Responsive image
博碩士論文 etd-0629113-172653 詳細資訊
Title page for etd-0629113-172653
論文名稱
Title
非共線天線接受訊號的四階相關係數
Fourth-Order Spatial Correlation-Coefficient Across the Uplink Receiver’s Spatial Aperture for Non-Collinear Antennas
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
41
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-08
繳交日期
Date of Submission
2013-07-29
關鍵字
Keywords
非齊次卜瓦松點過程、空間相關、散射通道、多途徑通道、幾何模型
Nonhomogeneous Poisson point process, Spatial correlation, Scatter channels, Multipath channels, Geometric model
統計
Statistics
本論文已被瀏覽 5744 次,被下載 0
The thesis/dissertation has been browsed 5744 times, has been downloaded 0 times.
中文摘要
本文主要在於推導出一個接收傳感器陣列光圈的上行接收信號的四階空間相關係數函數。
這個推導在數學上是嚴謹的且建構在移動發射器、基地接收天線和散射體通道的理想幾何關係。散射體的空間位置是建模於二維空間的卜瓦松分佈,受高斯強度影響。假定傳感器被定位在任意四個位置上。最後的公式為封閉的形式,僅與少數參數相關。研究結果為Wang, Guo, Wong 和Piterbarg (2012) 傳感器位於直線上的延伸。
Abstract
This paper derives the uplink received signal’s fourth-order spatial-correlation coefficient function across a receiving sensor-array’s aperture. This derivation is mathematically rigorous and is based on idealized geometric relationships among the mobile transmitter, the basestation’s receiving antennas, and the scatterers of the channel. The scatterers’ spatial locations are modeled as Poisson distributed, with a Gaussian intensity over a two-dimensional space. Sensors are assumed to locate on the four arbitrary locations. The final formula is in closed form, explicit in terms of the simple geometric model’s few independent parameters. The results extend the collinear sensor case ofWang, Guo,Wong and Piterbarg (2012).
目次 Table of Contents
Contents
論文審定書 i
誌謝 ii
摘要 vi
Abstract v
1 Introduction 1
2 The Proposed ”Geometric Model” 1
3 A General Formula of ρ(4) 5
3.1 Phase-Differences of Four Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Spatial Fourth-Order Correlation-Coefficient Function of Four Sensors . . . . . . . 6
3.3 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
4 Simulation Study 9
4.1 Simulation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
5 Conclusion 11
References 12
Appendix A 15
Appendix B 20
參考文獻 References
[1] R. H. Clarke, “A Statistical Theory of Mobile-Radio Reception,” Bell System Technical Journal,
pp. 957-1000, July-August, 1968.
[2] F. Adachi, M. T. Feeney, A. G. Williamson & J. D. Parsons, “Crosscorrelation Between the
Envelopes of 900 MHz Signals Received at a Mobile Radio Base Station Site,” IEE Proceedings:
Radar Signal Processing, vol. 133, part F, no. 6, pp. 506-512, October 1986.
[3] J. Salz & J. H. Winters, “Effect of Fading Correlation on Adaptive Arrays in Digital Mobile
Radio,” IEEE Transactions on Vehicular Technology, vol. 43, no. 4, pp. 1049-1057, November
1994.
[4] M. Kalkan & R. H. Clarke, “Prediction of the Space-Frequency Correlation Function for
Base Station Diversity Reception,” IEEE Transactions on Vehicular Technology, vol. 46, no. 1,
pp. 176-184, February 1997.
[5] J. Fuhl, A. F. Molisch & E. Bonek, “Unified Channel Model for Mobile Radio Systems with
Smart Antennas,” IEE Proceedings: Radar, Sonar and Navigation, vol. 145, no. 1, pp. 32-41,
February 1998.
[6] D. R. Van Rheeden & S. C. Gupta, “A Geometric Model for Fading Correlation in Multipath
Radio Channels,” IEEE International Conference on Communications, pp. 1655-1659, 1998.
[7] S. Roy & D. D. Falconer, “Modelling the Narrowband Base Station Correlated Diversity
Channel,” IEEE Communications Theory Mini-Conference, pp. 89-95, 1999.
[8] D.-S. Shiu, G. J. Foschini, M. J. Gans & J. M. Kahn, “Fading Correlation and Its Effect on the
Capacity of Multielement Antenna Systems,” IEEE Transactions on Communications, vol. 48,
no. 3, pp. 502-513, March 2000.
[9] T.-A. Chen, M. P. Fitz, W.-Y. Kuo, M. D. Zoltowski & J. H. Grimm, “A Space-Time Model
for Frequency Nonselective Rayleigh Fading Channels with Applications to Space-Time
Modems,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 7, pp. 1175-1190,
2000.
[10] R. Vaughan, “Spaced Directive Antennas for Mobile Communications by the Fourier
Transform Method,” IEEE Transactions on Antennas and Propagation, vol. 48, no. 7, pp. 1025-
1032, July 2000.
[11] A. Abdi & M. Kaveh, “A Versatile Spatio-Temporal Correlation Function for Mobile Fading
Channels with Non-isotropic Scattering,” IEEE Signal Processing Symposium on Sensor
and Adaptive Processing, pp. 58-62, 2000.
[12] A. Abdi & M. Kaveh, “A Space-Time Correlation Model for Multielement Antenna Systems
in Mobile Fading Channels,” IEEE Journal on Selected Areas in Communications, vol. 20,
no. 3, pp. 550-560, April 2002.
[13] R. Janaswamy, “Angle and Time of Arrival Statistics for the Gaussian Scatter Density
Model,” IEEE Transactions on Wireless Communications, vol. 1, no. 3, pp. 488-497, July 2002.
[14] T. L. Fulghum, K. J. Molnar & A. Duel-Hallen “The Jakes Fading Model for Antenna
Arrays Incorporating Azimuth Spread,” IEEE Transactions on Vehicular Technology, vol. 51,
no. 5, pp. 968-977, September 2002.
[15] G. J. Byers & F. Takawira, “Spatially and Temporally Correlated MIMO Channels: Modeling
and Capacity Analysis,” IEEE Transactions on Vehicular Technology, vol. 53, no. 3, pp.
634-643, May 2004.
[16] M. Patzold & B. O. Hogstad, A Space-Time Channel Simulator of MIMO Channels Based
on the Geometrical One-Ring Scattering Model,” Wireless Communications and Mobile Computing,
vol. 4, pp. 727-737, November 2004.
[17] Z. Latinovic, A. Abdi & Y. Bar-Ness, “On the Utility of the Circular Ring Model forWideband
MIMO Channels,” IEEE Vehicular Technology Conference vol. 1, pp. 96-100, Fall 2004.
[18] L. Krasny & K. J. Molnar, “Radio Channel Models for MIMO Antenna Systems Based
on Ellipsoidal Scattering,” IEEE Global Telecommunications Conference, vol. 6, pp. 3969-3973,
2004.
[19] V. I. Piterbarg & K. T.Wong, “Spatial-Correlation-Coefficient at the Basestation, in Closed-
Form Explicit Analytic Expression, Due to Heterogeneously Poisson Distributed Scatterers,”
IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 385-388, 2005.
[20] L. T. Younkins, W. Su & K. J. R. Liu, “On the Robustness of Space-Time Coding Techniques
Based on a General Space-Time Covariance Model,” IEEE Transactions on Vehicular
Technology, vol. 55, no. 1, pp. 219-233, January 2006.
[21] C.-S. Wang, M. Guo, K. T. Wong, Senior Member, IEEE, and V. I. Piterbarg, “Fourth-
Order Spatial Correlation-Coefficient Across the Uplink Receiver’s Spatial Aperture
–Analytically Derived in Closed Form,” IEEE Antennas andWireless Propagation Letters, vol.
60, no. 3, pp. 724-734, 2012.
14
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.125.171
論文開放下載的時間是 校外不公開

Your IP address is 18.222.125.171
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code