Responsive image
博碩士論文 etd-0629113-133204 詳細資訊
Title page for etd-0629113-133204
論文名稱
Title
新穎矽薄膜太陽能電池之最佳化設計
Optimized Design of Novel Silicon Thin Film Solar Cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-18
繳交日期
Date of Submission
2013-07-30
關鍵字
Keywords
微晶矽、單接面、轉換效率、薄膜太陽能電池、非晶矽
Conversion Efficiency, Microcrystalline Silicon, Amorphous Silicon, Single Junction, Thin Film Solar Cell
統計
Statistics
本論文已被瀏覽 5698 次,被下載 1032
The thesis/dissertation has been browsed 5698 times, has been downloaded 1032 times.
中文摘要
在此研究中,我們結合了非晶矽材料及微晶矽材料的優點,提出了一個新穎的單接面薄膜太陽能電池架構 「 ITO / p-a-Si:H / i1-a-Si:H / i2-μc-Si:H / n-μc-Si:H / ITO 」。其中i1-a-Si:H層為非晶矽材料,因其移動率能隙較大的緣故,可提升整體的開路電壓;而i2-μc-Si:H層為微晶矽材料,可以吸收太陽光較長部分的波長,以增加電子電洞對的產生,增進短路電流密度,進而提升太陽能電池的轉換效率。此新穎單接面薄膜太陽能電池架構之模擬結果,相較於傳統的單接面矽薄膜太陽能電池可提高8.8 %到19.5 %的轉換效率。另外,為了因應低成本、高效能太陽能電池的發展趨勢,我們提出了一個新穎的薄膜太陽能電池製程方式,於相同的時間內,同時兩面沉積矽薄膜太陽能電池,自然形成一背對背類並聯型的矽薄膜太陽能電池。經過模擬後顯示,類並聯的非晶矽薄膜太陽能電池相較於傳統的非晶矽薄膜太陽能電池可提高約39.8 %的轉換效率,而類並聯的微晶矽薄膜太陽能電池相較於傳統的微矽薄膜太陽能電池也可提高約16 % 的轉換效率。經過實際製程驗證後,類並聯的非晶矽薄膜太陽能電池相較於傳統的非晶矽薄膜pin太陽能電池,可提高25.6 %到31.5 %的轉換效率。
Abstract
In this work, combining the advantages of amorphous silicon and microcrystalline silicon, we propose a new structure of solar cell “ ITO / p-a-Si:H / i1-a-Si:H / i2-μc-Si:H / n-μc-Si:H / ITO ”. The i1-a-Si:H can make the open circuit voltage much higher due to the high mobility bandgap. The i2-μc-Si:H can get more effectively absorb of sunlight, so the novel p-i1-i2-n solar cell can get higher short circuit current density. The simulation results indicate the conversion efficiency is higher than that of the conventional silicon solar cell at least 8.8 % to 19.5 %. In order to obtain low-cost and high-performance solar cell, a novel thin film solar cell fabrication has been developed. In this way, the deposition of silicon thin film solar cells on both sides of the substrate is performed at the same time, forming a back-to-back parallel-type silicon thin film solar cell naturally. The simulation results indicate the conversion efficiency of the back-to-back parallel-type amorphous silicon thin film solar cell is higher than that of the conventional amorphous silicon thin film solar cell at least 39 %. And the conversion efficiency of the back-to-back parallel-type microcrystalline silicon thin film solar cell is higher than that of the conventional microcrystalline silicon thin film solar cell at least 16 %. The fabrication results also indicate the conversion efficiency is higher than that of the conventional pin amorphous silicon solar cell at least 25.6 % to 31.5 %.
目次 Table of Contents
第一章、導論 1
1.1. 背景 1
1.2. 矽薄膜太陽能電池 2
1.3. 矽太陽能電池製程趨勢 5
1.4. 動機 8
第二章、模擬結果與討論 10
2.1. 新穎單接面矽薄膜太陽能電池模擬 10
2.1.1. 模擬之物理模型與參數 10
2.1.2. 模擬之最佳化 15
2.1.3. 與傳統單接面矽薄膜太陽能電池之模擬比較 21
2.2. 新穎類並聯矽薄膜太陽能模擬 32
2.2.1. 模擬之物理模型與參數 32
2.2.2. 模擬之最佳化 38
2.2.3. 與傳統矽薄膜太陽能電池之比較 41
2.2.4. 類並聯矽薄膜太陽能電池單雙面照光之比較 43
第三章、製程結果與討論 49
3.1. 新穎單接面矽薄膜太陽能製程 49
3.1.1. 製程與光罩設計 49
3.1.2. 製程結果與討論 53
3.2. 新穎類並聯薄膜太陽能製程 55
3.2.1. 製程與光罩設計 55
3.2.2. 製程結果與討論 59
第四章、結論與未來展望 66
4.1. 結論 66
4.2. 未來展望 67
參考文獻 68
附錄 73
A. 太陽能電池基本原理與矽薄膜太陽能電池的物理機制 73
A-1. 太陽能電池基本原理 73
A-2. 矽薄膜太陽能電池物理機制 77
B. 個人獲獎 79
B-1. 新穎單接面薄膜太陽能電池模擬 79
B-2. 新穎薄膜太陽能電池製程研究 80
參考文獻 References
[1] M. Zeman, J. Breza, and D. Donoval, “New Trends in Thin-Film Silicon Solar Cell Technology,” in Proc. IEEE Adv. Semicond. Devices Microsystems, 2002, pp. 353-362.
[2] A. Shah, J. Meier, A. Buechel, U. Kroll, J. Steinhauser, F. Meillaud, H. Schade, and D. Domine, “Towards Very Low-Cost Mass Production of Thin-Film Silicon Photovoltaic ( PV ) Solar Modules on Glass,” Thin Solid Film, vol. 502, no. 1-2, pp. 292-299, 2006.
[3] M. Konagai, “National Program: Thin Film Solar Cells Program in Japan - Achievements and Challenges,” in Proc. IEEE 29th Photovoltaic Spec. Conf., 2002, pp. 38-43.
[4] X. Zhang and X. Xiao, “Recent Progress of Cu ( InGa ) Se2 Solar Cells,” in Proc. IEEE Asia Commun. Photonics Conf. Exhib., 2010, pp. 1-10.
[5] P. Reinhard, A. Chirila, P. Blosch, F. Pianezzi, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Review of Progress toward 20% Efficiency Flexible CIGS Solar Cells and Manufacturing Issues of Solar Modules,” IEEE J. Photovoltaics, vol. 3, no. 1, pp. 572-580, 2013.
[6] Y. Uchida, T. Ichimura, M. Ueno, and H. Haruki, “Microcrystalline Si:H Film and Its Application to Solar Cell,” Jpn. J. Appl. Phys. Part 2 – Lett., vol. 21, no. 9, pp. 586-588, 1982.
[7] M. Kolter, C. Beneking, D. Pavlov, T. Eickhoff, P. Hapke, S. Frohnhoff, H. Munder, and H. Wagner, “Highly Conductive Microcrystalline n-layers for Amorphous Silicon Stacked Solar Cells: Preparation, Properties and Device Application,” in Proc. IEEE 23th Photovoltaic Spec. Conf., 1993, pp. 1031-1036.
[8] J. Carabe and J. J. Gandia, “Thin-Film-Silicon Solar Cells,” Opto-Electron. Rev., vol. 12, no. 1, pp. 1-6, 2004.
[9] G. Munyeme, M. Zeman, R. E. I. Schropp, and W. F. Vander Weg, “Performance Analysis of a-Si:H p-i-n Solar Cells with and without a Buffer Layer at the p / i Interface,” Phys. Status Solidi C, vol. 86, no. 9, pp. 2298-2303, 2004.
[10] G. P. Smestad, F. C. Krebs, C. M. Lampert, C. G. Granqvist, K. L. Chopra, X. Mathew, and H. Takakura, “Reporting Solar Cell Efficiencies in Solar Energy Materials and Solar Cells,” Sol. Energy Mater. Sol. Cells, vol. 92, no. 4, pp. 371-373, 2008.
[11] J. Kim, A. I. Abou-Kandil, A. J. Hong, M. M. Saad, D. K. Sadana, and T. C. Chen, “Efficiency Enhancement of a-Si:H Single Junction Solar Cells by a-Ge:H Incorporation at the p+ a-SiC:H / Transparent Conducting Oxide Interface,” IEEE Appl. Phys. Lett., vol. 99, no. 6, pp. 062102-062102-3, 2011.
[12] M. H. Cohen, H. Fritzsch, and S. Ovshinsk, “Simple Band Model for Amorphous Semiconducting Alloys,” Phys. Rev. Lett., vol. 22, No. 20, pp. 1065-1068, 1969.
[13] M. Zeman, “Thin-Film Silicon PV Technology,” J. Electr. Eng. Educ., vol. 61, no. 5, pp. 271-276, 2010.
[14] S. O. Kasap, Materials and Devices Website for Scientists and Engineers, Third Edition, McGraw-Hill, 1996.
[15] J. A. Rodriquez, P. Otero, M. Vetter, J. Andreu, E. Comesana, and A. J. Garcia, “Simulation of the effect of p-layer properties on the electrical behavior of a-Si:H thin film solar cell,” in Proc. IEEE Span. Conf. Electron Devices, 2011, pp. 1-4.
[16] C. M. Fortmann, T. Zhou, C. Malone, M. Gunes, and C. R. Wronski, “Deposition Conditions, Hydrogen Content, and the Staebler-Wronski Effect in Amorphous-Silicon,” in Proc. IEEE 21th Photovoltaic Spec. Conf. - 1990, 1990, pp. 1648-1652.
[17] M. H. Du and S. B. Zhang, “Topological Defects and the Staebler-Wronski Effect in Hydrogenated Amorphous Silicon,” IEEE Appl. Phys. Lett., vol. 87, no. 19, pp. 191903-191903-3, 2005.
[18] P. Stradins, “Staebler-Wronski Defects: Creation Efficiency, Stability, and Effect on a-Si:H Solar Cell Degradation,” in Proc. IEEE 35th Photovoltaic Spec. Conf., 2010, pp. 142-145.
[19] A. Kolodziej, “Staebler-Wronski Effect in Amorphous Silicon and its Alloys,” Opto-electron. Rev., vol. 12, no. 1, pp. 21-32, 2004.
[20] N. Senoussaoui, T. Repmann, T. Brammer, H. Stiebig, and H. Wagner, “Optical Properties of Microcrystalline Thin Film Solar Cells,” Rev. Energ. Ren., vol. 3, no. 1, pp. 49-56, 2000.
[21] A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic Technology: The Case for Thin-Film Solar Cells,” Science, vol. 285, no. 5428, pp. 692-698, 1999.
[22] F. Meillaud, E. Vallat-Sauvain, X. Niquille, M. Dubey, J. Bailat, A. Shah, and C. Ballif, “Light-Induced Degradation of Thin Film Amorphous and Microcrystalline Silicon Solar Cells,” in Proc. IEEE 31th Photovoltaic Spec. Conf., 2005, pp. 1412-1415.
[23] J. Meier, Thin-Film Silicon Solar Cell Technology: Current and Near Future, Oerlikon Solar – Constantine, 2008.
[24] T. Soderstrom, F. J. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Flexible Micromorph Tandem a-Si / μc-Si Solar Cells,” IEEE J. Appl. Phys., vol. 107, no. 1, pp. 014507-014507-7, 2010.
[25] H. Keppner, J. Meier, P. Torres, D. Fischer, and A. Shah, “Microcrystalline Silicon and Micromorph Tandem Solar Cells,” Appl. Phys. A, vol. 69, no. 2, pp. 169-177, 1999.
[26] M. Kambe, T. Matsui, H. Sai, N. Taneda, K. Masumo, A. Takahashi, T. Ikeda, T. Oyama, M. Kondo, and K. Sato, “Improved Light-Trapping Effect in a-Si:H / μc-Si:H Tandem Solar Cells by Using High Haze SnO2:F Thin Films,” in Proc. IEEE 34th Photovoltaic Spec. Conf., 2009, pp. 1891-1894.
[27] Y. Aya, H. Katayama, M. Matsumoto, M. Hishida, W. Shinohara, I. Yoshida, A. Kitahara, H. Yoneda, A. Terakawa, and M. Iseki, “Progress in the Development of High-Conversion-Efficiency a-Si / μc-Si Tandem Solar Module Using μc-Si Thin Film with High Deposition Rate on Gen. 5.5 Large-Area Glass Substrate,” in Proc. IEEE 37th Photovoltaic Spec. Conf., 2011, pp. 003577-003582.
[28] C. W. Chang, C. I. Wu, K. H. Chuang, C. H. Chang, K. C. Lin, and C. Y. Tsai, “Innovative Passivation for Reducing Degradation of a-Si / uc-Si Tandem Photovaltaic Module,” in Proc. IEEE 37th Photovoltaic Spec. Conf., 2011, pp. 002991-002994.
[29] M. Matsumoto, Y. Aya, A. Kuroda, H. Katayama, T. Kunii, K. Murata, M. Hishida, W. Shinohara, I. Yoshida, A. Kitahara, H. Yoneda, A. Terakawa, M. Iseki, and M. Tanaka, “The Development of High-Rate Deposition Technology for Microcrystalline Silicon for High-Efficiency a-Si / μc-Si Tandem Solar Module,” IEEE J. Photovolt., vol. 3, no. 1, pp. 35-40, 2013.
[30] M. Vukadinovic, F. Smole, M. Topic, R. E. I. Schropp, and F. A. Rubinelli, “Transport in Tunneling Recombination Junctions: A Combined Computer Simulation Study,” IEEE J. Appl. Phys., vol. 96, no. 12, pp. 7289-7299, 2004.
[31] H. Kuraseko, T. Nakamura, S. Toda, H. Koaizawa, H. Jia, and M. Kondo, “Development of Flexible Fiber-Type Poly-Si Solar Cell,” in Proc. IEEE World Conf. Photovoltaic Energy Conversion, 2006, pp. 1380-1383.
[32] W. J. Xu, S. Choi, and M. G. Allen, “Hairlike Carbon-Fiber-Based Solar Cell,” in Proc. IEEE Micro Electro Mech. Syst., 2010, pp. 1187-1190.
[33] S. T. Chang, M. Tang, C. X. Huang, and C. W. Chang, “Tandem Thin Film Solar Cell with a Nanoplate Structure,” in Proc. IEEE Nanotechnology, 2010, pp. 316-319.
[34] Atlas User's Manual : Device Simulation Software, Silvaco International Inc., Santa Clara, CA, USA, 2010.
[35] S. Hamma and P. I. Roca i Cabarrocas, “Determination of the Mobility Gap of Microcrystalline Silicon and of the Band Discontinuities at the Amorphous Microcrystalline Silicon Interface Using in Situ Kelvin Probe Technique,” IEEE Appl. Phys. Lett., vol. 74, no. 21, pp. 3218-3220, 1999.
[36] Y. Poissant, P. Chatterjee, and P. R. I. Cabarrocas, “Analysis and Optimization of the Performance of Polymorphous Silicon Solar Cells: Experimental Characterization and Computer Modeling,” IEEE J. Appl. Phys., vol. 94, no. 11, pp. 7305-7316, 2003.
[37] M. Nath, P. R. I. Cabarrocas, E. V. Johnson, A. Abramov, and P. Chatterjee, “The Open-Circuit Voltage in Microcrystalline Silicon Solar Cells of Different Degrees of Crystallinity,” Thin Solid Films, vol. 516, no. 20, pp. 6974-6978, 2008.
[38] A. J. Letha and H. L. Hwang, “Two-Dimensional Modelling and Simulation of Hydrogenated Amorphous Silicon P(+)-N-N(+) Solar Cell,” J. Non-Cryst. Solids, vol. 355, no. 2, pp. 148-153, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code