Responsive image
博碩士論文 etd-0629112-192559 詳細資訊
Title page for etd-0629112-192559
論文名稱
Title
氧化苯砷誘導胚胎發育時期神經-肌突觸產生活性氧化物以促進神經遞質釋放之研究
Reactive oxygen species generated by phenylarsine oxide facilitate neurotransmitter release at developing Xenopus neuromuscular synapse
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-15
繳交日期
Date of Submission
2012-06-29
關鍵字
Keywords
粒線體膜通透性轉運孔、氧化苯砷、活性氧、電子傳遞鏈
electron transport chain, Xenopus neuromuscular synapse, phenylarsine oxide, reactive oxygen species, mitochondrial permeability transition pore
統計
Statistics
本論文已被瀏覽 5673 次,被下載 1939
The thesis/dissertation has been browsed 5673 times, has been downloaded 1939 times.
中文摘要
氧化苯砷 (phenylarsine oxide, PAO) 為一種可穿透細胞膜的三價有機砷化物,哺乳類動物在攝入無機砷化物時大多會在體內再被代謝成PAO,其結構易氧化帶有醯基 (thiol group or sulfhydryl group, R-SH) 或相鄰硫醇基 (vicinal dithiol group, R-(SH)2) 的蛋白質,造成醯基的cross-linkage,形成一個穩定的雙硫鍵環狀結構,導致酵素活性被破壞,進而活化ROS的生成或抑制了胞內各種生化反應之訊息傳導路徑。因此,本研究以whole-cell patch clamp電生理紀錄PAO在胚胎發育早期引導運動神經活性增加的機轉,探討ROS如何透過PAO的誘導而產生,以及其被活化來增加細胞內的氧化壓力之相關訊息傳遞路徑。
經由實驗發現,投予PAO約10至15分鐘後神經自發性傳導物質釋放的頻率明顯增加,此促進作用約30分鐘後會漸漸趨緩,最後神經傳遞物質會被排空,此過程為不可逆。神經細胞釋出神經傳遞物質之能力與神經末梢內鈣離子濃度有直接關係,因此,進一步將胞外溶液置換成不含鈣離子的Ca2+-free medium、加入廣效性鈣離子通道阻斷劑Cd2+ 或膜通透性高的鈣離子螯合劑BAPTA-AM以阻斷胞外鈣離子來源,實驗結果顯示即使在沒有細胞外鈣離子的提供下,PAO仍保有對神經活性的增進作用,表示PAO促進神經傳遞物質釋放所需的鈣離子來源為細胞內鈣離子儲存池所提供。由於細胞內主要由內質網及粒線體來維持鈣離子的恆定,為了釐清PAO的作用與胞內鈣離子儲存池之間的關聯性,針對此兩個胞器膜上調控鈣離子出入的通道投予抑制劑來觀察PAO的促進作用是否會被消除。實驗結果發現在ER/SR Ca2+- ATPase抑制劑 (thapsigargin, TG) 及ryanodine receptor (RyR) 抑制劑 (TMB-8) 的存在下,PAO對神經活性的增強會明顯受到抑制,反之,IP3 receptor抑制劑 (XeC) 對PAO則無抑制作用。另外,粒線體氧化磷酸化耦合劑 (FCCP) 及粒線體膜通透性轉運孔 (mitchondrial permeability transition pore, MPT pore) 抑制劑 (cyclosporin A, CyA) 亦能有效消除PAO的作用,由此推得,無論是內質網或粒線體皆貢獻了一部分的鈣離子來源參與在PAO所誘發的神經傳遞物質釋放情形,其兩者引發的先後順序由TMB-8 + CyA的實驗未能將PAO的作用降至更低可推知,PAO的作用途徑可能由粒線體先啟動釋出鈣離子到細胞質中,再經由Ca2+-induced Ca2+ release (CICR) 的機制使內質網膜上的RyR釋出更多的鈣離子促進神經傳導物質的大量釋放。此外,為了確認PAO造成胞質內鈣離子濃度上升促使神經活性的增強作用是否與ROS的產生有關,加入n-acetylcysteine (NAC) 來增加細胞內的抗氧化分子glutathione與粒線體中的Mn-SOD活性,其幾乎可以完全阻斷PAO對神經活性的影響,然而在catalase清除胞外的H2O2及catalase抑制劑3-AT增加胞內外H2O2的情形下,皆對PAO的作用無影響,顯示PAO可能誘導的ROS主產物非H2O2而是上游的O2˙-,接著即針對會產生O2˙-的氧化酶投予抑制劑,包含NADPH oxidase及xanthine oxidase的抑制劑DPI與allopurinol分別處理之下,仍對PAO無抑制作用,由此推測PAO誘發ROS產生之路徑非經由這些氧化酶的活化而來。除此之外,在thiol-modifying agent (NEM) 和thiol-reducing agent (DTT) 的暴露下,PAO增強神經活性的能力也會喪失,顯示雙硫鍵的形成與PAO的作用有關。粒線體內膜上的電子傳遞鏈 (electron transport chain, ETC) 被認為是胞內ROS的主要發源地,尤其以complex I (NADH dehydrogenase) 和complex III (CoQ-cyt c reductase) 為O2˙-的主來源之一,因此分別利用加入complex I和complex III的抑制劑rotenone與antimycin A來探討PAO作用的可能路徑,實驗結果發現complex III 被抑制的情況下亦可以有效阻斷PAO的促進作用,推測PAO誘導ROS產生的訊息傳遞路徑可能與complex III產生ROS的路徑相似。
綜上實驗結果,可初步推論PAO可能的作用路徑為經由ETC上的complex III產生ROS來誘導MPT pore不可逆性的打開並釋出鈣離子到細胞質中,再經由粒線體釋出的鈣離子透過CICR的機制來活化ryanodine sensitive鈣離子儲存池,使神經末梢內的鈣離子濃度提升,進而促成神經釋放神經傳遞物質的作用。
Abstract
Phenylarsine oxide (PAO) is a membrane-permeable trivalent arsenic compounds, which interfere the biochemical activity of intracellular enzymes or proteins through reacting specifically with sulfhydryl and vicinal dithiol groups in the protein structure. Although the deleterious effects of arsenic compounds in bioorganisms have been extensively studied, however its role in the synaptogenesis is still obscure. Here we test the role of PAO on the synaptic activity at developing Xenopus neuromuscular synapse by using whole-cell patch clamp recording. Bath application of PAO dose-dependently increases the frequency of spontaneous synaptic currents (SSC frequency) and reaches its maximal effect at 10 μM. The SSC frequency is robustly facilitated in 10~15 minutes after PAO application and then the release of neurotransmitter were abruptly ceased due to the degenerative collapse of the presynaptic motoneuron. Pretreatment of the culture with Ca2+ chelator BAPTA-AM significantly blunted the SSC frequency facilitation induced by PAO, suggesting a rise in Ca2+ in presynaptic motoneuron is a prerequisite. The PAO-induced SSC frequency facilitation is unaffected even that Ca2+ is eliminated from culture medium or addition of pharmacological Ca2+ channel inhibitor cadmium, indicating the influx of extracellular Ca2+ is not needed for the rise of [Ca2+]i. Depletion of endoplasmic reticulum Ca2+ pool with thapsigargin effectively hampered the PAO-induced SSC frequency facilitation. Pretreatment of ryanodine receptor inhibitor TMB-8 but not IP3 receptor inhibitor XeC significantly occluded the increase of SSC frequency elicited by PAO. Furthermore, bath application of the culture with either mitochondria oxidative phosphorylation uncoupler FCCP or mitochondrial permeability transition pore inhibitor cyclosporin A significantly abolished the SSC facilitating effect of PAO. Pretreatment the culture with TMB-8 and cyclosporin A have no addictive effects on the occlusion of PAO-induced SSC frequency facilitation, suggesting a consecutively released Ca2+ from internal store through ryanodine receptor and mitochondria is responsible for PAO-induced SSC frequency facilitation.
The synaptic facilitating effect of PAO is eliminated while incubated with free radical scavenger n-acetylcysteine. Furthermore, treating cultures with complex III of electron transport chain (ETC) inhibitor antimycin A, but not complex I inhibitor rotenone, abolished PAO-induced facilitation of synaptic transmission. PAO elicited no facilitation effects on SSC frequency when pretreatment the culture with either thiol-modifying agent NEM or thiol-reducing agent DTT. Overall, results from our current study provide evidences that reactive oxygen species derived from PAO inhibition on complex III of ETC induce the open of MPT pore in mitochondria, the accompanied Ca2+ leak from mitochondria and Ca2+-induced Ca2+ release from endoplasmic reticulum resulted in a robustly release of neurotransmitter and a destructive damage on the neuron.
目次 Table of Contents
目錄 …………………………….………………………….……..…… i
圖目錄 ……………………….………………………………….……. ii
表目錄 ………………………………………………………….……. iii
縮寫表 …………………………………..…………………….……... iv
中文摘要 ..………………..………………………………….....…...... v
Abstract ...…………………………………...………..………........ viii
第 一 章 緒論 …………………………………..…………………. 1
1.1 前言 …………………………………………..……….… 1
1.2 研究目的 ………………………………………………. 18
第 二 章 材料與方法 ………………………………………….… 23
2.1 實驗材料 …………………………..…………………... 23
2.2 實驗方法 ………………………………………………. 26
第 三 章 結果 ………………………………………………….… 31
第 四 章 討論 ………………………………………………….… 56
第 五 章 參考文獻 …………………………………………….… 67
第 六 章 附錄 ………………..…..…………………………….… 79
參考文獻 References
Afanas'ev I (2010a) Signaling and Damaging Functions of Free Radicals in Aging-Free Radical Theory, Hormesis, and TOR. Aging Dis 1:75-88.
Afanas'ev I (2010b) Signaling of reactive oxygen and nitrogen species in Diabetes mellitus. Oxid Med Cell Longev 3:361-373.
Ambrosio G, Zweier JL, Duilio C, Kuppusamy P, Santoro G, Elia PP, Tritto I, Cirillo P, Condorelli M, Chiariello M, et al. (1993) Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem 268:18532-18541.
Anderson MJ, Cohen MW, Zorychta E (1977) Effects of innervation on the distribution of acetylcholine receptors on cultured muscle cells. J Physiol 268:731-756.
Aposhian HV (1997) Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol 37:397-419.
Babcock DF, Hille B (1998) Mitochondrial oversight of cellular Ca2+ signaling. Curr Opin Neurobiol 8:398-404.
Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272:217-221.
Balaban RS (2002) Cardiac energy metabolism homeostasis: role of cytosolic calcium. J Mol Cell Cardiol 34:1259-1271.
Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483-495.
Barchowsky A, Klei LR, Dudek EJ, Swartz HM, James PE (1999) Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic Biol Med 27:1405-1412.
Bartlett SE, Reynolds AJ, Weible M, 2nd, Hendry IA (2002) Phosphatidylinositol kinase enzymes regulate the retrograde axonal transport of NT-3 and NT-4 in sympathetic and sensory neurons. J Neurosci Res 68:169-175.
Bergner A, Sanderson MJ (2002) Acetylcholine-induced calcium signaling and contraction of airway smooth muscle cells in lung slices. J Gen Physiol 119:187-198.
Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313-20316.
Bhalla S, Gordon LI, David K, Prachand S, Singh AT, Yang S, Winter JN, Guo D, O'Halloran T, Platanias LC, Evens AM (2010) Glutathione depletion enhances arsenic trioxide-induced apoptosis in lymphoma cells through mitochondrial-independent mechanisms. Br J Haematol 150:365-369.
Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128:617-630.
Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817-833.
Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, Jimenez LA, Stone V (2004) Calcium and ROS-mediated activation of transcription factors and TNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol 286:L344-353.
Cai J, Jones DP (1998) Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem 273:11401-11404.
Cotgreave IA, Moldeus P, Orrenius S (1988) Host biochemical defense mechanisms against prooxidants. Annu Rev Pharmacol Toxicol 28:189-212.
Cotterill LA, Gower JD, Fuller BJ, Green CJ (1990) Evidence that calcium mediates free radical damage through activation of phospholipase A2 during cold storage of the rabbit kidney. Adv Exp Med Biol 264:397-400.
Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341 ( Pt 2):233-249.
Cui X, Wakai T, Shirai Y, Yokoyama N, Hatakeyama K, Hirano S (2006) Arsenic trioxide inhibits DNA methyltransferase and restores methylation-silenced genes in human liver cancer cells. Hum Pathol 37:298-311.
Davison K, Mann KK, Miller WH, Jr. (2002) Arsenic trioxide: mechanisms of action. Semin Hematol 39:3-7.
Doussiere J, Bouzidi F, Vignais PV (2001) A phenylarsine oxide-binding protein of neutrophil cytosol, which belongs to the S100 family, potentiates NADPH oxidase activation. Biochem Biophys Res Commun 285:1317-1320.
Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47-95.
Dymkowska D, Szczepanowska J, Wieckowski MR, Wojtczak L (2006) Short-term and long-term effects of fatty acids in rat hepatoma AS-30D cells: the way to apoptosis. Biochim Biophys Acta 1763:152-163.
Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529-539.
Evers J, Laser M, Sun YA, Xie ZP, Poo MM (1989) Studies of nerve-muscle interactions in Xenopus cell culture: analysis of early synaptic currents. J Neurosci 9:1523-1539.
Fanelus I, Desrosiers RR (2008) Reactive oxygen species generated by thiol-modifying phenylarsine oxide stimulate the expression of protein L-isoaspartyl methyltransferase. Biochem Biophys Res Commun 371:203-208.
Fleming I, Bara AT, Busse R (1996) Calcium signalling and autacoid production in endothelial cells are modulated by changes in tyrosine kinase and phosphatase activity. J Vasc Res 33:225-234.
Fletcher MC, Samelson LE, June CH (1993) Complex effects of phenylarsine oxide in T cells. Induction of tyrosine phosphorylation and calcium mobilization independent of CD45 expression. J Biol Chem 268:23697-23703.
Flora SJ, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res 128:501-523.
Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Invest 47:412-426.
Fry RC, Navasumrit P, Valiathan C, Svensson JP, Hogan BJ, Luo M, Bhattacharya S, Kandjanapa K, Soontararuks S, Nookabkaew S, Mahidol C, Ruchirawat M, Samson LD (2007) Activation of inflammation/NF-kappaB signaling in infants born to arsenic-exposed mothers. PLoS Genet 3:e207.
Gamble MV, Liu X, Slavkovich V, Pilsner JR, Ilievski V, Factor-Litvak P, Levy D, Alam S, Islam M, Parvez F, Ahsan H, Graziano JH (2007) Folic acid supplementation lowers blood arsenic. Am J Clin Nutr 86:1202-1209.
Gerhard R, John H, Aktories K, Just I (2003) Thiol-modifying phenylarsine oxide inhibits guanine nucleotide binding of Rho but not of Rac GTPases. Mol Pharmacol 63:1349-1355.
Goering PL, Aposhian HV, Mass MJ, Cebrian M, Beck BD, Waalkes MP (1999) The enigma of arsenic carcinogenesis: role of metabolism. Toxicol Sci 49:5-14.
Greer PL, Greenberg ME (2008) From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 59:846-860.
Gunter TE, Gunter KK, Sheu SS, Gavin CE (1994) Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol 267:C313-339.
Gutteridge JM, Halliwell B (1990) Reoxygenation injury and antioxidant protection: a tale of two paradoxes. Arch Biochem Biophys 283:223-226.
Hajnoczky G, Csordas G, Das S, Garcia-Perez C, Saotome M, Sinha Roy S, Yi M (2006) Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40:553-560.
Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection. Cardiovasc Res 61:372-385.
Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85-100.
Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298-300.
Harman D (1973) Free radical theory of aging. Triangle 12:153-158.
Harman D (2009) Origin and evolution of the free radical theory of aging: a brief personal history, 1954-2009. Biogerontology 10:773-781.
Hayashi T, Rizzuto R, Hajnoczky G, Su TP (2009) MAM: more than just a housekeeper. Trends Cell Biol 19:81-88.
Heck JE, Andrew AS, Onega T, Rigas JR, Jackson BP, Karagas MR, Duell EJ (2009) Lung cancer in a U.S. population with low to moderate arsenic exposure. Environ Health Perspect 117:1718-1723.
Henley J, Poo MM (2004) Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol 14:320-330.
Henley JR, Huang KH, Wang D, Poo MM (2004) Calcium mediates bidirectional growth cone turning induced by myelin-associated glycoprotein. Neuron 44:909-916.
Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, Floyd RA, Butterfield DA (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci U S A 91:3270-3274.
Higuchi M, Honda T, Proske RJ, Yeh ET (1998) Regulation of reactive oxygen species-induced apoptosis and necrosis by caspase 3-like proteases. Oncogene 17:2753-2760.
Iwama K, Nakajo S, Aiuchi T, Nakaya K (2001) Apoptosis induced by arsenic trioxide in leukemia U937 cells is dependent on activation of p38, inactivation of ERK and the Ca2+-dependent production of superoxide. Int J Cancer 92:518-526.
Javadov S, Karmazyn M, Escobales N (2009) Mitochondrial permeability transition pore opening as a promising therapeutic target in cardiac diseases. J Pharmacol Exp Ther 330:670-678.
Jin Y, Zhao F, Zhong Y, Yu X, Sun D, Liao Y, Lv X, Li G, Sun G (2010) Effects of exogenous GSH and methionine on methylation of inorganic arsenic in mice exposed to arsenite through drinking water. Environ Toxicol 25:361-366.
Kanno T, Sato EE, Muranaka S, Fujita H, Fujiwara T, Utsumi T, Inoue M, Utsumi K (2004) Oxidative stress underlies the mechanism for Ca(2+)-induced permeability transition of mitochondria. Free Radic Res 38:27-35.
Kim B, Matsuoka S (2008) Cytoplasmic Na+-dependent modulation of mitochondrial Ca2+ via electrogenic mitochondrial Na+-Ca2+ exchange. J Physiol 586:1683-1697.
Kodama M, Kamioka Y, Nakayama T, Nagata C, Morooka N, Ueno Y (1987) Generation of free radical and hydrogen peroxide from 2-hydroxyemodin, a direct-acting mutagen, and DNA strand breaks by active oxygen. Toxicol Lett 37:149-156.
Konur S, Ghosh A (2005) Calcium signaling and the control of dendritic development. Neuron 46:401-405.
Korge P, Goldhaber JI, Weiss JN (2001) Phenylarsine oxide induces mitochondrial permeability transition, hypercontracture, and cardiac cell death. Am J Physiol Heart Circ Physiol 280:H2203-2213.
Kowaltowski AJ, Castilho RF, Grijalba MT, Bechara EJ, Vercesi AE (1996) Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca2+ ions. A proposed model for phosphate-stimulated lipid peroxidation. J Biol Chem 271:2929-2934.
Kuromi H, Kidokoro Y (1984) Denervation disperses acetylcholine receptor clusters at the neuromuscular junction in Xenopus cultures. Dev Biol 104:421-427.
Lajas AI, Pozo MJ, Camello PJ, Salido GM, Pariente JA (1999) Phenylarsine oxide evokes intracellular calcium increases and amylase secretion in isolated rat pancreatic acinar cells. Cell Signal 11:727-734.
Lambert AJ, Buckingham JA, Boysen HM, Brand MD (2008) Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport. Biochim Biophys Acta 1777:397-403.
Lau AT, He QY, Chiu JF (2004) A proteome analysis of the arsenite response in cultured lung cells: evidence for in vitro oxidative stress-induced apoptosis. Biochem J 382:641-650.
Laurent A, Nicco C, Chereau C, Goulvestre C, Alexandre J, Alves A, Levy E, Goldwasser F, Panis Y, Soubrane O, Weill B, Batteux F (2005) Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65:948-956.
Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366:177-196.
Lenartowicz E, Bernardi P, Azzone GF (1991) Phenylarsine oxide induces the cyclosporin A-sensitive membrane permeability transition in rat liver mitochondria. J Bioenerg Biomembr 23:679-688.
Li J, Pickart CM (1995) Binding of phenylarsenoxide to Arg-tRNA protein transferase is independent of vicinal thiols. Biochemistry 34:15829-15837.
Li ZL, Chen XM, Yang LC, Deng XL, Fu SH, Cai LL, Zhou Y, Chen J, Bai J, Cong YL (2010) [Effects of extracellular calcium concentration on platelets aggregation, coagulation indices and thromboelastography]. Zhonghua Yi Xue Za Zhi 90:1547-1550.
Lin S, Shi Q, Nix FB, Styblo M, Beck MA, Herbin-Davis KM, Hall LL, Simeonsson JB, Thomas DJ (2002) A novel S-adenosyl-L-methionine:arsenic(III) methyltransferase from rat liver cytosol. J Biol Chem 277:10795-10803.
Liu CY, Lee CF, Hong CH, Wei YH (2004) Mitochondrial DNA mutation and depletion increase the susceptibility of human cells to apoptosis. Ann N Y Acad Sci 1011:133-145.
Liu J, Waalkes MP (2008) Liver is a target of arsenic carcinogenesis. Toxicol Sci 105:24-32.
Long LH, Halliwell B (2009) Artefacts in cell culture: pyruvate as a scavenger of hydrogen peroxide generated by ascorbate or epigallocatechin gallate in cell culture media. Biochem Biophys Res Commun 388:700-704.
Lu C, Armstrong JS (2007) Role of calcium and cyclophilin D in the regulation of mitochondrial permeabilization induced by glutathione depletion. Biochem Biophys Res Commun 363:572-577.
Lu F, Tian Z, Zhang W, Zhao Y, Bai S, Ren H, Chen H, Yu X, Wang J, Wang L, Li H, Pan Z, Tian Y, Yang B, Wang R, Xu C (2010) Calcium-sensing receptors induce apoptosis in rat cardiomyocytes via the endo(sarco)plasmic reticulum pathway during hypoxia/reoxygenation. Basic Clin Pharmacol Toxicol 106:396-405.
Lynn S, Gurr JR, Lai HT, Jan KY (2000) NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Circ Res 86:514-519.
MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie QW, Sokol K, Hutchinson N, et al. (1995) Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81:641-650.
Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9:2277-2293.
Massaad CA, Klann E (2011) Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 14:2013-2054.
McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049-6055.
McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391-425.
McStay GP, Clarke SJ, Halestrap AP (2002) Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem J 367:541-548.
Medow MS, Bamji N, Clarke D, Ocon AJ, Stewart JM (2011) Reactive oxygen species (ROS) from NADPH and xanthine oxidase modulate the cutaneous local heating response in healthy humans. J Appl Physiol 111:20-26.
Meir A, Ginsburg S, Butkevich A, Kachalsky SG, Kaiserman I, Ahdut R, Demirgoren S, Rahamimoff R (1999) Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol Rev 79:1019-1088.
Meng TC, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9:387-399.
Menzel DB, Hamadeh HK, Lee E, Meacher DM, Said V, Rasmussen RE, Greene H, Roth RN (1999) Arsenic binding proteins from human lymphoblastoid cells. Toxicol Lett 105:89-101.
Meucci O, Scorziello A, Avallone A, Florio T, D'Alto V, Fattore M, Schettini G (1995) Alpha 1 B, but not alpha 1A, adrenoreceptor activates calcium influx through the stimulation of a tyrosine kinase/phosphotyrosine phosphatase pathway, following noradrenaline-induced emptying of IP3 sensitive calcium stores, in PC Cl3 rat thyroid cell line. Biochem Biophys Res Commun 209:630-638.
Miller WH, Jr., Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanisms of action of arsenic trioxide. Cancer Res 62:3893-3903.
Mittal CK, Murad F (1977) Activation of guanylate cyclase by superoxide dismutase and hydroxyl radical: a physiological regulator of guanosine 3',5'-monophosphate formation. Proc Natl Acad Sci U S A 74:4360-4364.
Nakano M (1992) [Free radicals and their biological significance: present and future]. Hum Cell 5:334-340.
Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59:861-872.
Nemeti B, Regonesi ME, Tortora P, Gregus Z (2010) Polynucleotide phosphorylase and mitochondrial ATP synthase mediate reduction of arsenate to the more toxic arsenite by forming arsenylated analogues of ADP and ATP. Toxicol Sci 117:270-281.
Nicholls DG (1978) The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J 176:463-474.
Ono T, Tsuruta R, Fujita M, Aki HS, Kutsuna S, Kawamura Y, Wakatsuki J, Aoki T, Kobayashi C, Kasaoka S, Maruyama I, Yuasa M, Maekawa T (2009) Xanthine oxidase is one of the major sources of superoxide anion radicals in blood after reperfusion in rats with forebrain ischemia/reperfusion. Brain Res 1305:158-167.
Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524-526.
Rasola A, Bernardi P (2011) Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium 50:222-233.
Rogalska A, Koceva-Chyla A, Jozwiak Z (2008) Aclarubicin-induced ROS generation and collapse of mitochondrial membrane potential in human cancer cell lines. Chem Biol Interact 176:58-70.
Ruiz-Ramos R, Lopez-Carrillo L, Rios-Perez AD, De Vizcaya-Ruiz A, Cebrian ME (2009) Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-kappaB activation and cell proliferation in human breast cancer MCF-7 cells. Mutat Res 674:109-115.
Santella L (1998) The role of calcium in the cell cycle: facts and hypotheses. Biochem Biophys Res Commun 244:317-324.
Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255:67-78.
Singh BK, Tripathi M, Pandey PK, Kakkar P (2011) Alteration in mitochondrial thiol enhances calcium ion dependent membrane permeability transition and dysfunction in vitro: a cross-talk between mtThiol, Ca(2+), and ROS. Mol Cell Biochem 357:373-385.
Smith AH, Marshall G, Yuan Y, Ferreccio C, Liaw J, von Ehrenstein O, Steinmaus C, Bates MN, Selvin S (2006) Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ Health Perspect 114:1293-1296.
Spitzer NC, Baccaglini PI (1976) Development of the action potential in embryo amphibian neurons in vivo. Brain Res 107:610-616.
Steinmaus C, Carrigan K, Kalman D, Atallah R, Yuan Y, Smith AH (2005) Dietary intake and arsenic methylation in a U.S. population. Environ Health Perspect 113:1153-1159.
Su Y, Block ER (2000) Phenylarsine oxide inhibits nitric oxide synthase in pulmonary artery endothelial cells. Free Radic Biol Med 28:167-173.
Sudha K, Rao AV, Rao S, Rao A (2003) Free radical toxicity and antioxidants in Parkinson's disease. Neurol India 51:60-62.
Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296-299.
Tarasenko AS, Kostrzhevska OG, Storchak LG, Linetska MV, Borisova TA, Himmelreich NH (2005) Phenylarsine oxide is able to dissipate synaptic vesicle acidic pool. Neurochem Int 46:541-550.
Tseng HP, Wang YH, Wu MM, The HW, Chiou HY, Chen CJ (2006) Association between chronic exposure to arsenic and slow nerve conduction velocity among adolescents in Taiwan. J Health Popul Nutr 24:182-189.
Turner CP, Connell J, Blackstone K, Ringler SL (2007) Loss of calcium and increased apoptosis within the same neuron. Brain Res 1128:50-60.
Vahter ME (2007) Interactions between arsenic-induced toxicity and nutrition in early life. J Nutr 137:2798-2804.
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44-84.
Verkhrats'kyi ON, Fedulova SA (2004) [Endoplasmic reticulum and regulation of neuromediator release in presynaptic terminals]. Fiziol Zh 50:142-149.
Vincent AJ, Gasperini R, Foa L, Small DH (2010) Astrocytes in Alzheimer's disease: emerging roles in calcium dysregulation and synaptic plasticity. J Alzheimers Dis 22:699-714.
Waalkes MP, Liu J, Chen H, Xie Y, Achanzar WE, Zhou YS, Cheng ML, Diwan BA (2004) Estrogen signaling in livers of male mice with hepatocellular carcinoma induced by exposure to arsenic in utero. J Natl Cancer Inst 96:466-474.
Waalkes MP, Liu J, Diwan BA (2007) Transplacental arsenic carcinogenesis in mice. Toxicol Appl Pharmacol 222:271-280.
Wang TS, Kuo CF, Jan KY, Huang H (1996) Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species. J Cell Physiol 169:256-268.
Weiss JN, Korge P, Honda HM, Ping P (2003) Role of the mitochondrial permeability transition in myocardial disease. Circ Res 93:292-301.
Wiedemann C, Schafer T, Burger MM, Sihra TS (1998) An essential role for a small synaptic vesicle-associated phosphatidylinositol 4-kinase in neurotransmitter release. J Neurosci 18:5594-5602.
Wilcox CS, Welch WJ, Murad F, Gross SS, Taylor G, Levi R, Schmidt HH (1992) Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci U S A 89:11993-11997.
Xie ZP, Poo MM (1986) Initial events in the formation of neuromuscular synapse: rapid induction of acetylcholine release from embryonic neuron. Proc Natl Acad Sci U S A 83:7069-7073.
Yeung BH, Wong KY, Lin MC, Wong CK, Mashima T, Tsuruo T, Wong AS (2008) Chemosensitisation by manganese superoxide dismutase inhibition is caspase-9 dependent and involves extracellular signal-regulated kinase 1/2. Br J Cancer 99:283-293.
Yu HS, Liao WT, Chai CY (2006) Arsenic carcinogenesis in the skin. J Biomed Sci 13:657-666.
Zhang C, Ling B, Liu J, Wang G (1999) [Effect of fluoride-arsenic exposure on the neurobehavioral development of rats offspring]. Wei Sheng Yan Jiu 28:337-338.
Zhang L, Yang H, Zhao H, Zhao C (2011) Calcium-related signaling pathways contributed to dopamine-induced cortical neuron apoptosis. Neurochem Int 58:281-294.
Zmijewski JW, Lorne E, Zhao X, Tsuruta Y, Sha Y, Liu G, Siegal GP, Abraham E (2008) Mitochondrial respiratory complex I regulates neutrophil activation and severity of lung injury. Am J Respir Crit Care Med 178:168-179.
Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757:509-517.



電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code