the floor, subjected to the free drop of a rigid steel ball of 1m and 2m high. Then, the samples after impact were due to static tensile and fatigue tests to obtain mechanical properties. Using the optical microscopy the impact defects of laminate surface were measured. The second, ANSYS/LS-DYNA was used to simulate a laminate impacted by a steel ball. The energy change of steel ball impact and internal energy of laminates during impact were also discussed.
From the experimental data, the mechanical properties, such as ultimate strength and stiffness, of virgin samples are better than those of impacted samples due to free drop. In addition, no matter the laminates were added nanoparticles SiO2 or not, the strength of laminates reduces after impact, however, the fatigue resistance of impacted samples does not lose much. Compare with the data of penetration depth and plastic zone due to free drop. The errors of numerical results are 5.4%~12.4% for the penetration depth and the errors 5.21%~8.98% for plastic zone respectively. That is acceptable. The numerical method ology provides a reference to realize the energy change in laminates after impact. Also, from the experimental measurement it is obvious to see damage area after impact and the mechanical properties do not reduce significantly due to low velocity impact generally in Ti/APC-2 composite laminates.
目次 Table of Contents
目錄
摘 要 i
ABSTRACT vi
目錄 iii
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1前言 1
1-2複合材料簡介 1
1-3研究方向 2
1-4文獻回顧 3
第二章 理論基礎 4
2-1複合材料積層板能量吸收理論 4
2-2非線性理論 4
2-3複合材料破壞準則 5
第三章 研製與實驗 8
3-1實驗材料性質簡介 8
3-1-1鈦合金 8
3-1-2碳纖維/聚醚醚酮 APC-2 (AS-4/PEEK) 8
3-1-3 SiO2奈米粉簡介 9
3-2儀器設備 9
3-3鈦合金複材積層板製程 10
3-3-1鈦合金處理 10
3-3-2 APC-2處理 10
3-3-3熱壓成形處理 10
3-4試片製作與分類 11
3-5拉伸與疲勞實驗 12
3-6低速衝擊實驗 12
第四章 實驗結果 22
4-1靜態拉伸實驗 22
4-2拉伸與疲勞實驗 22
4-3試片觀察 23
第五章 數值模擬與驗證 45
5-1 ANSYS/LS-DYNA簡介 45
5-2有限元素模型建立 45
5-2-1單位使用 46
5-2-2網格資料 46
5-3材料性質 46
5-4接觸與邊界條件定義 46
5-4-1運算時程設定 47
5-5後處理器 48
5-6分析過程 48
第六章 分析與討論 54
6-1鋼球衝擊Ti/APC-2複材積層板實驗結果分析 54
6-1-1積層板承受衝擊後之拉伸試驗 54
6-1-2積層板承受衝擊後之疲勞試驗 55
6-1-3試片觀察 55
6-2 ANSYS/LS-DYNA模擬結果分析 56
6-2-1衝擊變形分析 56
6-2-2能量變換分析 57
第七章 結論 67
參考文獻 68
參考文獻 References
參考文獻
1. Karger-Kocsis, J., Yuan, Q., Mayer, J. and Wintermantel, E. “Transverse impact behavior of knitted arbon-fiber fabric-refinforced thermoplastic composite sheets,” Journal of Thermoplastic Composite Materials, Vol.10, pp.163~172, 1997
2. Shinji, O. and Tonoyuki, I. and Akira, K. “Study on impact perforation fracture mechanism in PMMA,” Journal of Materials Science Letters, Vol.17, pp.691~692, 1998
3. Siow, Y. P. and Shim, V. P. W. “An experimental study of low velocity impact damage in woven fiber composites,” Journal of Composite Materials-Lancaster, Vol.32, pp.1178~1202, 1998
4. Moura, M. F. S. F. de and Gon lves, J. P. M. and Marques, A. T. and Castro, P. M. S. T. de “Modeling compression fatigue after low velocity impact on laminated composites using interface elements,” Journal of Composite Materials-Lancaster, Vol.31, pp.1462~1479, 1997
5. Yang, P. and Liu, Y. and Xu, F. “Testing and evaluation-low-cycle impact fatigue of Sicw 7475A1 composite,” Journal of Composite Materials Engineering and Performance, Vol.7, pp.677~681, 1998
6. Im, K. H. and Yang, I. Y. “Posters – damage behavior and residual fatigue bending strength of impact-induced CFRP composite,” Ceramic Engineering and Science Proceeding, Vol.19, pp.323~328, 1998
7. Beheshty, M. H. and Harris, B. “A constant-life model of fatigue behavior for carbon-fibre composite : the effect of impact damage,” Composite Science and Technology, Vol.58, pp.9~18, 1998
8. Dan-Jumbo, E., Leewood, A. R. and Sun, C. T. “Impact Damage Characteristics of Bismaleimides and Thermoplastic Composite Laminates,” Composite Materials : Fatigue and Fracture, Second Volume, ASTM STP 1012, Paul A. Lagace, Ed., American Societyfor Testing and Materials, Philadelphia, pp.356~372, 1989
9. Prichard, J. C. and Hogg, P. J. “The Role of Impact Damage in Post-Impact Compression Testing,” Composites, Vol.21, No.6, pp.503-511, Nov 1990
10. Sun, C. T. and Yoon, K. J. “Elastic-Plastic Analysis of AS4/PEEK Composite Laminate Using a One-Parameter Plasticity Model,” Journal of Composites Materials, Vol.26, pp.293-308, 1992
11. Potti, S. V. and Sun, C. T. “Prediction of Impact Induced Penetration and Delamination in Thick Composites Laminates,” International Journal Impact Engineering, Vol.19, pp.31-38, 1997
12. 林正傑,碳纖維/聚二醚酮複合材料積層板之衝擊變形機制與數值模擬,國立中山大學機械所碩士論文,1998。
13. 周仁傑,衝擊及溫度效應對碳纖維/聚二醚酮複材積層板之破壞機制探討,國立中山大學機械所碩士論文,2000。
14. 張簡志偉,以鋼球撞擊試驗評估玻璃面板強度,國立交通大學精密與自動工程組碩士論文,2007。
15. 李家慶,複合材料積層板衝擊模擬與實驗,國立雲林科技大學機械工程系碩士論文,2008。
16. 陳幼良、吳俊育、朱政崑、薄慧雲,高強力纖維不同組方式之抗彈能力分析,中正嶺學報 第三十七卷 第二期,2009。
17. 劉俊吾,鈦合金/碳纖維/聚醚醚酮複材積層板之研製與機械性質探討,國立中山大學機械與機電研究所碩士論文,2009
18. 張哲愷,鈦合金/碳纖維/聚醚醚酮奈米複材積層板之研製與機械性質探討,國立中山大學機械與機電研究所碩士論文,2010
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code