Responsive image
博碩士論文 etd-0629113-095131 詳細資訊
Title page for etd-0629113-095131
論文名稱
Title
以原子轉移自由基聚合法合成氮氧自由基高分子及其應用於有機自由基電池的研究
Synthesis of Nitroxide Radical Polymers via Atom Transfer Radical Polymerization and their Applications in Organic Radical Batteries
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
146
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-24
繳交日期
Date of Submission
2013-07-30
關鍵字
Keywords
氮氧自由基、有機自由基電池、原子轉移自由基聚合、石墨烯氧化物、接枝共聚合物、導電高分子、奈米碳管
conducting polymers, grafting copolymers, carbon nanotube, nitroxide radical, organic radical batteries, graphene oxide, atom transfer radical polymerization
統計
Statistics
本論文已被瀏覽 5682 次,被下載 571
The thesis/dissertation has been browsed 5682 times, has been downloaded 571 times.
中文摘要
本論文主要是以原子轉移自由基聚合 (ATRP) 合成各種形態的聚(甲基丙烯酸-2,2,6,6-四甲基-1-氧自由基哌啶-4-酯) (PTMA),接枝聚合於導電高分子,以及不同形態的電極與有機自由基電池性能的關係,並探討導電材料的作用等。共分為四部分,分別為以原子轉移自由基聚合法接枝氮氧自由基高分子聚噻吩共聚合物 (第 3 章)、氮氧自由基高分子/溶劑熱還原石墨烯氧化物複合電極 (第 4 章)、氮氧自由基高分子/表面成長奈米碳管陣列 (sgCNT-array) 複合電極 (第 5 章)、三維有序大孔 (3DOM)氮氧自由基高分子刷電極 (第 6 章)。
第 3 章中介紹在聚噻吩巨起始劑上,以 ATRP 合成 2,5-聚(3-[1-乙基-2-(2-溴異丁酯)]噻吩)-接枝-聚(甲基丙烯酸-2,2,6,6-四甲基-1-氧自由基哌啶-4-酯) (PEBBT-g- PTMA)。首先以一系列模型反應找出 ATRP 的最佳化條件並依此條件合成 PEBBT-g-PTMA;接著以凝膠滲透層析與電化學石英晶體微天平分析。這個合成方式大幅的提高分子量 (Mn 483300) 避免 PEBBT-g-PTMA 溶於電解質溶液中,5 C 電流 100 次充放電循環測試結果,PEBBT-g-PTMA 電極仍有 90%電容量 (對照組 為 50%),顯示高分子量有較好的溶劑耐受性。
第 4 章中使用溶劑熱還原法製作之石墨烯氧化物 (srGO) 做為有機自由基電池的正極添加物。我們發現均勻分散 PTMA 可以提升電荷傳遞性能。拉曼光譜與原子力顯微鏡分析石墨烯氧化物的性質與形貌;表面電位測量、流變測量分析製備電極的漿料性質;掃瞄式電子顯微鏡觀察電極表面形態與電化學測量電池性能。 srGO 的表面電位由-40 mV 變為加入 PTMA 後的-158 mV,顯示 PTMA 與 srGO 表 面官能基有化學性相互作用。添加了 15% srGO 的 PTMA 複合電極比電容量約為 90 mAh/g,較對照組高 30%。循環充放電測試顯示,經過 5 C 電流 200 次充放循 環,PTMA/srGO 複合電極仍保有 91.2%電容量,顯示 srGO 的添加不影響充放電 表現。
第 5 章,我們以 PTMA/sgCNT-array 電極做為有機自由基電池正極用以探討導電界面對電池性能的影響。由純水接觸角、拉曼光譜與掃瞄式電子顯微鏡觀察的結果看出 PTMA 可以均勻的附著在經臭氧處理的多壁奈米碳管上,並顯示活性材料與電極基板間連續的電子傳導途徑;電化學分析在 100 C 電流下,PTMA/ sgCNT-array 仍保有 70%的 1 C 電流放電電容量 (對照組僅有 58%);交流阻抗模擬, PTMA/sgCNT-array 的電荷傳遞阻抗僅為對照組的 20%。
第 6 章中展示 3DOM 氮氧自由基高分子刷電極被合成用於有機自由基電池的電化學性質分析。3DOM 電極的製備是以聚苯乙烯膠體晶體做為模板,電化學聚合吡咯反蛋白石結構 (inverse opal) 骨架,再在骨架表面修飾起始劑後進行 ATRP 合成PTMA 高分子刷做為電極活性材料。電化學測試結果,放電電容量與 3DOM inverse opal 厚度成正比,且 13.8 μm 厚的 3DOM 電極在 5 C 的放電電流下有 40 倍 於平面電極的電容量。循環壽命測試顯示經過 250 次充放電循環仍保有 96.1 %的 電容量。
由第 3 章藉由大幅增加 PTMA 的分子量,以降低高分子溶解造成的電容量損失;第 4 章、第 5 章以添加物或電極結構的探討,驗證活性材料的分散與導電途徑的重要性;第 6 章引入電化學製備導電高分子基板,結合高分子刷的概念製備為新形態的多孔性電極,活性聚合物不但降低了溶解度,也有極好的分散性,可做為新穎性的電極的發展方向。
Abstract
Poly(2,2,6,6-tetramethylpiperidin-1-oxyl-4-yl methacrylate) (PTMA), synthesized by atom transfer radical polymerization (ATRP) was used as an active material for organic radical batteries (ORB). PTMA was grafted onto conducting polymer for study, then the structural-performance relationship and effect of conductive additive were also studied. This dissertation is divided into four parts: (a) polythiophene grafted PTMA by ATRP, in chapter 3. (b) PTMA/solvothermal reduced graphene oxide (srGO) composite electrodes, in chapter 4. (c) PTMA/surface grown carbon nanotube array (sgCNT-array) composite electrodes, in chapter 5. (d) three-dimensional ordered macroporous PTMA polymer brush electrode, in chapter 6.
PTMA was grafted onto polythiophene macro-initiater by ATRP, with optimal conditions determined from a series of model reactions. 2,5-poly(3-[1-ethyl-2-(2- bromoisobutyrate)]thiophene)-graft-PTMA (PEBBT-g-PTMA) was then made. The product was analyzed by gel permeation chromatography and electrochemical quartz crystal microbalance. PEBBT-g-PTMA is hardly dissolving into the electrolyte with a high molecular weight (Mn 483300). After 100 cycles of 5 C charge/discharge test, 90% discharge capacity remained in PEBBT-g-PTMA electrode (50% for the control experiment), which reveals that PEBBT-g-PTMA is less dissolvable in the elctrolyte solution.
Solvothermal reduced graphene oxide (srGO) was used as an additive for ORBs. Charge transfer is elevated by better dispersing PTMA on srGO. Scanning electron microscope (SEM), Raman spectrum and atomic force microscope images of srGO were observed for properties and morphology. Zeta potential, rheology were analyzed for slurry properties. After coorperating with PTMA, zeta potential of srGO changed from -40 mV to -158 mV, which reveals the chemical interaction between PTMA and srGO surface. A dischage capacity of ~90 mAh/g was measured for a 15% srGO/PTMA composite electrode, which is 30% higher than the results from control experiments. After 200 cycle test with 5 C current, 91.2% discharge capacity of 15% srGO/PTMA composite electrode remained, which shows good cycleablility.
PTMA/sgCNT-array composites were used as cathodes for ORB. PTMA homogeneously coated on ozone modified sgCNT-array, and a continuous conducting path was characterized by contact angle of water, Raman spectroscopy and SEM. In the electrochemical analysis, 70% of 1 C discharge capacity remained in 100 C test (58% for the control experiment). PTMA/sgCNT-array also showed only 20% of charge transfer impedance compared to the control in a AC impedance analysis.
In chapter 3, the loss of capacity during charging/discharging was reduced by increasing molecular weight of PTMA. Further in chapter 4 and 5, the improvement of performance was made by dispersive additive and direct conducting path. Then an innovative porous electrode was fabricated by electrochemical polymerizing of conducting polymer and grafting PTMA polymer brushes, which makes better dispersion, conducting and has low soluble loss of PTMA, as described in chapter 6.
目次 Table of Contents
[目錄]
[誌謝+ii]
[摘要+iv]
[Abstract+vi]
[第 1 章緒論+1]
[1.1 能源與電+2]
[1.1.1 能源的轉換+2]
[1.1.2 電能的使用+3]
[1.2 電能的化學儲存+5]
[1.2.1 電池的基本構造+5]
[1.2.2 可充電電池+6]
[1.2.3 鋰離子可充電電池+10]
[1.2.3.1 各種可充電電池的性能比較+10]
[1.2.3.2 鋰離子可充電電池的發展+11]
[1.2.3.3 負極材料的選擇+12]
[1.2.3.4 商品化的鋰離子可充電電池+13]
[1.2.4 有機電池材料+14]
[1.2.4.1 有機硫化物+14]
[1.2.4.2 導電高分子+15]
[1.2.4.3 氧化還原高分子+16]
[1.2.4.4 羰基化合物+16]
[1.2.4.5 穩定自由基+16]
[1.3 研究動機+17]
[第 2 章文獻回顧+18]
[2.1 氮氧自由基二次電池材料+19]
[2.1.1 使用氮氧自由基做為電極活性材料原理+19]
[2.1.2 電極製備對電池性質的影響+21]
[2.1.3 改變分子構型對電池性能的影響+23]
[2.1.3.1 改變理論電容量+23]
[2.1.3.2 電荷轉移速率+24]
[2.1.3.3 電化學反應電位+25]
[2.1.4 全有機電池+25]
[第 3 章以原子轉移自由基聚合法接枝氮氧自由基高分子聚噻吩共聚合物+27]
[3.1 摘要+28]
[3.2 介紹+29]
[3.3 實驗+31]
[3.3.1 材料取得與製備+31]
[3.3.1.1 合成修飾的聚噻吩做為原子轉移自由基聚合的巨起始劑+32]
[3-[1-乙基-2-(2-溴-2-甲基丙酸酯基)]噻吩的合成+32]
[聚合 3-[1-乙基-2-(2-溴-2-甲基丙酸酯基)]噻吩+33]
[3.3.1.2 聚合甲基丙烯酸-2,2,6,6-四甲基哌啶-4-酯+33]
[原子轉移自由基聚合法模型反應+34]
[以聚 3-[1-乙基-2-(2-溴-2-甲基丙酸酯基)]噻吩做為巨起始劑進行原子轉 移自由基聚合+35]
[常規自由基聚合法聚合甲基丙烯酸-2,2,6,6-四甲基哌啶-4-酯+35]
[3.3.1.3 氧化聚合物上的 2,2,6,6-四甲基哌啶官能基成為氮氧自由基+35]
[3.3.2 鑑定+36]
[3.3.2.1 儀器鑑定+36]
[3.3.2.2 電化學測量+36]
[3.4 結果與討論+38]
[3.4.1 原子轉移聚合甲基丙烯酸-2,2,6,6-四甲基哌啶-4-酯的反應條件探討+38]
[3.4.1.1 模型反應+38]
[TMPM 與 PTMPM 的 NMR 鑑定+40]
[聚合反應時間的影響+41]
[催化劑對起始劑比例對轉換率的影響+42]
[3.4.1.2PEBBT-PTMA 的合成與鑑定+43]
[合成與 NMR 光譜鑑定+43]
[聚合度與分子量分析+44]
[自由基電子自旋共振光譜鑑定+46]
[電化學性質測量+47]
[3.5 結論+49]
[第 4 章氮氧自由基高分子/溶劑熱還原石墨烯氧化物複合電極+50]
[4.1 摘要+51]
[4.2 介紹+52]
[4.3 實驗+53]
[4.3.1 材料取得與製備+53]
[4.3.1.1 製備石墨烯氧化物+54]
[4.3.1.2 氮氧自由基聚合物活性材料製備+54]
[合成聚甲基丙烯酸-2,2,6,6-四甲基哌啶-4-酯+54]
[氧化聚甲基丙烯酸-2,2,6,6-四甲基哌啶-4-酯成為聚甲基丙烯酸-2,2,6,6-
四甲基-1-氧自由基哌啶-4-酯+54]
[4.3.1.3 氮氧自由基複合電極的製作+55]
[PTMA/srGO 複合電極+55]
[PTMA 複合電極+55]
[4.3.2 鑑定+55]
[4.3.2.1 儀器鑑定+55]
[4.3.2.2 表面電位+56]
[4.3.2.3 流變測試+56]
[4.3.2.4 電化學測量+56]
[4.4 結果與討論+57]
[4.5 結論+65]
[4.6 附錄+66]
[第 5 章氮氧自由基高分子/表面成長奈米碳管陣列複合電極+68]
[5.1 摘要+69]
[5.2 介紹+70]
[5.3 實驗+71]
[5.3.1 材料取得與製備+71]
[在線生成臭氧+72]
[5.3.1.1 電極活性材料合成+72]
[合成聚甲基丙烯酸-2,2,6,6-四甲基哌啶-4-酯+72]
[氧化聚甲基丙烯酸-2,2,6,6-四甲基哌啶-4-酯成為聚甲基丙烯酸-2,2,6,6- 四甲基-1-氧自由基哌啶-4-酯+72]
[5.3.1.2 奈米碳管製備與表面處理+72]
[奈米碳管陣列製備+72]
[以臭氧進行奈米碳管表面處理+73]
[5.3.1.3 奈米碳管複合聚甲基丙烯酸-2,2,6,6-四甲基-1-氧自由基-4-哌啶酯電 極的製作+73]
[PTMA/奈米碳管陣列複合電極+73]
[PTMA/懸浮奈米碳管複合電極+73]
[5.3.2 鑑定+73]
[5.3.2.1 儀器鑑定+73]
[5.3.2.2 電化學測量+74]
[5.4 結果與討論+75]
[5.5 結論+82]
[第 6 章三維有序大孔氮氧自由基高分子刷電極+83]
[6.1 摘要+84]
[6.2 介紹+85]
[6.3 實驗+87]
[6.3.1 材料取得與製備+87]
[6.3.1.1 合成修飾的吡咯做為原子轉移自由基聚合起始劑+88]
[N-(3-胺丙基)吡咯的合成+88]
[N-[3-(1H-吡咯-1-基)丙基]-2-溴-2-甲基丙醯胺的合成+89]
[6.3.1.2 製作具表面起始官能基的聚吡咯反蛋白石結構基板+89]
[垂直沈積法製備聚苯乙烯膠體晶體+89]
[聚吡咯電化學合成+92]
[表面起始官能基修飾+93]
[6.3.1.3 表面起始原子轉移自由基聚合法合成聚(甲基丙烯酸-2,2,6,6-四甲基-1-氧自由基哌啶-4-酯)高分子刷+93]
[表面合成聚(甲基丙烯酸-2,2,6,6-四甲基哌啶-4-酯)高分子刷+93]
[氧化 2,2,6,6-四甲基哌啶官能基成為 2,2,6,6-四甲基-1-氧自由基哌啶+93]
[製作平面型聚(甲基丙烯酸-2,2,6,6-四甲基-1-氧自由基哌啶-4-酯)高分子刷+94]
[6.3.2 鑑定+94]
[6.3.2.1 儀器鑑定+94]
[6.3.2.2 電化學測量+94]
[6.4 結果與討論+96]
[6.5 結論+105]
[6.6 附錄+106]
[第 7 章參考文獻+112]
參考文獻 References
(1) Cleveland, C. J.; Kaufman, R. K.; Stern, D. I. Aggregation and the role of energy in the economy. Ecol. Econ. 2000, 32, 301–317.
(2) Armaroli, N.; Balzani, V. The Future of Energy Supply: Challenges and Opportunities. Angew. Chem. Int. Ed. 2007, 46, 52–66.
(3) Lee, C.-C.; Chang, C.-P. Energy consumption and economic growth in Asian economies: A more comprehensive analysis using panel data. Resour. Energy Econ. 2008, 30, 50–65.
(4) Poizot, P.; Dolhem, F. Clean energy new deal for a sustainable world: from non- CO2 generating energy sources to greener electrochemical storage devices. Energy Environ. Sci. 2011, 4, 2003–2019.
(5) International Energy Agency Key World Energy Statistics http://www.iea.org/publications/freepublications/publication/kwes.pdf.
(6) Soloveichik, G. L. Battery Technologies for Large-Scale Stationary Energy Storage. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 503–527.
(7) Doughty, D. H.; Butler, P. C.; Akhil, A. A.; Clark, N. H.; Boyes, J. D. Batteries for Large-Scale Stationary Electrical Energy Storage. Electrochem. Soc. Interface 2010, 19, 49–53.
(8) Ibrahim, H.; Ilinca, A.; Perron, J. Energy storage systems—Characteristics and comparisons. Renew. Sustain. Energy Rev. 2008, 12, 1221–1250.
(9) Chen, H.; Cong, T. N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291–312.
(10) Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935.
(11) Burke, A. F. Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. Proc. Ieee 2007, 95, 806–820.
(12) Lukic, S. M.; Cao, J.; Bansal, R. C.; Rodriguez, F.; Emadi, A. Energy Storage Systems for Automotive Applications. Ieee Trans. Ind. Electron. 2008, 55, 2258– 2267.
(13) Palacín, M. R. Recent advances in rechargeable battery materials: a chemist’s perspective. Chem. Soc. Rev. 2009, 38, 2565–2575.
(14) Woodland, T.; Sorge, M.; Zhang, S.; Bean, T.; McAllister, S.; Canning, J.; Xie, Y.; Edwards, D. Experimental and theoretical investigation of nonconductive additives on the performance of positive lead acid battery plates. J. Power
Sources 2013, 230, 15–24.
(15) Feng, F.; Geng, M.; Northwood, D. O. Electrochemical behaviour of
intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a
review. Int. J. Hydrog. Energy 2001, 26, 725–734.
(16) Cuevas, F.; Joubert, J. M.; Latroche, M.; Percheron-Guegan, A. Intermetallic
compounds as negative electrodes of Ni/MH batteries. Appl. Phys. -Mater. Sci.
Process. 2001, 72, 225–238.
(17) Kleperis, J.; Wojcik, G.; Czerwinski, A.; Skowronski, J.; Kopczyk, M.;
Beltowska-Brzezinska, M. Electrochemical behavior of metal hydrides. J. Solid
State Electrochem. 2001, 5, 229–249.
(18) Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Functional Materials for Rechargeable
Batteries. Adv. Mater. 2011, 23, 1695–1715.
(19) Van den Bossche, P.; Vergels, F.; Van Mierlo, J.; Matheys, J.; Van Autenboer, W.
SUBAT: An assessment of sustainable battery technology. J. Power Sources
2006, 162, 913–919.
(20) Watanabe, N.; Fukuda, M. Primary Cell for Electric Batteries. U.S. Patent
3536532, 1970.
(21) Vissers, D. R.; Tomczuk, Z.; Steunenberg, R. K. A Preliminary Investigation of
High Temperature Lithium/Iron Sulfide Secondary Cells. J. Electrochem. Soc.
1974, 121, 665–667.
(22) Gamble, F. R.; Osiecki, J. H.; Cais, M.; Pisharody, R.; DiSalvo, F. J.; Geballe, T.
H. Intercalation Complexes of Lewis Bases and Layered Sulfides: A Large Class
of New Superconductors. Science 1971, 174, 493–497.
(23) Rao, G. V. S.; Tsang, J. C. Electrolysis method of intercalation of layered
transition metal dichalcogenides. Mater. Res. Bull. 1974, 9, 921–926.
(24) Whittingham, M. S. Electrointercalation in transition-metal disulphides. J. Chem.
Soc. Chem. Commun. 1974, 328–329.
(25) Whittingham, M. S. Electrical Energy Storage and Intercalation Chemistry.
Science 1976, 192, 1126–1127.
(26) Holleck, G. L.; Driscoll, J. R. Transition metal sulfides as cathodes for secondary
lithium batteries—II. titanium sulfides. Electrochim. Acta 1977, 22, 647–655.
(27) Whittingham, M. S.; Chianelli, R. R. Layered compounds and intercalation chemistry: An example of chemistry and diffusion in solids. J. Chem. Educ. 1980, 57, 569.
(28) Thompson, A. H. Electron-Electron Scattering in TiS2. Phys. Rev. Lett. 1975, 35, 1786–1789.
(29) Whittingham, M. S. The Role of Ternary Phases in Cathode Reactions. J. Electrochem. Soc. 1976, 123, 315–320.
(30) Winn, D. A.; Shemilt, J. M.; Steele, B. C. H. Titanium disulphide: A solid solution electrode for sodium and lithium. Mater. Res. Bull. 1976, 11, 559–566.
(31) Whittingham, M. S. Lithium Batteries and Cathode Materials. Chem. Rev. 2004, 104, 4271–4302.
(32) Huggins, R. A. Lithium alloy negative electrodes formed from convertible oxides. Solid State Ionics 1998, 113–115, 57–67.
(33) Ebert, L. B. Intercalation Compounds of Graphite. Annu. Rev. Mater. Sci. 1976, 6, 181–211.
(34) Nagaura, T.; Tozawa, K. Lithium ion rechargeable battery. Prog. Batter. Sol. Cells 1990, 9, 209–217.
(35) Ozawa, K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 1994, 69, 212–221.
(36) Fong, R.; Sacken, U. von; Dahn, J. R. Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells. J. Electrochem. Soc. 1990, 137, 2009–2013.
(37) Yazami, R. Surface chemistry and lithium storage capability of the graphite- lithium electrode. Electrochim. Acta 1999, 45, 87–97.
(38) Kaskhedikar, N. A.; Maier, J. Lithium Storage in Carbon Nanostructures. Adv. Mater. 2009, 21, 2664–2680.
(39) Nishi, Y. The development of lithium ion secondary batteries. Chem. Rec. 2001, 1, 406–413.
(40) Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.
(41) Andersson, B. A.; Råde, I. Metal resource constraints for electric-vehicle batteries. Transp. Res. Part Transp. Environ. 2001, 6, 297–324.
(42) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997, 144, 1188–1194.
(43) Ohzuku, T.; Wakamatsu, H.; Takehara, Z.; Yoshizawa, S. Nonaqueous lithium/pyromellitic dianhydride cell. Electrochim. Acta 1979, 24, 723–726.
(44) Tobishima, S.; Yamaki, J.; Yamaji, A. Cathode Characteristics of Organic Electron Acceptors for Lithium Batteries. J. Electrochem. Soc. 1984, 131, 57–63.
(45) Liang, Y.; Tao, Z.; Chen, J. Organic Electrode Materials for Rechargeable Lithium Batteries. Adv. Energy Mater. 2012, 2, 742–769.
(46) Novák, P.; Müller, K.; Santhanam, K. S. V.; Haas, O. Electrochemically Active Polymers for Rechargeable Batteries. Chem. Rev. 1997, 97, 207–282.
(47) Kakuta, T.; Shirota, Y.; Mikawa, H. A rechargeable battery using electrochemically doped poly(N-vinylcarbazole). J. Chem. Soc. Chem. Commun. 1985, 553–554.
(48) Iwakura, C.; Kawai, T.; Nojima, M.; Yoneyama, H. A New Electrode‐Active Material for Polymer Batteries Polyvinylferrocene. J. Electrochem. Soc. 1987, 134, 791–795.
(49) Williams, D. L.; Byrne, J. J.; Driscoll, J. S. A High Energy Density Lithium/Dichloroisocyanuric Acid Battery System. J. Electrochem. Soc. 1969, 116, 2–4.
(50) Alt, H.; Binder, H.; Köhling, A.; Sandstede, G. Investigation into the use of quinone compounds-for battery cathodes. Electrochim. Acta 1972, 17, 873–887.
(51) Suga, T.; Pu, Y.-J.; Oyaizu, K.; Nishide, H. Electron-Transfer Kinetics of Nitroxide Radicals as an Electrode-Active Material. Bull. Chem. Soc. Jpn. 2004, 77, 2203–2204.
(52) Tebben, L.; Studer, A. Nitroxides: Applications in Synthesis and in Polymer Chemistry. Angew. Chem. Int. Ed. 2011, 50, 5034–5068.
(53) Semmelhack, M. F.; Schmid, C. R.; Cortes, D. A.; Chou, C. S. Oxidation of alcohols to aldehydes with oxygen and cupric ion, mediated by nitrosonium ion. J. Am. Chem. Soc. 1984, 106, 3374–3376.
(54) MacCorquodale, F.; Crayston, J. A.; Walton, J. C.; Worsfold, D. J. Synthesis and electrochemical characterisation of poly(tempoacrylate). Tetrahedron Lett. 1990, 31, 771–774.
(55) Blundell, S. J.; Pratt, F. L. Organic and molecular magnets. J. Phys.-Condens.
Matter 2004, 16, R771–R828.
(56) Yonekuta, Y.; Honda, K.; Nishide, H. A non-volatile, bistable, and rewritable
memory device fabricated with poly(nitroxide radical) and silver salt layers.
Polym. Adv. Technol. 2008, 19, 281–284.
(57) Takahashi, Y.; Hayashi, N.; Oyaizu, K.; Honda, K.; Nishide, H. Totally Organic
Polymer-Based Electrochromic Cell Using TEMPO-Substituted Polynorbornene
as a Counter Electrode-Active Material. Polym. J. 2008, 40, 763–767.
(58) Nakahara, K.; Iwasa, S.; Satoh, M.; Morioka, Y.; Iriyama, J.; Suguro, M.;
Hasegawa, E. Rechargeable batteries with organic radical cathodes. Chem. Phys.
Lett. 2002, 359, 351–354.
(59) Nakahara, K.; Iriyama, J.; Iwasa, S.; Suguro, M.; Satoh, M.; Cairns, E. J. Cell
properties for modified PTMA cathodes of organic radical batteries. J. Power
Sources 2007, 165, 398–402.
(60) Kim, J.-K.; Cheruvally, G.; Choi, J.-W.; Ahn, J.-H.; Lee, S. H.; Choi, D. S.; Song,
C. E. Effect of radical polymer cathode thickness on the electrochemical
performance of organic radical battery. Solid State Ionics 2007, 178, 1546–1551.
(61) Koshika, K.; Sano, N.; Oyaizu, K.; Nishide, H. An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte.
Chem. Commun. 2009, 836–838.
(62) López-Peña, H. A.; Hernández-Muñoz, L. S.; Cardoso, J.; González, F. J.;
González, I.; Frontana, C. Electrochemical and spectroelectrochemical properties of nitroxyl radical species in PTMA, an organic radical polymer. Influence of the microstructure. Electrochem. Commun. 2009, 11, 1369–1372.
(63) Kim, J.-K.; Ahn, J.-H.; Cheruvally, G.; Chauhan, G.; Choi, J.-W.; Kim, D.-S.; Ahn, H.-J.; Lee, S.; Song, C. Electrochemical properties of rechargeable organic radical battery with PTMA cathode. Met. Mater. Int. 2009, 15, 77–82.
(64) Endo, T.; Takuma, K.; Takata, T.; Hirose, C. Synthesis and polymerization of 4- (glycidyloxy)-2,2,6,6-tetramethylpiperidine-1-oxyl. Macromolecules 1993, 26, 3227–3229.
(65) Suguro, M.; Iwasa, S.; Nakahara, K. Effect of Ethylene Oxide Structures in
TEMPO Polymers on High Rate Discharge Properties. Electrochem. Solid-State
Lett. 2009, 12, A194–A197.
(66) Oyaizu, K.; Suga, T.; Yoshimura, K.; Nishide, H. Synthesis and Characterization
of Radical-Bearing Polyethers as an Electrode-Active Material for Organic
Secondary Batteries. Macromolecules 2008, 41, 6646–6652.
(67) Bugnon, L.; Morton, C. J. H.; Novak, P.; Vetter, J.; Nesvadba, P. Synthesis of
Poly(4-methacryloyloxy-TEMPO) via Group-Transfer Polymerization and Its
Evaluation in Organic Radical Battery. Chem. Mater. 2007, 19, 2910–2914.
(68) Koshika, K.; Sano, N.; Oyaizu, K.; Nishide, H. An Aqueous, Electrolyte-Type,
Rechargeable Device Utilizing a Hydrophilic Radical Polymer-Cathode.
Macromol. Chem. Phys. 2009, 210, 1989–1995.
(69) Lee, S. H.; Kim, J.-K.; Cheruvally, G.; Choi, J.-W.; Ahn, J.-H.; Chauhan, G. S.;
Song, C. E. Electrochemical properties of new organic radical materials for
lithium secondary batteries. J. Power Sources 2008, 184, 503–507.
(70) Suga, T.; Ohshiro, H.; Sugita, S.; Oyaizu, K.; Nishide, H. Emerging N-Type
Redox-Active Radical Polymer for a Totally Organic Polymer-Based
Rechargeable Battery. Adv. Mater. 2009, 21, 1627–1630.
(71) Oyaizu, K.; Ando, Y.; Konishi, H.; Nishide, H. Nernstian Adsorbate-like Bulk
Layer of Organic Radical Polymers for High-Density Charge Storage Purposes.
J. Am. Chem. Soc. 2008, 130, 14459–14461.
(72) Suga, T.; Yoshimura, K.; Nishide, H. Nitroxide-Substituted Polyether as a New
Material for Batteries. Macromol. Symp. 2006, 245-246, 416–422.
(73) Volodarskij, L. B.; Ovčarenko, V. I. Synthetic Chemistry of Stable Nitroxides;
CRC Press, 1994.
(74) Kočerginskij, N. M.; Swartz, H. M. Nitroxide Spin Labels: Reactions in Biology
and Chemistry; CRC Press, 1995.
(75) Nishide, H.; Iwasa, S.; Pu, Y.-J.; Suga, T.; Nakahara, K.; Satoh, M. Organic
radical battery: nitroxide polymers as a cathode-active material. Electrochim.
Acta 2004, 50, 827–831.
(76) Candidate, L. D. P.; Li, X.; Xiao, L.; Zhang, Y. Synthesis and electrochemical
properties of polyradical cathode material for lithium second batteries. J. Cent. South Univ. Technol. 2003, 10, 190–194.
(77) Kim, J.-K.; Cheruvally, G.; Ahn, J.-H.; Seo, Y.-G.; Choi, D. S.; Lee, S.-H.; Song, C. E. Organic radical battery with PTMA cathode: Effect of PTMA content on electrochemical properties. J. Ind. Eng. Chem. 2008, 14, 371–376.
(78) Guo, W.; Yin, Y.-X.; Xin, S.; Guo, Y.-G.; Wan, L.-J. Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy Env. Sci 2012.
(79) Kang, K. S. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.
(80) Nakahara, K.; Iriyama, J.; Iwasa, S.; Suguro, M.; Satoh, M.; Cairns, E. J. Al- laminated film packaged organic radical battery for high-power applications. J. Power Sources 2007, 163, 1110–1113.
(81) Satoh, M.; Nakahara, K.; Iriyama, J.; Iwasa, S.; Suguro, M. High power organic radical battery for information systems. Ieice Trans. Electron. 2004, E87C, 2076– 2080.
(82) Komaba, S.; Tanaka, T.; Ozeki, T.; Taki, T.; Watanabe, H.; Tachikawa, H. Fast redox of composite electrode of nitroxide radical polymer and carbon with polyacrylate binder. J. Power Sources 2010, 195, 6212–6217.
(83) Nishide, H.; Koshika, K.; Oyaizu, K. Environmentally benign batteries based on organic radical polymers. Pure Appl. Chem. 2009, 81, 1961–1970.
(84) Saji, T.; Maruyama, Y.; Aoyagui, S. Electrode kinetic parameters for the redox systems Mo(CN)3−8/Mo(CN)4−8, IrCl2−6/IrCl3−6, Fe(phen)23+/Fe(phen)32+ and Fe(C5H5)2+/Fe(C5H5)2. J. Electroanal. Chem. Interfacial Electrochem. 1978, 86, 219–222.
(85) Feeney, R.; Kounaves, S. P. Determination of heterogeneous electron transfer rate constants at microfabricated iridium electrodes. Electrochem. Commun. 1999, 1, 453–458.
(86) Yonekuta, Y.; Oyaizu, K.; Nishide, H. Structural Implication of Oxoammonium Cations for Reversible Organic One-electron Redox Reaction to Nitroxide Radicals. Chem. Lett. 2007, 36, 866–867.
(87) Yoshihara, S.; Isozumi, H.; Kasai, M.; Yonehara, H.; Ando, Y.; Oyaizu, K.; Nishide, H. Improving Charge/Discharge Properties of Radical Polymer Electrodes Influenced Strongly by Current Collector/Carbon Fiber Interface. J. Phys. Chem. B 2010, 114, 8335–8340.
(88) Nakahara, K.; Iriyama, J.; Iwasa, S.; Suguro, M.; Satoh, M.; Cairns, E. J. High-
rate capable organic radical cathodes for lithium rechargeable batteries. J. Power
Sources 2007, 165, 870–873.
(89) Choi, W.; Ohtani, S.; Oyaizu, K.; Nishide, H.; Geckeler, K. E. Radical Polymer-
Wrapped SWNTs at a Molecular Level: High-Rate Redox Mediation Through a Percolation Network for a Transparent Charge-Storage Material. Adv. Mater. 2011, 23, 4440–4443.
(90) Hung, M.-K. Synthesis and electrochemical characteristics of nitroxide polymer brushes for thin-film electrodes, National Sun Yat-sen University: Taiwan, 2012.
(91) Suga, T.; Konishi, H.; Nishide, H. Photocrosslinked nitroxide polymer cathode- active materials for application in an organic-based paper battery. Chem. Commun. 2007, 1730–1732.
(92) Kim, Y.; Jo, C.; Lee, J.; Lee, C. W.; Yoon, S. An ordered nanocomposite of organic radical polymer and mesocellular carbon foam as cathode material in lithium ion batteries. J. Mater. Chem. 2012, 22, 1453–1458.
(93) Qu, J.; Khan, F. Z.; Satoh, M.; Wada, J.; Hayashi, H.; Mizoguchi, K.; Masuda, T. Synthesis and charge/discharge properties of cellulose derivatives carrying free radicals. Polymer 2008, 49, 1490–1496.
(94) Qu, J.; Morita, R.; Satoh, M.; Wada, J.; Terakura, F.; Mizoguchi, K.; Ogata, N.; Masuda, T. Synthesis and Properties of DNA Complexes Containing 2,2,6,6- Tetramethyl-1-piperidinoxy (TEMPO) Moieties as Organic Radical Battery Materials. Chem. - Eur. J. 2008, 14, 3250–3259.
(95) Suguro, M.; Mori, A.; Iwasa, S.; Nakahara, K.; Nakano, K. Syntheses and Electrochemical Properties of TEMPO Radical Substituted Silicones: Active Material for Organic Radical Batteries. Macromol. Chem. Phys. 2009, 210, 1402– 1407.
(96) Dai, Y.; Zhang, Y.; Gao, L.; Xu, G.; Xie, J. Electrochemical Performance of Organic Radical Cathode with Ionic Liquid Based Electrolyte. J. Electrochem. Soc. 2011, 158, A291.
(97) Wang, Y.-H.; Hung, M.-K.; Lin, C.-H.; Lin, H.-C.; Lee, J.-T. Patterned nitroxide polymer brushes for thin-film cathodes in organic radical batteries. Chem. Commun. 2011, 47, 1249–1251.
(98) Hung, M.-K.; Wang, Y.-H.; Lin, C.-H.; Lin, H.-C.; Lee, J.-T. Synthesis and
electrochemical behaviour of nitroxide polymer brush thin-film electrodes for
organic radical batteries. J. Mater. Chem. 2011, 22, 1570–1577.
(99) Lin, H.-C.; Li, C.-C.; Lee, J.-T. Nitroxide polymer brushes grafted onto silica
nanoparticles as cathodes for organic radical batteries. J. Power Sources 2011,
196, 8098–8103.
(100) Suguro, M.; Iwasa, S.; Kusachi, Y.; Morioka, Y.; Nakahara, K. Cationic
Polymerization of Poly(vinyl ether) Bearing a TEMPO Radical: A New Cathode- Active Material for Organic Radical Batteries. Macromol. Rapid Commun. 2007, 28, 1929–1933.
(101) Suguro, M.; Iwasa, S.; Nakahara, K. Fabrication of a Practical and Polymer-Rich Organic Radical Polymer Electrode and its Rate Dependence. Macromol. Rapid Commun. 2008, 29, 1635–1639.
(102) Oyaizu, K.; Kawamoto, T.; Suga, T.; Nishide, H. Synthesis and Charge Transport Properties of Redox-Active Nitroxide Polyethers with Large Site Density. Macromolecules 2010, 43, 10382–10389.
(103) Nesvadba, P.; Bugnon, L.; Maire, P.; Novák, P. Synthesis of A Novel Spirobisnitroxide Polymer and its Evaluation in an Organic Radical Battery. Chem. Mater. 2010, 22, 783–788.
(104) Suga, T.; Sugita, S.; Ohshiro, H.; Oyaizu, K.; Nishide, H. p- and n-Type Bipolar Redox-Active Radical Polymer: Toward Totally Organic Polymer-Based Rechargeable Devices with Variable Configuration. Adv. Mater. 2011, 23, 751– 754.
(105) Katsumata, T.; Satoh, M.; Wada, J.; Shiotsuki, M.; Sanda, F.; Masuda, T. Polyacetylene and Polynorbornene Derivatives Carrying TEMPO. Synthesis and Properties as Organic Radical Battery Materials. Macromol. Rapid Commun. 2006, 27, 1206–1211.
(106) Qu, J.; Katsumata, T.; Satoh, M.; Wada, J.; Igarashi, J.; Mizoguchi, K.; Masuda, T. Synthesis and Charge/Discharge Properties of Polyacetylenes Carrying 2,2,6,6- Tetramethyl-1-piperidinoxy Radicals. Chem. - Eur. J. 2007, 13, 7965–7973.
(107) Koshika, K.; Chikushi, N.; Sano, N.; Oyaizu, K.; Nishide, H. A TEMPO-substituted polyacrylamide as a new cathode material: an organic rechargeable device composed of polymer electrodes and aqueous electrolyte. Green Chem. 2010, 12, 1573.
(108) Suga, T.; Pu, Y.-J.; Kasatori, S.; Nishide, H. Cathode- and Anode-Active Poly(nitroxylstyrene)s for Rechargeable Batteries: p- and n-Type Redox Switching via Substituent Effects. Macromolecules 2007, 40, 3167–3173.
(109) Qu, J.; Katsumata, T.; Satoh, M.; Wada, J.; Masuda, T. Synthesis and Properties of Polyacetylene and Polynorbornene Derivatives Carrying 2,2,5,5-Tetramethyl- 1-pyrrolidinyloxy Moieties. Macromolecules 2007, 40, 3136–3144.
(110) NEC Develops Ultra-thin Organic Radical Battery Compatible with IC Cards http://www.nec.com/en/press/201203/global_20120305_04.html (accessed Jun 14, 2013).
(111) Nakahara, K.; Oyaizu, K.; Nishide, H. Organic Radical Battery Approaching Practical Use. Chem. Lett. 2011, 40, 222–227.
(112) Borbat, P. P.; Costa-Filho, A. J.; Earle, K. A.; Moscicki, J. K.; Freed, J. H. Electron Spin Resonance in Studies of Membranes and Proteins. Science 2001, 291, 266 –269.
(113) Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 1993, 26, 2987–2988.
(114) Braunecker, W. A.; Matyjaszewski, K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32, 93–146.
(115) Blundell ,S. J.; Pratt, F. L. Organic and molecular magnets. J. Phys. Condens. Matter 2004, 16, R771–R828.
(116) Likhtenshtein, G. I.; Yamauchi, J.; Nakatsuji, S.; Smirnov, A. I.; Tamura, R. Molecular Magnetism. In Nitroxides: Applications in Chemistry, Biomedicine, and Materials Science; Wiley-VCH Verlag GmbH & Co. KGaA, 2008; pp. 47– 69.
(117) Semmelhack, M. F.; Schmid, C. R.; Cortes, D. A.; Chou, C. S. Oxidation of alcohols to aldehydes with oxygen and cupric ion, mediated by nitrosonium ion. J. Am. Chem. Soc. 1984, 106, 3374–3376.
(118) Oyaizu, K.; Nishide, H. Radical Polymers for Organic Electronic Devices: A
Radical Departure from Conjugated Polymers? Adv. Mater. 2009, 21, 2339–2344.
(119) Katsumata, T.; Satoh, M.; Wada, J.; Shiotsuki, M.; Sanda, F.; Masuda, T.
Polyacetylene and Polynorbornene Derivatives Carrying TEMPO. Synthesis and Properties as Organic Radical Battery Materials. Macromol. Rapid Commun. 2006, 27, 1206–1211.
(120) Katsumata, T.; Qu, J.; Shiotsuki, M.; Satoh, M.; Wada, J.; Igarashi, J.; Mizoguchi, K.; Masuda, T. Synthesis, Characterization, and Charge/Discharge Properties of Polynorbornenes Carrying 2,2,6,6-Tetramethylpiperidine-1-oxy Radicals at High Density. Macromolecules 2008, 41, 1175–1183.
(121) Qu, J.; Katsumata, T.; Satoh, M.; Wada, J.; Masuda, T. Poly(7-oxanorbornenes) carrying 2,2,6,6-tetramethylpiperidine-1-oxy (TEMPO) radicals: Synthesis and charge/discharge properties. Polymer 2009, 50, 391–396.
(122) Matyjaszewski, K.; Xia, J. Atom Transfer Radical Polymerization. Chem. Rev. 2001, 101, 2921–2990.
(123) Coessens, V.; Pintauer, T.; Matyjaszewski, K. Functional polymers by atom transfer radical polymerization. Prog. Polym. Sci. 2001, 26, 337–377.
(124) Xia, J.; Zhang, X.; Matyjaszewski, K. Atom Transfer Radical Polymerization of 4-Vinylpyridine. Macromolecules 1999, 32, 3531–3533.
(125) Zeng, F.; Shen, Y.; Zhu, S. Atom-Transfer Radical Polymerization of 2-(N,N- Dimethylamino)ethyl Acrylate. Macromol. Rapid Commun. 2002, 23, 1113–1117.
(126) Xia, J.; Matyjaszewski, K. Controlled/“Living” Radical Polymerization. Atom Transfer Radical Polymerization Using Multidentate Amine Ligands. Macromolecules 1997, 30, 7697–7700.
(127) Lin, C.-H.; Chou, W.-J.; Lee, J.-T. Three-Dimensionally Ordered Macroporous Nitroxide Polymer Brush Electrodes Prepared by Surface-Initiated Atom Transfer Polymerization for Organic Radical Batteries. Macromol. Rapid Commun. 2012, 33, 107–113.
(128) Aggarwal, V. K. ; Gultekin, Z.; Grainger, R. S. ; Adams, H.; Spargo, P. L. (1R,3R)-2-Methylene-1,3-dithiolane 1,3-dioxide: a highly reactive and highly selective chiral ketene equivalent in cycloaddition reactions with a broad range of dienes. J. Chem. Soc.-Perkin Trans. 1 1998, 2771–2782.
(129) Balamurugan, S. S.; Bantchev, G. B.; Yang, Y.; McCarley, R. L. Highly Water-Soluble Thermally Responsive Poly(thiophene)-Based Brushes. Angew. Chem. Int. Ed. 2005, 44, 4872–4876.
(130) Wang, M.; Zou, S.; Guerin, G.; Shen, L.; Deng, K.; Jones, M.; Walker, G. C.; Scholes, G. D.; Winnik, M. A. A Water-Soluble pH-Responsive Molecular Brush of Poly(N,N-dimethylaminoethyl methacrylate) Grafted Polythiophene. Macromolecules 2008, 41, 6993–7002.
(131) An, X.; Simmons, T.; Shah, R.; Wolfe, C.; Lewis, K. M.; Washington, M.; Nayak, S. K.; Talapatra, S.; Kar, S. Stable Aqueous Dispersions of Noncovalently Functionalized Graphene from Graphite and their Multifunctional High- Performance Applications. Nano Lett. 2010, 10, 4295–4301.
(132) Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339.
(133) Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved Synthesis of Graphene Oxide. Acs Nano 2010, 4, 4806–4814.
(134) Dubin, S.; Gilje, S.; Wang, K.; Tung, V. C.; Cha, K.; Hall, A. S.; Farrar, J.; Varshneya, R.; Yang, Y.; Kaner, R. B. A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents. Acs Nano 2010, 4, 3845–3852.
(135) Pham, V. H.; Cuong, T. V.; Hur, S. H.; Oh, E.; Kim, E. J.; Shin, E. W.; Chung, J. S. Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone. J. Mater. Chem. 2011, 21, 3371–3377.
(136) McAllister, M. J.; Li, J.-L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’homme, R. K.; Aksay, I. A. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chem. Mater. 2007, 19, 4396–4404.
(137) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558– 1565.
(138) Su, C.-Y.; Xu, Y.; Zhang, W.; Zhao, J.; Tang, X.; Tsai, C.-H.; Li, L.-J. Electrical and Spectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers. Chem. Mater. 2009, 21, 5674–5680.
(139) Tuinestra, F.; Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130.
(140) Li, H.; Zou, Y.; Xia, Y. A study of nitroxide polyradical/activated carbon
composite as the positive electrode material for electrochemical hybrid capacitor.
Electrochim. Acta 2007, 52, 2153–2157.
(141) Nishide, H.; Suga, T. Organic Radical Battery. Electrochem. Soc. Interface 2005,
14, 32–35.
(142) Kim, J.-K.; Cheruvally, G.; Ahn, J.-H.; Seo, Y.-G.; Choi, D. S.; Lee, S.-H.; Song,
C. E. Organic radical battery with PTMA cathode: Effect of PTMA content on
electrochemical properties. J. Ind. Eng. Chem. 2008, 14, 371–376.
(143) Kastner, J.; Pichler, T.; Kuzmany, H.; Curran, S.; Blau, W.; Weldon, D. N.;
Delamesiere, M.; Draper, S.; Zandbergen, H. Resonance Raman and infrared
spectroscopy of carbon nanotubes. Chem. Phys. Lett. 1994, 221, 53–58.
(144) Nishide, H.; Oyaizu, K. Toward Flexible Batteries. Science 2008, 319, 737 –738.
(145) Ibe, T.; Frings, R. B.; Lachowicz, A.; Kyo, S.; Nishide, H. Nitroxide polymer
networks formed by Michael addition: on site-cured electrode-active organic
coating. Chem. Commun. 2010, 46, 3475–3477.
(146) López, C. Materials Aspects of Photonic Crystals. Adv. Mater. 2003, 15, 1679-1704.
(147) Cassagneau, T.; Caruso, F. Inverse Opals for Optical Affinity Biosensing. Adv. Mater. 2002, 14, 1629–1633.
(148) Cassagneau, T.; Caruso, F. Conjugated Polymer Inverse Opals for Potentiometric Biosensing. Adv. Mater. 2002, 14, 1837–1841.
(149) Cassagneau, T.; Caruso, F. Semiconducting Polymer Inverse Opals Prepared by Electropolymerization. Adv. Mater. 2002, 14, 34–38.
(150) Sakamoto, J. S.; Dunn, B. Hierarchical battery electrodes based on inverted opal structures. J. Mater. Chem. 2002, 12, 2859–2861.
(151) Ergang, N. S.; Lytle, J. C.; Lee, K. T.; Oh, S. M.; Smyrl, W. H.; Stein, A.
Photonic Crystal Structures as a Basis for a Three-Dimensionally Interpenetrating Electrochemical-Cell System. Adv. Mater. 2006, 18, 1750–1753.
(152) Esmanski, A.; Ozin, G. A. Silicon Inverse-Opal-Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries. Adv. Funct. Mater. 2009, 19, 1999–2010.
(153) Bing, Z.; Yuan, Y.; Wang, Y.; Fu, Z.-W. Electrochemical Characterization of a Three Dimensionally Ordered Macroporous Anatase TiO2 Electrode. Electrochem. Solid-State Lett. 2006, 9, A101–A104.
(154) Wang, Z.; Ergang, N. S.; Al-Daous, M. A.; Stein, A. Synthesis and Characterization of Three-Dimensionally Ordered Macroporous Carbon/Titania Nanoparticle Composites. Chem. Mater. 2005, 17, 6805–6813.
(155) Li, S.; Zheng, J.; Yang, W.; Zhao, Y. Preparation of Three-dimensionally Ordered Macroporous Oxides by Combining Templating Method with Sol–Gel Technique. Chem. Lett. 2007, 36, 542–543.
(156) Orilall, M. C.; Abrams, N. M.; Lee, J.; DiSalvo, F. J.; Wiesner, U. Highly Crystalline Inverse Opal Transition Metal Oxides via a Combined Assembly of Soft and Hard Chemistries. J. Am. Chem. Soc. 2008, 130, 8882–8883.
(157) Li, L.; Steiner, U.; Mahajan, S. Improved electrochromic performance in inverse opal vanadium oxide films. J. Mater. Chem. 2010, 20, 7131–7134.
(158) Zhang, H.; Yu, X.; Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277–281.
(159) Naji, A.; Cretin, M.; Persin, M.; Sarrazin, J. Electrical characterization of the ionic interactions in N-[3-(dimethylpyridyl-2-yl) aminopropyl] polypyrrole and N-(3-aminopropyl) polypyrrole membranes. J. Membr. Sci. 2003, 212, 1–11.
(160) Mulvihill, M. J.; Rupert, B. L.; He, R.; Hochbaum, A.; Arnold, J.; Yang, P. Synthesis of Bifunctional Polymer Nanotubes from Silicon Nanowire Templates via Atom Transfer Radical Polymerization. J. Am. Chem. Soc. 2005, 127, 16040– 16041.
(161) Jiang, P.; Bertone, J. F.; Hwang, K. S.; Colvin, V. L. Single-Crystal Colloidal Multilayers of Controlled Thickness. Chem. Mater. 1999, 11, 2132–2140.
(162) Yu, X.; Lee, Y.-J.; Furstenberg, R.; White, J. O.; Braun, P. V. Filling Fraction Dependent Properties of Inverse Opal Metallic Photonic Crystals. Adv. Mater. 2007, 19, 1689–1692.
(163) Poirier, G. E.; Pylant, E. D. The Self-Assembly Mechanism of Alkanethiols on Au(111). Science 1996, 272, 1145–1148.
(164) Qu, L.; Shi, G. Hollow microstructures of polypyrrole doped by poly(styrene
sulfonic acid). J. Polym. Sci. Part A Polym. Chem. 2004, 42, 3170–3177.
(165) Kim, D. Y.; Lee, J. Y.; Kim, C. Y.; Kang, E. T.; Tan, K. L. Difference in doping behavior between polypyrrole films and powders. Synth. Met. 1995, 72, 243–248.
(166) Vanýsek, P. Electrochemical Series. In CRC Handbook of Chemistry and Physics; Lide, D. R., Ed.; CRC Press: Boca Raton, FL, 2006; Vol. 87, pp. 8–20.
(167) Chen-Yang, Y. W.; Li, J. L.; Wu, T. L.; Wang, W. S.; Hon, T. F. Electropolymerization and electrochemical properties of (N-hydroxyalkyl)pyrrole/pyrrole copolymers. Electrochim. Acta 2004, 49, 2031–2040.
(168) Diaz, A. F.; Castillo, J.; Kanazawa, K. K.; Logan, J. A.; Salmon, M.; Fajardo, O.
Conducting poly-N-alkylpyrrole polymer films. J. Electroanal. Chem. Interfacial
Electrochem. 1982, 133, 233–239.
(169) Goel, S.; Mazumdar, N. A.; Gupta, A. Synthesis and characterization of
polypyrrole nanofibers with different dopants. Polym. Adv. Technol. 2010, 21,
205–210.
(170) Janoschka, T.; Hager, M. D.; Schubert, U. S. Powering up the Future: Radical Polymers for Battery Applications. Adv. Mater. 2012, 24, 6397–6409.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code