Responsive image
博碩士論文 etd-0629113-200110 詳細資訊
Title page for etd-0629113-200110
論文名稱
Title
生物可分解的聚丁二酸二丁酯及含少量丁二酸2-甲基-1,3-二丙酯之共聚酯/層狀雙氫氧化物之奈米複合材料
Biodegradable poly(butylene succinate) and its copolyesters with minor amounts of 2-methyl-1,3-propylene succinate/layered double hydroxide nanocomposites
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
155
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-19
繳交日期
Date of Submission
2013-07-30
關鍵字
Keywords
聚丁二酸二丁酯、層狀雙氫化合物、共聚酯、奈米複合材料、等溫結晶動力學
poly(butylene succinate), isothermal crystallization kinetics, nanocomposites, copolyesters, layered double hydroxide (LDH)
統計
Statistics
本論文已被瀏覽 5845 次,被下載 387
The thesis/dissertation has been browsed 5845 times, has been downloaded 387 times.
中文摘要
在本研究中,藉由共沉澱法與水熱法製備出鎂鋁之莫耳比為二之鎂鋁層狀雙氫化合物(MgAl LDH)。為了要改善高分子與鎂鋁層狀雙氫化合物之相容性,藉由十二烷基硫酸鈉(SDS),有機化鎂鋁層狀雙氫化合物。將聚丁二酸二丁酯(B100)以及含少量丁二酸2-甲基-1,3-二丙酯之共聚酯(BM90和BM80)各別混摻含有1,3或5 wt%有機化改質土(LDH-SDS),利用熔融混煉的方式製備成奈米複合材料,混煉條件為加熱至120、100和90 °C,雙螺桿轉速為50 rpm混煉三分鐘。研究這些生物可分解奈米複合材料的結晶與熔融行為之前,須要先探討材料之物理性質。藉由廣角X光繞射分析儀(WAXD)和穿透式電子顯微鏡(TEM) 觀察LDH-SDS含量3 wt%時,LDH-SDS在B100,BM90與BM80基材中的分散型態分別為插層與脫層共存,島型脫層,島型脫層。藉由熱重分析儀(TGA)檢測奈米複合材料的熱穩定性,複材之熱穩定性隨著LDH-SDS含量增加而下降。由微差掃描式熱分析儀(DSC)之升溫圖(材料在無定形狀態下,在氮氣的環境下升溫速率為10 °C/min)得知奈米複材隨著LDH-SDS含量增加之冷結晶能力與結晶度皆降低。藉由動態機械分析儀(DMA)可得知熱機械性質,當LDH-SDS含量為3 wt%時的儲存模數與純的基材或者LDH-SDS含量為1或5 wt%複材相比有明顯的增強。
藉由DSC與偏光顯微鏡(PLM)研究LDH-SDS在B100,BM90和BM80之等溫結晶行為。Avrami方程式成功地描述了這些奈米複合材料之等温結晶動力學Avrami指數介於2.32和3.15之間。當LDH-SDS含量為3 wt%時,速率常數有明顯的降低。此外加入LDH-SDS影響B100,BM90和BM80之結晶結構與熔融行為很小。從PLM顯示,有添加LDH-SDS奈米複合材料的球晶較為小顆,由於空間阻礙到B100,BM90和BM80擴散,降低在結晶過程中的高分子鏈的運輸能力。最後,整體的研究結果表明,奈米級的LDH-SDS在B100,BM90和BM80中作為非成核劑和減速了整體結晶之過程。
Abstract
In this study, magnesium/aluminum layered double hydroxide (MgAl LDH) with a molar ratio of Mg/Al = 2 was synthesized by the co-precipitation method. In order to improve the compatibility between polymer and LDH, the surface of LDH was organo-modified by sodium dodecyl sulfate (SDS). Poly(butylene succinate) (B100) and its copolyesters with minor amounts of 2-methyl-1,3-propylene succinate (BM90 and BM80) were blended with 1, 3, or 5 wt% of SDS modified LDH, respectively, by the melt intercalation at 120, 100, and 90 °C and at a rotor speed of 50 rpm for 3 min. The physical properties of these biodegradable nanocomposites were characterized before studying their crystallization and melting behaviors. X-ray diffraction patterns and transmission electron micrographs indicated that the LDHs were intercalated and exfoliated, island-type exfoliated, and island-type exfoliated into the B100, BM90, and BM80 matrix, respectively, when the content of LDHs was 3 wt%. TGA results revealed that the thermal stability of the resultant nanocomposites was reduced after the addition of LDH. DSC heating thermograms of the amorphous nanocomposites (at a heating rate of 10 °C/min under nitrogen atmosphere) indicated that the cold crystallization ability and the degree of crystallinity of these nanocomposites decreased as the amount of LDH increased. Dynamic mechanical properties of the fabricated 3 wt% nanocomposites (at a heating rate of 2 °C/min) showed significant enhancements in the storage modulus compared with the neat matrix and 1 or 5 wt% nanocomposites.
The effect of LDH-SDS on the isothermal crystallization behavior of B100, BM90, and BM80 was investigated using a differential scanning calorimeter (DSC) and polarized light microscopy (PLM). The Avrami equation successfully describes the isothermal crystallization kinetics of these nanocomposites and the value of Avrami exponent was between 2.32 and 3.15. The rate constant was significantly reduced when the amount of LDH was 3 wt%. Besides, it was found that the incorporation of LDH-SDS has little effect on the crystalline structure as well as the melting behavior of B100, BM90, and BM80. PLM micrographs revealed that smaller and less perfect crystals were formed in the nanocomposites because of the steric hindrance of the matrix diffusion, i.e. reducing the transportation ability of polymer chains during the crystallization. Finally, the overall results suggest that LDH-SDS at nanometer level acted as non-nucleating agent and decelerated the overall crystallization process of B100, BM90, and BM80.
目次 Table of Contents
誌謝…………………………………………………………………………….….............…....i
摘要…..……………………………………………………………………….............………..ii
Abstract………………..……………………………………………………............………...iv
目錄………………………………………………………………………….…......................vi
圖目錄……………………………………………………………………….…..................... ix
表目錄…………………………………………………………….…………....................….xvi
.
第一章 ..............................................................................................................1
1.1 前言……………………………………………………………….……..............……….....1
1.2 生物可分解高分子材料介紹………………………………………………................…….2
1.3 研究目的………………………………………………………………................………….3

第二章 基礎理論與文獻回顧..................................................................................4
2.1 層狀雙氫氧化合物( Layer Double Hydroxides, LDHs ).............................................4
2.1.1無機層狀雙氫氧化合物製備方法介紹...................................................................6
2.1.1.1 沉澱法..........................................................................................................6
2.1.1.2 水熱法..........................................................................................................7
2.1.1.2.1 水熱法合成原理..........................................................................................7
2.1.1.2.2 水熱合成法製備粉體的優點..........................................................................8
2.1.2 無機層狀材料之改質.........................................................................................8
2.1.2.1 插層簡介.......................................................................................................8
2.1.2.2 人工合成無機層狀材料之改質.........................................................................9
2.2 有機/無機奈米級複合材料...................................................................................10
2.2.1 簡介..............................................................................................................10
2.2.2 製備方法........................................................................................................11
2.3 高分子結晶動力分析( crystallization kinetics analysis ) ........................................15
2.3.1 Avrami方程式.................................................................................................15
2.3.2 多重熔融峰行為( multiple melting behaviors ) ....................................................16
2.3.3 Hoffman-Weeks線性外插.................................................................................17
2.3.4 Fox方程式.....................................................................................................18
2.3.5 以球晶成長速率作區型轉移( regime transition )分析...........................................18
2.4 偏光顯微鏡.......................................................................................................20
2.5 文獻回顧..........................................................................................................28

第三章 實驗............................................................................................................30
3.1 藥品.................................................................................................................30
3.2 實驗設備..........................................................................................................30
3.3 檢測儀器..........................................................................................................31
3.4 合成有機化 MgAl LDH.......................................................................................33
3.5 製備奈米複合材料.............................................................................................34

第四章 結果與討論……………………………………………………………................……36
4.1 合成有機化 MgAl LDH 之性質分析…………………..………………................……..36
4.1.1 有機化MgAl LDH 之WAXD分析……………..……………….……..................…….42
4.2 奈米複合材料之各項性質分析………………………………..............………………...38
4.2.1 奈米複合材料分散型態之探討………………………………………...............………38
4.2.2 奈米複合材料熱性質之探討…………………………………………...............………37
4.2.3 奈米複合材料機械性質之探討…………………………………….........…......………44
4.3 奈米複合材料等溫結晶動力學分析與熔融行為……………………...............………...52
4.3.1 BM80奈米複合材料結晶動力學之探討………………………..….........….....………52
4.3.2 BM80奈米複合材料熔融行為與平衡熔點之探討…..……………...............…………57
4.3.3 BM90奈米複合材料結晶動力學之探討…..……………………………...............……70
4.3.4 BM90奈米複合材料熔融行為與平衡熔點之探討…..…………………...............……75
4.3.5 B100奈米複合材料結晶動力學之探討…..……………………………..............……..88
4.3.6 B100奈米複合材料熔融行為與平衡熔點之探討…..…………………..............……..93
4.4 奈米複合材料之球晶成長速率、結晶形態之探討……………………….................…106
4.4.1 BM80奈米複合材料等溫結晶之球晶成長速率…..…………………….................…106
4.4.2 BM80奈米複合材料之結晶形態…………………..………..…………...............……106
4.4.3 BM90奈米複合材料等溫結晶之球晶成長速率…..…………………….................…113
4.4.4 BM90奈米複合材料之結晶形態……………………..………………...............…..…113
4.4.5 B100奈米複合材料等溫結晶之球晶成長速率…..……………………..............……120
4.4.6 B100奈米複合材料之結晶形態……………………..…………………..............……120

第五章 結論…………………………………………………………………................…..…127
未來展望…………………………………………………………………………...................129
參考文獻…………………………………………………………………..…….................…130
參考文獻 References
1. S. S. Ray, K. Yamada, M. Okamoto, and K. Ueda, 'Polylactide-layered silicate nanocomposite: A novel biodegradable material', Nano Letters, 2002, 2, 1093-1096.
2. R. Smith, Biodegradable polymers for industrial applications: CRC, 2005.
3. J. Yang, W. Tian, Q. Li, Y. Li, and A. Cao, 'Novel biodegradable aliphatic poly (butylene succinate-co-cyclic carbonate)s bearing functionalizable carbonate building blocks: Ii. enzymatic biodegradation and in vitro biocompatibility assay', Biomacromolecules, 2004, 5, 2258-2268.
4. S. Komarneni, 'Nanocomposites', J. Mater. Chem., 1992, 2, 1219-1230.
5. T. Y. Tsai, S. T. Lu, C. J. Huang, J. X. Liu, C. H. Li, L. C. Chen, and U. Ray, 'The structure‐property relationship of novolac cured epoxy resin/clay nanocomposites', Polym. Eng. Sci., 2008, 48, 467-476.
6. J. H. Park and S. C. Jana, 'The relationship between nano-and micro-structures and mechanical properties in PMMA–epoxy–nanoclay composites', Polymer, 2003, 44, 2091-2100.
7. M. Zanetti, G. Camino, D. Canavese, A. B. Morgan, F. J. Lamelas, and C. A. Wilkie, 'Fire retardant halogen-antimony-clay synergism in polypropylene layered silicate nanocomposites', Chem. Mat., 2002, 14,189-193.
8. R. Chandra and R. Rustgi, 'Biodegradable polymers', Prog. Polym. Sci., 1998, 23,1273-1336.
9. R. A. Gross and B. Kalra, 'Biodegradable polymers for the environment', Science, 2002, 297, 803-807.
10. U. Neumann, B. Wiege, and S. Warwel, 'Synthesis of hydrophobic starch esters by reaction of starch with various carboxylic acid imidazolides', Starch‐Stärke, 2002, 54, 449-453.
11. M. Zinn, B. Witholt, and T. Egli, 'Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate', Adv. Drug DeliveryRev., 2001, 53, 5-21.
12. M. Okada, 'Chemical syntheses of biodegradable polymers', Prog. Polym. Sci., 2002, 27, 87-133.
13. M. Alexandre and P. Dubois, 'Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials', Mater. Sci. Eng., R, 2000, 28, 1-63.
14. T. Y. Tsai, Y. J. Wu, and F. J. Hsu, 'Synthesis and properties of epoxy/layered zirconium phosphonate (Zr-P) nanocomposites', J. Phys. Chem. Solids, 2008, 69, 1379-1382.
15. F. Leroux and J. P. Besse, 'Polymer interleaved layered double hydroxide: a new emerging class of nanocomposites', Chem. Mater., 2001, 13, 3507-3515.
16. Y. You, H. Zhao, and G. F. Vance, 'Hybrid organic–inorganic derivatives of layered double hydroxides and dodecylbenzenesulfonate: Preparation and adsorption characteristics', J. Mater. Chem., 2002, 12, 907-912.
17. F. Fievet, J. Lagier, B. Blin, B. Beaudoin, and M. Figlarz, 'Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles', Solid State Ionics, 1989, 32, 198-205.
18. A. I. Khan and D. O’Hare, 'Intercalation chemistry of layered double hydroxides: recent developments and applications', J. Mater. Chem., 2002, 12, 3191-3198.
19. D. Bish, 'Anion-exchange in takovite: Applications to other hydroxide minerals', Bull. Mineral, 1980, 103, 170-175.
20. S. Miyata, 'Physicochemical properties of synthetic hydrotalcites in relation to composition', Clay Clay Miner., 1980, 28, 50-56.
21. S. Miyata, 'Anion-exchange properties of hydrotalcite-like compounds', Clay Clay Miner., 1983, 31, 305-311.
22. S. Miyata and T. Kumura, 'Synthesis of new hydrotalcite-like compounds and their physicochemical properties', Chem. Lett., 1973, 843-848.
22. M. A.Drezdzon, 'Synthesis of isopolymetalate-pillared precursors', Inorg. Chem., 1988, 27, 4628-4632.
23. W. T. Reichle, 'Catalytic reactions by thermally activated, synthetic, anionic clay minerals', J. Catal., 1985, 94, 547-557.
24. S. Carlino, M. J. Hudson, S. W. Husain, and J. A. Knowles, 'The reaction of molten phenylphosphonic acid with a layered double hydroxide and its calcined oxide', Solid State Ionics, 1996, 84, 117-129.
25. E. D. Dimotakis and T. J. Pinnavaia, 'New route to layered double hydroxides intercalated by organic anions: precursors to polyoxometalate-pillared derivatives', Inorg. Chem., 1990, 29, 2393-2394.
26. S. K. Lim, J. J. Lee, S. G. Jang, S. I. Lee, K. H. Lee, H. J. Choi, and I. J. Chin, 'Synthetic aliphatic biodegradable poly (butylene succinate)/clay nanocomposite foams with high blowing ratio and their physical characteristics', Polym. Eng. Sci., 2011, 51, 1316-1324.
27. F. Yang and Z. Qiu, 'Preparation, crystallization, and properties of biodegradable poly (butylene adipate‐co‐terephthalate)/organomodified montmorillonite nanocomposites', J. Appl. Polym. Sci., 2010, 119, 1426-1434.
28. Y. Someya, Y. Sugahara, and M. Shibata, 'Nanocomposites based on poly (butylene adipate‐co‐terephthalate) and montmorillonite', J. Appl. Polym. Sci., 2004, 95, 386-392.
29. S. S. Ray, M. Bousmina, and K. Okamoto, 'Structure and properties of nanocomposites based on poly (butylene succinate‐co‐adipate) and organically modified montmorillonite', Macromol. Mater. Eng., 2005, 290, 759-768.
30. B. Chieng, N. Ibrahim, and W. Wan Yunus, 'Effect of organo-modified montmorillonite on poly (butylene succinate)/poly (butylene adipate-co-terephthalate) nanocomposites', eXPRESS Polym. Lett., 2010, 4, 404-414.
31. S. Y. Hwang, E. S. Yoo, and S. S. Im, 'Effect of the urethane group on treated clay surfaces for high-performance poly (butylene succinate)/montmorillonite nanocomposites', Polym. Degrad. Stab., 2009, 94, 2163-2169.
32. D. Ratna, O. Becker, R. Krishnamurthy, G. Simon, and R. Varley, 'Nanocomposites based on a combination of epoxy resin, hyperbranched epoxy and a layered silicate', Polymer, 2003, 44, 7449-7457.
33. C. S. Triantafillidis, P. C. LeBaron, and T. J. Pinnavaia, 'Homostructured mixed inorganic-organic ion clays: A new approach to epoxy polymer-exfoliated clay nanocomposites with a reduced organic modifier content', Chem. Mat., 2002, 14, 4088-4095.
34. J. H. Park and S. C. Jana, 'Mechanism of exfoliation of nanoclay particles in epoxy-clay nanocomposites', Macromolecules, 2003, 36, 2758-2768.
35. Y. Fukushima and S. Inagaki, 'Synthesis of an intercalated compound of montmorillonite and 6-polyamide', J. Incl. Phenom. Macro., 1987, 5, 473-482.
36. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, 'One‐pot synthesis of nylon 6–clay hybrid', J. Polym. Sci., Part A: Polyme. Chem., 1993, 31, 1755-1758.
37. C. Zilg, R. Thomann, R. Mulhaupt, and J. Finter, 'Polyurethane nanocomposites containing laminated anisotropic nanoparticles derived from organophilic layered silicates', Adv. Mater., 1999, 11, 49-52.
38. S. S. Ray, K. Okamoto, and M. Okamoto, 'Structure-property relationship in biodegradable poly (butylene succinate)/layered silicate nanocomposites', Macromolecules, 2003, 36, 2355-2367.
39. 蔡宗燕,奈米化學與科技應用,「奈米級黏土/高分子複合材料」,工業技術 研究院,化工所,2005,135-156
40. G. Bodor, Stuctural Investigation of Polymers. Eillis Horwood Pub, Chichester England, 1991, Chapter 6.
41. M. Yasuniwa, S. Tsubakihara, T. Satou and K. Iura, 'Multiple melting behavior of poly(butylene succinate). II.Thermal analysis of isothermal crystallization and melting process', J. Polym. Sci. Part B: Polym. Phys., 2005, 43, 2039-2047.
42. J. J. Janimak, SZD. Cheng, A. Zhang and E. T. Hsieh, 'Isotacticity effect on crystallization and melting in polypropylene fractions: 3. overall crystallization and melting behavior', Polymer, 1992, 33, 728-735.
43. Y. Lee and R. S. Porter, 'Double-melting behavior of poly(ether ether ketone) ', Macromolecules, 1987, 20, 1336-1341.
44. Y. Lee, R. S. Porter, and J. S. Lin, 'On the double-melting behavior of poly(ether ether ketone) ', Macromolecules, 1989, 22, 1756-1760.
45. G. Z. Papageorgiou and D. N. Bikiaris, 'Crystallization and melting behavior of three biodegradable poly(alkylene succinates) ', A Comparative Study. Polymer, 2005, 46, 12081-12092.
46. B. S. Hsiao, K. H. Gardner and D. Q. Wu. 'Time-resolved X-ray study of poly(arylether ether ketone) crystallization and melting behavior: I: Crystallization', Polymer, 1993, 34, 3986-3995.
47. Z. G. Wang, B. S. Hsiao, B. B. Sauer and W. G. Kampert. 'The nature of secondary crystallization in poly(ethylene terephthalate) ', Polymer, 1999, 40, 4615-4627.
48. N. Krüeger and H. G. Zachmann, 'Investigation of the melting behavior of poly(arylether ketones) by simultaneous measurements of SAXS and WAXS employing synchrotron radiation', Macromolecules, 1993, 26, 5202-5208.
49. J. S. Chung and P. Cebe, 'Melting behavior of poly(phenylene sulfide). II: multiple stage melt crystallization', Polymer, 1992, 33, 2325-2333.
50. C. L. Wei, M. Chen and F. E. Yu, 'Temperature modulated DSC and DSC studies on the origin of double melting peaks in poly(ether ether ketone) ', Polymer, 2003, 44, 8185-8193.
51. J. D. Hoffman and J. J. Weeks, 'Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene', J. Res. Nat. Bur. Stand., 1962, 66,
13-28.
52. J. D. Hoffman and R. L. Miller, 'Kinetics and crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment', Polymer, 1997, 38, 3151-3212.
53. Z. Gan, H. Abe, H. Kurokawa and Y. Doi, 'Solid-state microstructure, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters', Biomacromolecules, 2001, 2, 605-613.
54. J. D. Hoffman, G. T. Davis and JI. Jr. Lauritzen, N. B. Ed. 'Treatise on solid state chemistry', Crystalline and Noncrystalline Solids, Hannay, New York, 1976, 3, Chap. 7.
55. T. G. Fox, 'Influence of diluent and of copolymer composition on the glass temperature of a polymer system', Bull. Am. Phys. Soc., 1956, 1, 123.
56. J. D. Hoffman, 'Role of reptation in the rate of crystallization of polyethylene fractions from the melt', Polymer, 1982, 23, 656-670.
57. J. D. Hoffman, 'Regime III crystallization in melt-crystallized polymers: The
variable cluster model of chain folding', Polymer, 1983, 24, 3-26.
58. W. D. Neese, 'Introduction to Optical Mineralogy 2nd', University of Northern Colorado, 1991.
59. I. W. Hamley, 'Introduction to Soft Matter'. Wiley, New York. 2000, p.103.
60. J. D. Hoffman and R. L. Miller, 'Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: Theory and experiment', Polymer, 1997, 38, 3151-3212.
61. U. W. Gedde, 'Polymer Physics', Chapman & Hall, London, 1996.
62. Y. Someya, T. Nakazato, N. Teramoto, and M. Shibata, 'Thermal and mechanical properties of poly (butylene succinate) nanocomposites with various organo‐modified montmorillonites', J. Appl. Polym. Sci., 2003, 91, 1463-1475.
63. M. F. Chiang and T. M. Wu, 'Synthesis and characterization of biodegradable poly(L-lactide)/layered double hydroxide nanocomposites', Compos. Sci. Technol., 2010, 70, 110-115.
64. S. F. Hsu, T. M. Wu, C. S. Liao, 'Isothermal crystallization kinetics of poly(3-hydroxybutyrate)/layered double hydroxide nanocomposites', J. Polym. Sci. Part B: Polym. Phys., 2006, 44, 3337-3347.
65. S. S. Ray, M. Bousmina, 'Crystallization behavior of poly[(butylene succinate)-co-adipate] nanocomposite', Macromol. Chem. Phys., 2006, 47, 6429-6437.
66. T. Y. Tasi, S. W. Lu, Y. P. Huang, and F. S. Li, 'Polymer-dispersed liquid crystal/layered double hydroxide nanocomposite: A new emerging optical application', J. Phys. Chem. Solids., 2006, 67, 938-943.
67. C. H. Chen, C. S. Yang, M. Chen , Y. C. Shih, H. S. Hsu, S. F. Lu, 'Synthesis and characterization of novel poly(butylene succinate-co-2-methyl-1,3-propylene succinate)s', eXPRESS Polym. Lett., 2011, 5, 284-294.
68. M. F. Chiang, M. Z. Chu, and T. M. Wu, 'Effect of layered double hydroxides on the thermal degradation behavior of biodegradable poly(L-lactide) nanocomposites', Polym. Degrad. Stab., 2011, 96, 60-66.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code