Responsive image
博碩士論文 etd-0629114-121110 詳細資訊
Title page for etd-0629114-121110
論文名稱
Title
結晶或非晶之鋯基與鈦基金屬玻璃在模擬體液下之電化學與生物相容性質分析
Electrochemical and biocompatibility response of amorphous or partially crystallized Zr/Ti-based metallic glasses in simulated body fluid
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
200
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-17
繳交日期
Date of Submission
2014-07-29
關鍵字
Keywords
腐蝕抗性、金屬玻璃、模擬體液、生物相容性、奈米晶化
simulated body fluid, biocompatibility, nanocrystallized, corrosion resistance, metallic glasses
統計
Statistics
本論文已被瀏覽 5731 次,被下載 144
The thesis/dissertation has been browsed 5731 times, has been downloaded 144 times.
中文摘要
本研究的主題主要分為四大部分,為了找出有潛力的生醫用金屬玻璃,一開始先以電化學法研究鐵基、鎂基、鋯基及鈦基金屬玻璃。模擬體液漢克水溶液主要被用來當作測量金屬玻璃腐蝕抗性的環境。簡便的循環伏安法被用來快速證明是否有電化學反應發生。研究結果顯示鋯基與鈦基金屬玻璃在模擬體液中擁有較高的腐蝕抗性以及電化學穩定性、良好的電化學穩定性以及相當低的細胞毒性,Ti65Si15Ta10Zr10金屬玻璃在生物醫學應用上有相當高的潛力。

第二,新穎的無毒元素鈦鋯基金屬玻璃,Ti42Zr40Si15Ta3與Ti40Zr40Si15Cu5的電化學行為以及細胞毒性在本文中也被有系統性的探討。此兩金屬玻璃的電化學性質以及生物相容性也被拿來與純鈦以及含銅量高的Ti45Cu35Zr20做比較。結果顯示含銅量較低之金
屬玻璃擁有較低的化學反應。在MTT分析中,純鈦、Ti42Zr40Si15Ta3、Ti40Zr40Si15Cu5試片以及其定電位電化學反應後的水溶液皆無發現明顯的細胞毒性。然而Ti45Cu35Zr20卻展現出較差的細胞存活率。在一個月的紐西蘭大白兔活體植入實驗中可發現植入部位其傷口復元狀況良好以及較低的C-反應性蛋白指數,證明了鈦鋯基金屬玻璃擁有短期上良好的生物相容性。從電化學測量、生物體外以及體內測試的結果共同確認了銅含量低於5 %的鈦鋯基金屬玻璃相當適合生物醫學上的用途。

第三,不同銅含量的金屬玻璃如:不含銅之Ti45Zr40Si15、含銅之Ti40Zr40Si15-Cu5 以及Ti45Zr25-Cu30金屬玻璃之生物腐蝕反應之研究主要使用開路電位法、動電位極化法、電化學阻抗圖譜以及MTT分析來達成。銅元素對於鈦基金屬玻璃在於其當作生物植入物時的影響以及模型在此研究中被完整的建立。銅元素的存在會造成鈦基金屬玻璃有著完全相反的兩種影響。銅元素會造成腐蝕電位往正極偏移,但是只是對於其氧化層是否容易形成造成影響,並不是主要用來探討腐蝕抗性的主要參數。反之,銅元素的存在的主要缺點是會使鈦基金屬玻璃產生局部點蝕並造成離子的釋出。因此不含銅Ti45Zr40Si15以及含銅量較少的Ti40Zr40Si15-Cu5有較佳的表現。

最後,我們也鑑測了奈米晶效應對鋯基以及鈦鋯基金屬玻璃在人體體液下腐蝕行為的影響。Zr53Cu30Ni9Al8 非晶片材以及 Ti42Zr40Si15Ta3非晶薄帶主要藉由Tg點以上溫度做不同時間的熱處理並順利在非晶基質中產生出不同結晶程度的Zr2Cu以及β-Ti奈米晶相。由極化曲線測量法中可得知產生高反應性的Zr2Cu以及Zr2Ni的奈米晶相之金屬玻璃擁有較差的腐蝕抗性,這是因為奈米晶相產生嚴重的加凡尼腐蝕所致。比較上來說,由於其優異的抗點蝕性能,擁有抗腐蝕β-Ti奈米晶之金屬玻璃展現了較佳的腐蝕抗性。
Abstract
This research first presents the electrochemical investigations of Fe-, Mg-, Zr-, and Ti-based metallic glasses (MGs) for finding the potential MG-based bio-materials. The simulation body-fluid (SBF) Hanks solution is utilized for testing the corrosion resistance of MGs. In addition, a simple cyclic voltammetry method is used for rapid verification of the potential electrochemical responses. It is found that the Ti- and Zr-based MGs can sustain in the body-fluid, exhibiting the best corrosion resistance and electrochemical stability. The rapid screening process suggests that the Ti65Si15Ta10Zr10 metallic glass has high potential for biomedical applications due to its good electrochemical stability and very low cytotoxicity.

Secondly, the electrochemical behaviors and the cell toxicity of two newly developed TiZr-based MGs, Ti42Zr40Si15Ta3, Ti40Zr40Si15Cu5, with lower or without unfavorable elements are systematically investigated. The electrochemistry property and biocompatibility of these two MGs are also compared with the controlled sample of pure Ti and the MG with a higher Cu-content, Ti45Cu35Zr20. Results show that the MGs with a low Cu content exhibit low electrochemical response. Both the solid specimens and the mediums after the potential state test for pure Ti, Ti42Zr40Si15Ta3 and Ti40Zr40Si15Cu5 exhibit no significant cytotoxicity in the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test, while the tested medium for Ti45Cu35Zr20 MG shows lower cell viability. The good healing condition and the low C-reactive protein (CRP) index for the implanted New Zealand rabbits in one-month in vivo test also show the satisfactory short-term biocompatibility of the TiZr-based MGs. The electrochemical measurements, in vitro and in vivo experiments confirmed that the developed TiZr-based MGs with lower Cu content (≦ 5%) are promising for biomedical purposes.

Thirdly, the bio-corrosion response of the Cu-free Ti45Zr40Si15 and Cu-containing Ti40Zr40Si15-Cu5 and Ti45Zr25-Cu30 MGs are explored, in terms of open circuit potential, potentiodynamic polarization, electrochemical impedance, as well as cytotoxicity MTT testing. The role of Cu in the Ti-based MGs, tentatively applied for bio-implant, is established and modeled. The presence of nobler Cu will impose two opposite effects. Since the minor positive shift of Ecorr for forming oxide layers is not of a major issue, the negative effect on local pitting and ion release would cause major drawback. The Cu-free Ti45Zr40Si15 and minor-Cu Ti40Zr40Si15-Cu5 metallic glasses exhibits promising performance.

Finally, we examine the nanocrysalline effect on the corrosion behavior of the Zr- and TiZr-based MGs in SBF. The Zr53Cu30Ni9Al8 and Ti42Zr40Si15Ta3 metallic glasses were annealed at temperatures above the glass transition temperature, Tg, with different time periods under the protective argon atmosphere to result in MGs with different degrees of crystalline Zr2Cu and β-Ti nano-phases in the amorphous matrix. Because of the serious galvanic corrosion, the polarization measurements show lower corrosion resistance for the nanocrystallized MGs with reactive Zr2Cu phases. In comparison, the nanocrystallized MGs with corrosion resistant β-Ti phases exhibited more promising corrosion resistance, due to the superior pitting resistance.
目次 Table of Contents
Table of content i
List of Tables v
List of Figures vii
Abstract xv
中文摘要 xvii
Chapter 1 Introduction 1
1.1 Amorphous metallic alloys 1
1.2 Evolution of Zr/Ti-based amorphous metallic glasses 2
1.3 Motivation and aim of this work 3
Chapter 2 Background and Literature Review 7
2.1 The characterization of amorphous metallic alloys 7
2.1.1 Mechanical properties 7
2.1.2 Magnetic properties 8
2.1.3 Corrosion resistance 8
2.2 Empirical rules for synthesis of amorphous metallic alloys 9
2.3 Fabrication of amorphous metallic alloys 10
2.4 The parameters of glass forming ability (GFA) 12
2.5 Introduction of corrosion and biocompatibility 14
2.6 Traditional metallic alloys for load-bearing bio-implant application 16
2.7 Metallic glasses for bio-implant load-bearing applications 18
2.7.1 Protein adhesion and cell growth on the surface of bulk metallic glasses 19
2.7.2 Biocompatibility on bulk metallic glasses 20
2.8 The corrosion behavior of nanocrystallized bulk metallic glasses 21
2.9 Nanoindentation for mechanical properties 22
2.10 Electrochemical response 25
2.10.1 Cyclic voltammerty (CV) 25
2.10.2 Amperometry 27
2.10.3 Polarization measurement 27
2.10.4 Electrochemical impedance spectroscopy (EIS) 29
2.11 X-ray photoelectron spectroscopy (XPS) 30
Chapter 3 Experimental Procedures 32
3.1 The preparation of amorphous metallic alloy ribbons 33
3.1.1 Raw Materials 33
3.1.2 Melt spinning technique 34
3.1.3 Heat treatment of amorphous metallic ribbons 35
3.2 Microstructure and phase identification 35
3.2.1 X-ray diffraction (XRD) and Nanoindentation 35
3.2.2 Optical microscopy (OM) observations 36
3.2.3 Scanning electron microscopy (SEM) observations 36
3.2.4 Transmission electron microscopy (TEM) observations 36
3.3 Thermal analysis 37
3.4 Immersion test under SBF 38
3.5 Electrochemical analysis 38
3.6 Cell viability test 39
3.7 In vivo test 40
Chapter 4 Results and Discussion 42
4.1 Simulated body-fluid tests and electrochemical investigations on Fe-, Mg-, Zr-based metallic glasses 42
4.1.1 Structural characterization and mechanical properties 42
4.1.2 Short-term immersion test under SBF 43
4.1.3 Electrochemical activity evaluation 44
4.2 Rapid screening of various Zr- and Ti-based metallic glasses for biomedical application 45
4.2.1 Structural characterization and mechanical properties 45
4.2.2 Electrochemical activity 46
4.2.3 Pitting reaction on the Cu-free and Cu-containing metallic glasses 49
4.2.4 Cell viability on the Cu-free and Cu-containing metallic glasses 51
4.3 Electrochemical and biocompatibility response of Cu-free and low Cu-containing TiZr-based metallic glasses 52
4.3.1 Structural characterization and mechanical properties 53
4.3.2 Electrochemical activity 54
4.3.3 Cell viability 57
4.3.4 In vivo test 58
4.4 Cu effects on electrochemical response of Ti-based metallic glasses under simulated body fluid 60
4.4.1 Structural characterization and mechanical properties 60
4.4.2 Electrochemical response 61
4.4.3 Surface characterization and pit morphology 65
4.4.4 Cytotoxicity test 69
4.5 Simulated body fluid electrochemical response of Zr-based and TiZr-based metallic glasses with different degrees of crystallization 70
4.5.1 Structural characterization and thermal analysis 70
4.5.2 Electrochemical response 72
Chapter 5 Summary and Conclusions 80
Chapter 6 Prospective and future works 85
References 86
Tables 96-105
Figures 106-176















List of Tables

Table 1.1 Fundamental characteristics and application fields of amorphous metallic alloys. 96
Table 4.1 The glass transition (Tg), crystallization temperatures (Tx), and supercooled region (ΔTx) of Mg-based, Fe-based, and Zr-based amorphous metallic alloys. 97
Table 4.2 Representative thermal properties, in termed of glass transition temperature (Tg), crystallization temperature (Tx), and supercooled region (ΔTx) of Zr-based metallic glasses, as well as the mechanical properties, in terms of elastic modulus E and nano-hardness H. The deviations of all the data are less than 10%.. 98
Table 4.3 Representative thermal properties, in termed of glass transition temperature (Tg), crystallization temperature (Tx), and supercooled region (ΔTx) of pure Ti and Ti-based metallic glasses, as well as the mechanical properties, in terms of elastic modulus E and nano-hardness H. The deviations of all the data are less than 10%. 99
Table 4.4 EDS measured atomic compositions for the MGs, the oxygen contents in the corroded region, and the weight loss after the potential state test. 100
Table 4.5 The corrosion properties of the metal speciments in the Hank’s solution. Noted that three inidvidual repeating tests were done for this test. Within our measured regime, pure Ti do not show pitting, thereby no Epit can be measured. The Ipass reading for Ti45Cu35Zr20 is rather low, about 0.4 A/cm2, but this value is meaningless since the just formed oxide layer would immediately be subject to severe pitting. 101
Table 4.6 Measured concentration variation (ppm) for the target ions inthe mediums after the potential state tests under Hank’s solution for Ti-based and TiZr-based metallic glasses. 102
Table 4.7 Bio-corrosion properties of the Ti45Zr40Si15, Ti40Zr40Si15-Cu5 and Ti45Zr25-Cu30 metallic glasses, in comparison with commercial purity (cp) Ti, in the Hank's solution. 103
Table 4.8 Bio-corrosion properties of the as-cast and annealed Zr53Cu30Ni9Al8 metallic glasses in Hank's solution. All specimens are tested two to three times to ensure reproducibility. 104
Table 4.9 Bio-corrosion properties of the as-cast and annealed Ti42Zr40Si15Ta3 metallic glasses in Hank's solution. All specimens are tested two to three times to ensure reproducibility. 105



















List of Figures

Figure 1.1 A scheme of (a) long range ordered structure crystalline metals and (b) short range ordered structure of amorphous metallic alloys. 106
Figure 1.2 (Left) The short range ordering of the local atom clusters in different forms. (Right) The packing of local clusters into an amorphous material. 107
Figure 2.1 X-ray diffraction pattern of amorphous and crystalline materials. 108
Figure 2.2 The phenomenon of amorphous metallic alloy under an applied stress. 109
Figure 2.3 Young’s modulus vs. yield strength data for amorphous metals [x] and ductile-phas reinforced amorphous metals [+], shown together with data for stainless steels (green), Co-Cr-based (purple), and Ti-based alloys (blue).. 109
Figure 2.4 Vickers hardness vs. yield strength data for amorphous metals [x], shown together with data for stainless steels (green), Co-Cr-based (purple), and Ti-based alloys (green).. 110
Figure 2.5 Schematic diagram of (a) sputtering and (b) vacuum evaporation. 111
Figure 2.6 Schematic diagram of splat quench method.. 112
Figure 2.7 Schematic diagram of two roller quench method.. 112
Figure 2.8 Schematic diagram of chill block melting spinning.. 113
Figure 2.9 Schematic diagram of planar flow casting.. 113
Figure 2.10 Relationship between the critical cooling rate (Rc), maximum sample thickness (tmax) and reduced glass transition temperature (Tg/Tm) for bulk amorphous alloy system. 114
Figure 2.11 Relationship between the critical cooling rate (Rc), maximum sample thickness and supercooled liquid range ΔTx (= Tx – Tg) for bulk amorphous alloys.. 115
Figure 2.12 New parameter γ for understanding GFA of metallic glasses.. 116
Figure 2.13 Various types of corrosion for metallic alloys.. 117
Figure 2.14 The application fields of metal and ceramic biomaterials. 118
Figure 2.15 BAE cell attachment and growth on metallic glass. (a) Shiny side plus FCS, at 6 h; (b) shiny side plus FCS, at 4 days; (c) shiny side minus FCS, at 6 h; (d) dull side plus FCS, at 4 days; (e) dull side after crystalline conversion, plus FCS at 6h. 119
Figure 2.16 Fibroblast cell attachment on Zr-Ti-Co-Be and high-density polyethylene (HDPE) discs. (a) Micrograph of the amorphous metal surface after 7 days, (arrows point to the cell-layer buildup at the interface.) (b) Cell proliferation on the amorphous metal and HDPE discs. 120
Figure 2.17 Micrographs of the tissue surrounding a Pd-Ag-P-Si rod (circular region in the center of the image) implanted intramuscularly in rat for 28 day: (a) 40x magnification, (b) 100x magnifications.. 121
Figure 2.18 Anodic and cathodic polarization curves of the Ti40Zr10Cu36Pd14 bulk metallic glass and its crystalline alloys at 310 K in Hanks’ solution.. 122
Figure 2.19 Median pitting and repassivation potentials for Al90Fe5Gd5, Al87Ni7Gd6 and pure polycrystalline and single-crystal Al in deaerated 0.6 M NaCl. Error bars represent the 25th and 75th percentile of the data when expressed as the cumulative probability of obtaining the given pitting potential. Scan rate is 0.1 mV/s.. 123
Figure 2.20 Potentiodynamic polarization curves of the (a) as-spun and heat-treated samples of Al88Ni6La6 and (b) as-spun and heat-treated Al86Ni9La5 in 0.01 M NaCl alkaline solution.. 124
Figure 2.21 Mechanisms of the electron transfer reaction. (A) An oxidation process of species A (A → A+ + e−). (B) An reduction process of species B (B + e− → B−). 125
Figure 2.22 (a) Cyclic voltammerty waveform and (b) standard cyclic voltammetry of oxidation-reduction reaction... 126
Figure 2.23 Standard cyclic anodic polarization curves.. 127
Figure 2.24 A simple electrified interface. The oxidants (red) with a positive charge diffuse toward the negatively charged electrode, accept electrons from the electrode at the interface, become the reductants (blue), and diffuse to the bulk of the solution. Furthermore, IHP and OHP are the inner and outer Helmholtz planes, respectively. 128
Figure 2.25 (a) presents a standard equivalent circuit model of a double layer formed by applying a negative potential on the surface of the electrode. (b) shows classical Nyquist plot, the start point of the high frequency region is the Rs and the end point of the low frequency region is the Rs + Rp. 129
Figure 2.26 PES as a three-step process: (1) photoexcitation of electrons; (2) travel to the surface with concomitant production of secondaries (shaded); (3) penetration through the surface (barrier) and escape into the vacuum... 130
Figure 3.1 The experimental flow chart. 131
Figure 3.2 The illustration of a single-roller melt spinning process. 132
Figure 3.3 The picture of Perkin Diamond DSC. 133
Figure 3.4 The schematic diagram of power compensation DSC. 133
Figure 3.5 The standard Nano Indenter XP is a complete, turnkey system consisting of the major components illustrated 134
Figure 3.6 Preparation of a cross-section specimen by the liftout technique, (a) deposition of a platinum strap over the region of interest, (b) cutting of the staircase cuts, (c) thinning of a cross-section specimen until it is about 500 nm thick, (d) tilting of a sample by 45° and cutting of its base, (e) further thinning of a cross-section specimen until it is about 70 nm thick, and (f) cutting of the edges of a cross-section specimen to free it from the substrate... 135
Figure 3.7 The picture of CHI 614D electrochemical work station. 136
Figure 3.8 Schematic diagram of electrochemical workstation in a three electrodes cell... 137
Figure 4.1 The (a) XRD patterns and (b) DSC scans of Mg65Cu25Gd10, Mg67Cu25Y8, Zr61Cu17.5Ni10Al7.5Si4, and Fe70B20Si10 amorphous metallic alloys. 138
Figure 4.2 The bio-corrosion response for the four MGs immersed in Hank’s solution for 24 h under two pH levels of 2.0 and 6.5: (a) Mg65Cu25Gd10, (b) Mg67Cu25Y8, (c) Zr61Cu17.5Ni10Al7.5Si4, and (d) Fe70B20Si10. 139
Figure 4.3 Variations of the pH values as a function of immersion time for the Hank’s solution itself, as well as the Hank’s solution immersed with the four MGs. Only the variation for initial pH=6.5 is shown. 140
Figure 4.4 The bio-corrosion response for the four MGs immersed in Hank’s solution for 24 h under two pH levels of 2.0 and 6.5: (a) Mg65Cu25Gd10, (b) Mg67Cu25Y8, (c) Zr61Cu17.5Ni10Al7.5Si4, and (d) Fe70B20Si10. 141
Figure 4.5 (a) XRD scans and (b) DSC scans for the MGs under study. The XRD peak in (a) for the Ti65Si15Ta10Zr10 MG is referred to the {110} planes of the minor crystalline Ta phase embedded in the amorphous matrix. The Ta57Zr23Cu12Ti8 thin film metallic glass is too thin for DSC measurement. But from the smooth XRD hump in (a) it can be ensured that this MG is fully amorphous. 142
Figure 4.6 The comparison of cyclic voltammogram responses for pure Ti, Ta57Zr23Cu12Ti8, Ti65Si15Ta10Zr10, Ti40Cu36Pd14Zr10, Ti45Cu35Zr20, Zr61Cu17.5Ni10Al7.5Si4, Zr53Cu30Ni9Al8 and Zr53Cu30Al8Pd4.5Nb4.5 MGs.. 143
Figure 4.7 The comparison of cyclic voltammograms for Ta57Zr23Cu12Ti8 and Ti65Si15Ta10Zr10 MGs and pure Ti in Hank's solution. 144
Figure 4.8 (a) The measured i–t curves for various MG and the control group of Ti, with the applied voltage of 80 mV. (b) The close-up i–t curves for the three samples with low current response. 145
Figure 4.9 The SEM images for the MGs after the potential state test. 146
Figure 4.10 The EDS results for inspecting the composition labeled in red square in Fig. 6. (a) Ti40Cu36Pd14Zr10, (b) Ti45Cu35Zr20, (c) Zr61Cu17.5Ni10Al7.5Si4, (d) Zr53Cu30Ni9Al8 (e) Zr53Cu30Al8Pd4.5Nb4.5 and (f) Ti65Si15Ta10Zr10. (1: composition before potential state test, 2: composition after test.). 147
Figure 4.11 The results of cell viability tests for pure Ti and various MGs cultured for 72 h, and the medium after the potential state test (24 h culture). The viability of the control pure Ti is set to be 100% as a reference. (a) pure Ti, (b) Ti65Si15Ta10Zr10, (c) Ti40Cu36Pd14Zr10, (d) Ti45Cu35Zr20, (e) Zr61Cu17.5Ni10Al7.5Si4, (f) Zr53Cu30Ni9Al8, (g) Zr53Cu30Al8Pd4.5Nb4.5. 148
Figure 4.12 (a) XRD patterns and (b) DSC scans of TiZr-based and Ti-based metallic glasses. 149
Figure 4.13 The comparison of the cyclic voltammogram responses for Ti45Cu35Zr20 and Ti42Zr40Si15Ta3, Ti40Zr40Si15Cu5, and pure Ti (inset) in Hank’s solution. Note that the current response for Ti45Cu35Zr20 is around 1000-fold greater than the other samples.. 150
Figure 4.14 The comparison of thei-t curves for TiZr-based metallic glasses and pure Ti with the applied low-voltage (80 mV) in the Hank’s solution.. 151
Figure 4.15 The potential polarization curves of TiZr-based and Ti-based metallic glasses and pure Ti in Hank’s solution.. 152
Figure 4.16 The comparison of MTT tests for (a) pure Ti, (b) Ti42Zr40Si15Ta3, (c) Ti40Zr40Si15Cu5, and (d) Ti45Cu35Zr20 with culturing for 72 hours and the medium with culturing for 24 hours after the potential state test. The control pure Ti is defined to be 100 % viability for reference.. 153
Figure 4.17 (a) and (b) Photo images of thesurgical opertion for the implantation (left) and the corresponding X-ray image (right) after the operttions. Note that the MGs were placeat theepiphyseal growth plate of the right tibia. The implantation sites for the corresponding MG are marked.. 154
Figure 4.18 The 2D (a-c) and 3D (a’-c’) micro-CT images of the three MGs at theepiphyseal growth platesafter one month of implantation.(a)(a’) Ti42Zr40Si15Ta3, (b)(b’) Ti40Zr40Si15-Cu5, and (c)(c’) Ti45Cu35Zr20. The dotted circles indicate the corresponding implantation sites of each TiZr-based and Ti-based metallic glass. 155
Figure 4.19 (a) XRD and (b) DSC patterns of the Ti45Zr40Si15, Ti40Zr40Si15-Cu5 and Ti45Zr25-Cu30 metallic glasses.. 156
Figure 4.20 Open circuit potentials (OCP) curves of the Ti45Zr40Si15, Ti40Zr40Si15-Cu5 and Ti45Zr25-Cu30 metallic glasses in the Hank's solution. 157
Figure 4.21 Potential polarization Tafel curves of the Ti45Zr40Si15, Ti40Zr40Si15-Cu5 and Ti45Zr25-Cu30 metallic glasses in the Hank's solution.. 158
Figure 4.22 The Nyquist plot showing the EIS spectra of the Ti45Zr40Si15, Ti40Zr40Si15-Cu5 and Ti45Zr25-Cu30 metallic glasses in Hank's solution.. 159
Figure 4.23 Representative EDS element mapping near the pitted region in the Ti-based metallic glasses immersed in Hank's solution. (a) SEM secondary electronic image showing a pitted region of Ti45Zr40Si15 on the right side, and the EDS mappings for Ti, Zr, Cl, and Si. (b) SEM secondary electronic image showing a pitted region of Ti40Zr40Si15-Cu5, and the EDS mappings for Ti, Zr, Cl, Si, and Cu. Note that both Ti and Zr were depleted and Cl was enriched in the pitted region... 160
Figure 4.24 XPS spectrums for the surface analysis of Ti45Zr40Si15, Ti40Zr40Si15-Cu5 and Ti45Zr25-Cu30 after 7-day immersion in Hank’s solution: the (a) O 1s, (b) Ti 2p, (c) Zr 3d, (d) Si 2p, and (e) Cu 2p peak. 161
Figure 4.25 Schematic illustration of the pitting corrosion mechanisms of three Ti-based metallic glasses in the Hank’s solution. The mechanism in (a) to (b) is for Cu-free Ti45Zr40Si15, and that in (a) to (e) is for Cu-containing Ti40Zr40Si15-Cu5 and Ti45Zr25-Cu30, respectively. (a) continuous passive film formation in the Hank’s solution, (b) local passive layer breakdown due to the galvanic corrosion, (c) the further dissolution of the Cu, (d) the precipitated CuCl formation on the surface of the Cu-containing Ti-based metallic glasses, and (e) pitting propagation.. 162
Figure 4.26 Comparison of the MTT tests for the Ti45Zr40Si15, Ti40Zr40Si15-Cu5 and Ti45Zr25-Cu30 metallic glasses. The control pure DMEM is defined to be 100 % viability for reference. 163
Figure 4.27 DSC curve of (a) Zr53Cu30Ni9Al8 and (b) Ti42Zr40Si15Ta3 metallic glasses.. 164
Figure 4.28 (a) DSC curves and (b) XRD patterns of as-cast Zr53Cu30Ni9Al8 and its partial crystalline alloys. 165
Figure 4.29 (a) DSC patterns of as-cast Ti42Zr40Si15Ta3 and its partial crystalline alloys. (b) XRD curves of as-cast Ti42Zr40Si15Ta3 and its partial crystalline alloys. .166
Figure 4.30 (a) Bright field TEM micrograph, (b) Dark field TEM micrograph, and (c) corresponding diffraction pattern of Ti42Zr40Si15Ta3 after 10 min annealing. (d) HRTEM image showing the clear boundaries between the β-Ti nanocrystal and Ti42Zr40Si15Ta3 glassy matrix. 167
Figure 4.31 Open circuit potentials as a function of immersion time of the as-cast and annealed Zr53Cu30Ni9Al8 metallic glasses in Hank's solution. 168
Figure 4.32 Open circuit potentials as a function of immersion time of the as-cast and annealed Ti42Zr40Si15Ta3 metallic glasses in Hank's solution. 169
Figure 4.33 Potential polarization curves of the as-cast and annealed Zr53Cu30Ni9Al8 metallic glasses in Hank's solution.. 170
Figure 4.34 Potential polarization curves of the as-cast and annealed Ti42Zr40Si15Ta3 metallic glasses in Hank's solution.. 171
Figure 4.35 SEM images of the pitting morphology for the as-cast Zr53Cu30Ni9Al8 metallic glasses after polarization measurement in Hank’s solution. 172
Figure 4.36 The equivalent circuit model of the as-cast and annealed Zr53Cu30Ni9Al8 and Ti42Zr40Si15Ta3 metallic glasses for fitting the curve of the Nyquist plot in Hank's solution. The Rs, Rp, and CPE are the solution resistance, polarization resistance, and constant phase element, respectively. 173
Figure 4.37 The Nyquist plot showing the EIS spectra of the as-cast and annealed Zr53Cu30Ni9Al8 metallic glasses in Hank's solution.. 174
Figure 4.38 The Nyquist plot showing the EIS spectra of the as-cast and annealed Ti42Zr40Si15Ta3 metallic glasses in Hank's solution. 175
Figure 4.39 The structure of passive layers form on the surface of the nanocrystallized Zr53Cu30Ni9Al8 and Ti42Zr40Si15Ta3 metallic glasses via passive process after polarization measurements. 176
參考文獻 References
[1] A.C. Lund, C.A. Schuh, J. Appl. Phys., 95 (2004) 4815-4822.
[2] A. Inoue, T. Zhang, T. Masumoto, Mater. Trans., JIM, 36 (1995) 391-398.
[3] A. Inoue, Mater. Trans., JIM, 36 (1995) 866-875.
[4] A. Inoue, Materials Science Foundations, 6 (1999) 1-148.
[5] A. Inoue, T. Zhang, Mater. Trans., JIM, 37 (1996) 1726-1729.
[6] A. Inoue, N. Nishiyama, T. Matsuda, Mater. Trans., JIM, 37 (1996) 181-184.
[7] A. Inoue, K. Hashimoto, Amorphous and Nanocrystlline Materials, (2001).
[8] M. Nake, K. Hashimoto, T. Masumoto, J. Non-Cryst. Solids, 31 (1979) 355-365.
[9] T.C. Chieh, J. Chu, C.T. Liu, J.K. Wu, Mater. Lett., 57 (2003) 3022-3025.
[10] B.M. Im, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, Corros. Sci., 37 (1995) 709-722.
[11] H. Habazaki, H. Ukai, K. Izumiya, K. Hashimoto, Mater. Sci. Eng. A, 318 (2001) 77-86.
[12] C.A.C. Sousa, C.S. Kiminami, J. Non-Cryst. Solids, 219 (1997) 155-159.
[13] W.H. Peter, R.A. Buchanan, C.T. Liu, P.K. Liaw, M.L. Morrison, J.A. Horton, C.A. Carmichael, J.L. Wright, Intermetallics, 10 (2002) 1157-1162.
[14] A. Inoue, H. Koshiba, T. Zhang, A. Makino, J. Appl. Phys., 83 (1998) 1967-1974.
[15] Y. Hara, T. Ando, R.C. Ohandley, N.J. Grant, J. Appl. Phys., 62 (1987) 1948-1951.
[16] A. Inoue, Mater. Sci. Eng. A, 226 (1997) 357-363.
[17] A. Inoue, J.S. Gook, Mater. Trans., JIM, 36 (1995) 1180-1183.
[18] A. Inoue, J.S. Gook, Mater. Trans., JIM, 37 (1996) 32-38.
[19] A. Inoue, T. Zhang, W. Zhang, A. Takeuchi, Mater. Trans., JIM, 37 (1996) 99-108.
[20] A. Inoue, T. Zhang, A. Takeuchi, Mater. Trans., JIM, 37 (1996) 1731-1740.
[21] A. Inoue, A. Makino, Nanostruct. Mater., 9 (1997) 403-412.
[22] A. Inoue, H. Koshiba, T. Itoi, A. Makino, Appl. Phys. Lett., 73 (1998) 744-746.
[23] A. Inoue, Mater. Sci. Eng. A, 304 (2001) 1-10.
[24] V. Schroeder, C.J. Gilbert, R.O. Ritchie, Scripta Mater., 38 (1998) 1481-1485.
[25] T. Zhang, A. Inoue, Mat. Res. Soc. Symp. Proc. 554 (1999) 361.
[26] A. Inoue, C. Fan, Mat. Res. Soc. Symp. Proc. 554 (1999) 143.
[27] A. Inoue, Intermetallics, 8 (2000) 455-468.
[28] J.S.C. Jang, H.Y. Tsai, C.H. Tasu, C.J. Chen, The Minerals, Metal & Materials Society, (1992) 95.
[29] A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, T. Masumoto, Mater. Trans., JIM, 34 (1993) 1234-1237.
[30] A. Peker, W.L. Johnson, Appl. Phys. Lett., 63 (1993) 2342-2344.
[31] X.H. Lin, W.L. Johnson, W.K. Rhim, Mater. Trans., JIM, 38 (1997) 473-477.
[32] C. Fan, A. Takeuchi, A. Inoue, Mater. Trans., JIM, 40 (1999) 42-51.
[33] T. Zhang, A. Inoue, T. Masumoto, Mater. Sci. Eng. A, 182 (1994) 1423-1426.
[34] A. Inoue, N. Nishiyama, K. Amiya, T. Zhang, T. Masumoto, Mater. Lett., 19 (1994) 131-135.
[35] K. Amiya, N. Nishiyama, A. Inoue, T. Masumoto, Mater. Sci. Eng. A, 179 (1994) 692-696.
[36] Y.C. Kim, W.T. Kim, D.H. Kim, Mater. Sci. Eng. A, 375 (2004) 127-135.
[37] F.X. Qin, M. Yoshimura, X.M. Wang, S.L. Zhu, A. Kawashima, K. Asami, A. Inoue, Mater. Trans., JIM, 48 (2007) 1855-1858.
[38] J.J. Oak, A. Inoue, Mater. Sci. Eng. A, 449 (2007) 220-224
[39] I.Gotman, J. Endourol.11 (1997) 383-389.
[40] U.K.Mudali, T.M.Sridhar, B.Raj, Sadhana Acad. Proc. Eng. Sci.28 (2003) 601-637.
[41] S.R.Paital, N.B.Dahotre, Mater. Sci. Eng., R66 (2009) 1-70.
[42] A. Srivastav,in: A.N.Laskovski, Biomedical Engineering, Trends in Materials Science (2011) 154-168.
[43] N.Jacobsen,A.Hensten-Pettersen,Eur. J. Orthod.11 (1989) 254-264.
[44] Z.L. Sun, J.C.Wataha, CT. Hanks, J. Biomed. Mater. Res.34 (1997) 29-37.
[45] J.W. Vahey, P.T. Simonian, E.U. Conrad III, Am. J. Orthop. 24 (1995) 319-324.
[46] M.Long, HJ.Rack,Biomaterials19 (1998) 1621-1639.
[47] K.Wang, Mater. Sci. Eng. A, 213 (1996) 134-137.
[48] H.J.Agins, N.W.Alcock, M.Bansal, E.A.Salvati, P.D.Wilson, P.M.Pellicci, P.G. Bullough, J. Bone Joint Surg., 70A (1988) 347-356.
[49] P.A.Dearnley, K.L.Dahm, H.Cimenoglu,Wear, 256 (2004) 469-479.
[50] R.A.Antunes, M.C.L.de Oliveira, Acta. Biomater., 8 (2012) 937–962.
[51] T. Hanawa, Mater. Sci. Eng. C, 24 (2004) 745-752.
[52] Y. Okazaki, E. Gotoh, Biomaterials, 26 (2005) 11-21.
[53] P.A.Dearnley, K.L.Dahm, H.Cimenoglu, Wear, 256 (2004) 469-479.
[54] A.Inoue, Acta Mater., 48 (2000) 279-306.
[55] J. Li, L.L. Shi, Z.D. Zhu, Q. He, H.J. Ai, J. Xu, Mater. Sci. Eng. C, 33 (2013) 2113-2121.
[56] J.R. Scully, A. Gebert, J.H. Payer, J. Mater. Res., 22 (2007) 302-313.
[57] Y.B. Wang, H.F. Li, Y.F. Zheng, M. Li, Mater. Sci. Eng. C32 (2012) 599-606.
[58] B. Zberg, P.J. Uggowitzer, J.F. Loffler, Nat. Mater., 8 (2009) 887-891.
[59] M.D. Demetriou, A. Wiest, D.C. Hofmann, W.L. Johnson, B. Han, N. Wolfson, G.Y. Wang, P.K. Liaw, JOM, 62 (2010) 83-91.
[60] S. Hiromoto, Electrochem. Soc. Interface, 17 (2008) 41-44.
[61] D.Granchi, E. Cenni, G. Ciapetti, L. Savarino, S. Stea, S. Gamberini, A. Gori, A. Pizzoferrato, J. Mater. Sci. Mater. Med., 9 (1998) 31-37.
[62] Y.B.Wang, X.H. Xie, H.F. Li, X.L. Wang, M.Z. Zhao, E.W. Zhang, Y.J. Bai, Y.F. Zheng, L. Qin, Acta Biomater., 7 (2011) 3196-3208.
[63] J.D. Cao, N.T. Kirkland, K.J. Laws, N. Birbilis, M. Ferry, Acta. Biomater., 8 (2012) 2375-2383.
[64] H.F. Li , X.H. Xie , K. Zhao , Y.B. Wang , Y.F. Zheng , W.H. Wang , L. Qin, Acta. Biomater., 9 (2013) 8561-8573.
[65] P.G. Laing, A.B. Ferguson Jr., E.S. Hodge,J. Biomed. Mater. Res. 1(1967) 135-149.
[66] W.M. Elshahawy, I. Watanabe, P. Kramer, Dent. Mater., 25 (2009) 1551–1555.
[67] M. Calin, A. Gebert, A.C. Ghinea, P.F. Gostin, S. Abdi, C. Mickel, J. Eckert,Mater. Sci. Eng. C, 33 (2013) 875-883.
[68] W.M. Elshahawy, I. Watanabe, P. Kramer, Dent. Mater., 25 (2009) 1551–1555.
[69] J.C. Hornez, A. Lefèvre, D. Joly, H.F. Hildebrand, Biomol. Eng., 19 (2002) 103–117.
[70] X.A. Li, Y.X. Wang, C.F. Du, B.A. Yan, J. Nanosci. Nanotechnol., 10 (2010) 7226–7230.
[71] Y.F. Wu, W.C. Chiang, J.K. Wu, Mater. Lett., 62 (2008) 1554–1556.
[72] W.H. Peter, R.A. Buchanan, C.T. Liu, P.K. Liaw, M.L. Morrison, J.A. Horton, C.A.
Carmichael, J.L. Wright, Intermetallics, 10 (2002) 1157–1162.
[73] F.X. Qin, M. Yoshimura, X.M. Wang, S.L. Zhu, A. Kawashima, K. Asami, A. Inoue Mater. Trans., JIM, 48 (2007) 1855-1858
[74] A.M. Lucente, J.R. Scully, J. Electrochem. Soc., 155 (2008) C234-C243.
[75] X.F. Wang, X.Q. Wu, J.G. Lin, M. Ma, Mater. Lett., 61 (2007) 1715–1717.
[76] J.G. Lin, J. Xu, W.W. Wang, W. Li, Mater. Sci. Eng. B, 176 (2011) 49–52.
[77] 吳學陞, 工業材料, 149 (1999).
[78] 鄭振東, 非晶質金屬漫談,建宏出版社,Taipei,Taiwan, (1990).
[79] S. Hiromoto, A.P. Tsai, M. Sumita, T. Hanawa, Corros. Sci., 42 (2000) 2193–2200.
[80] S. Hiromoto, T. Hanawa, Electrochim. Acta, 47 (2002) 1343–1349.
[181] S. Hiromoto, A.P. Tsai, M. Sumita, T. Hanawa, Corros. Sci., 42 (2000) 1651–1660.
[82] M.L. Morrison, R.A. Buchanan, R.V. Leon, C.T. Liu, B.A. Green, P.K. Liaw, J.A. Horton, J. Biomed. Mater. Res. A, 74A (2005) 430–438.
[83] C.H. Lin, C.H. Huang, J.F. Chuang, H.C. Lee, M.C. Liu, X.H. Du, J.C. Huang, J.S.C. Jang, C.H. Chen, Mater. Sci. Eng. C 32 (2012) 2578–2582.
[84] A. Inoue, Bulk Amorpohus Alloys Practical Characteristics and Applications, Institute for Material Research, Tohoku University, Sendai, Japan, (1999).
[85] H.J. Güntherodt, H. Beck (ed.), Glassy Metals I, Springer-Verlag, Berlin Heidelberg, Germany, (1981).
[86] A. Inoue, K. Nakazato, Y. Kawamura, A.P. Tsai, T. Masumoto, Mater. Trans., JIM, 35 (1994) 95-102.
[87] A. Inoue, T. Zhang, A. Takeuchi, Mater. Sci. Forum, 269-272 (1998) 855-864.
[88] A. Inoue, A. Takeuchi, T. Zhang, Metall. Mater. Trans. A, 29 (1998) 1779-1793.
[89] A. Inoue, Bulk Amorpohus Alloys. Trans Tech Publications, Zurich, Swiss, (1998).
[90] R.E. Reed-Hill, Physical Metallurgy Principles, PWS, Boston, USA, (1994).
[91] K.L. Chapra, Thin Film Phenomena, McGraw-Hill, (1969).
[92] W. Paul, G.A.N. Connell, R.J. Temkin, Adv. Phys., 22 (1973) 531-580.
[93] F.X. Liu, P.K. Liaw, G.Y. Wang, C.L. Chiang, D.A. Smith, P.D. Rack, J.P. Chu, R.A. Buchanan, Intermetallics, 14 (2006) 1014-1018.
[94] B. Li, N. Nordstrom, E.J. Lavernia, Mater. Sci. Eng A, 237 (1997) 207-215.
[95] R.S. Liu, J.Y. Li, K.J. Dong, C.X. Zheng, H.R. Liu, Mater. Sci. Eng. B, 94 (2002) 141-148.
[96] P.S. Grant, Prog. Mater. Sci., 39 (1995) 497-545.
[97] C.R.M. Afonso, C. Bolfarini, C.S. Kiminami, N.D. Bassim, M.J. Kaufman, M.F. Amateau, T.J. Eden, J.M. Galbraith, J. Non-Cryst. Solids, 284 (2001) 134-138.
[98] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater., 47 (1999) 579-583.
[99] Z.P. Xing, S.B. Kang, H.W. Kim, Metall. Mater. Trans. A, 33 (2002) 1521-1530.
[100] C.C. Koch, O.B. Cavin, C.G. Mckamey, J.O. Scarbrough, Appl. Phys. Lett., 43 (1983) 1017-1019.
[101] J. Lee, F. Zhou, K.H. Chung, N.J. Kim, E.J. Laverina, Metall. Mater. Trans. A, 32 (2001) 3109-3115.
[102] M.S. El-Eskandarany, A. Inoue, Metall. Mater. Trans. A, 33 (2002) 135-143.
[103] A. Sagel, H. Sieber, H.J. Fecht, J.H. Perepezko, Acta Mater., 46 (1998) 4233-4241.
[104] A. Inoue, T. Nakamura, and N. Nishiyama, Mater. Trans., JIM, 33 (1992) 937-945.
[105] Z.P. Lu, H. Tan, Y. Li, and S.C. Ng, Scripta Mater., 42 (2000) 667-673.
[106] Z.P. Lu, C.T. Liu, Acta Mater., 50 (2002) 3501-3512.
[107] X.H. Du, J.C. Huang, C.T. Liu, Z.P. Liu, J. Appl. Phys., 101 (2007) 086108.
[108] D. Turnbull, J. C. Fisher, J. Chem. Phys., 17 (1949) 71-73.
[109] A. Inoue, Acta Mater., 48 (2000) 279-306.
[110] T.A. Waniuk, J. Schroers and W. L. Johnson, Appl. Phys. Lett., 78 (2001) 1213-1215.
[111] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, Acta Mater., 49, (2001) 2645-2652.
[112] T.D. Shen, Y. He, R.B. Schwarz, J. Mater. Res., 14 (1999) 2107-2115.
[113] B.S. Murty, K. Hono, Mater. Trans., JIM, 41 (2001) 1538-1544.
[114] Z.P. Lu, C.T. Liu, Intermetallics, 12 (2004) 1035-1043.
[115] 柯賢文, 腐蝕及其防制,全華科技圖書股份有限公司, (2006).
[116] D.F. Williams, The Williams Dictionary of Biomaterials, University of Liverpool Press, (1999).
[117] Dorland's Medical Dictionary.
[118] International Dictionary of Medicine and Biology.
[119] J. Klompmaker, H.W.B. Jansen, R.P.H. Veth, H.K.L. Nielsen, J.H. Degroot, A.J. Pennings, Biomaterials 13 (1992) 625–634.
[120] H.Y. Cheung, K.T. Lau, T.P. Lu, D. Hui, Compos. Part B, 38 (2007) 291–300.
[121] W.P. Cao, L.L. Hench, Ceram. Int., 22 (1996) 493–507.
[122] L.L. Hench, J. Am. Ceram. Soc., 74 (1991) 1487–1510.
[123] H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biomaterials 22 (2001) 1253–1262.
[124] T. Kodama, Kokubyo Gakkai Zasshi, 56 (1989) 263–288.
[125] D.R.C. McLachlan, C. Bergeron, J.E. Smith, D. Boomer, S.L. Rifat, Neurology, 48 (1997) 1141–1142.
[126] W.L. Johnson, MRS Bull., 24 (1999) 42-56.
[127] J.R. Scully, A. Gebert, J.H. Payer, J. Mater. Res., 22 (2007) 302–313.
[128] J. Schroers, Adv. Mater., 22 (2010) 1566–1597.
[129] F.X. Qin, X.M. Wang, A. Inoue, Intermetallics 15 (2007) 1337–1342.
[130] G. Lütjering, Mater. Sci. Eng. A, 263 (1999) 117–126.
[131] J.Q. Wang, Y.H. Liu, M.W. Chen, G.Q. Xie, D.V. Louzguine-Luzgin, A. Inoue, J.H. Perepezko, Adv. Funct. Mater., 22 (2012) 2567–2570.
[132] B.R. McAuslan, G. Johnson, G.W. Delamore, M.A. Gibson, J.G. Steele, J. Biomed. Mater. Res., 22 (1988) 905–917.
[133] R.O. Hynes, Cell Biology of Extracellular Matrix, E.D. Hay (Ed.), Plenum Press, New York, (1982) 295-334.
[134] E.G. Hayman, M.D. Pierschbacher, Y. Ohgren, E. Ruoslahti, Proc. Nat. Acad. Sci. USA, 80 (1983) 4003-4007.
[135] J.B. Pethicai, R. Hutchings, W.C. Oliver, Philosophical Magazine A, 48 (1983) 593-606.
[136] J.L. Loubet, J.M. Georges, O. Marchesini, G. Meille, J. Tribol., 106 (1984) 43-48.
[137] W.C. Oliver, C.J. Mchargue, S.J. Zinkle, Thin Solid Films, 153 (1987) 185-196.
[138] M.F. Doerner, W.D. Nix, J. Mater. Res., 1 (1986) 601-609.
[139] C.A. Schuh, Materials today, 9 (2006) 32-40.
[140] S.J. Bull, J. Phys. D: Appl. Phys., 38 (2005) R393-R413.
[141] J.B. Pethica, R. Hutchings, and W.C. Oliver, Philos. Mag. A, 48 (1983) 593-606.
[142] W.C. Oliver, R. Hutchings, and J.B. Pethica, American Society for Testing and Materials, Philadelphia, PA, (1986) 90-108
[143] A. Heiskanen, M. Dufva, J. Emnéus, Chip based electroanalytical systems for monitoring cellular dynamics. In Microfluidics Based Microsystems: Fundamentals and Applications. (2010) 399-426.
[144] S.Y. Hong, S.M. Park, J. Electrochem. Soc., 150 (2003) E360-E365.
[145] M. Pacios Pujadó, Carbon Nanotubes as Platforms for Biosensors with electrochemical and Electronic Transduction, Springer, 2012.
[146] P.T. Kissinger, W.R. Heineman, J. Chem. Educ., 60 (1983) 702-706.
[147] 電化學原理與方法, 胡啟章, 五南書局, (2002) 5-49.
[148] Y. Tan and R. Winston Revie, Heterogeneous Electrode Processes and Localized Corrosion, WILEY, (2012).
[149] S. M. Park and J. S. Yoo, Anal. Chem., 75 (2003) 455A–461A.
[150] S. Hüfner, Photoelectron Spectroscopy: Principles and Applications, Springer, 2003.
[151] M.L.T. Guo, C.Y.A. Tsao, K.F. Chang, J.C. Huang, J.S.C. Jang, Mater. Trans., JIM, 48 (2007) 1717–1721.
[152] H.S. Chou, J.C. Huang, L.W. Chang, Surf. Coat. Tech., 205 (2010) 587–590.
[153] T.H. Hung, MS Thesis, Study of Thermal Properties in Zr-Al-Cu-Ni Amorphous Alloy by Adding Boron and Silicon, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2004
[154] Y.C. Chang, PHD Thesis, Stduy on the thermomechanical properties and workability of Mg-based bulk metallic glasses, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2008
[155] A. Kawashima, K. Ohmura, Y. Yokoyama, A. Inoue, Corros. Sci., 53 (2011) 78–2784.
[156] C.H. Chen, Y.S. Lin, Y.C. Fu, C.K. Wang, S.C. Wu, G.J. Wang, R. Eswaramoorthy, Y.H.Wang, C.Z. Wang, Y.H. Wang, S.Y. Lin, J. K. Chang, M. L. Ho, J. Appl. Physiol., 114 (2013) 647-655.
[157] C.H. Chen, L. Kang, R.W. Lin, Y.C. Fu, Y.S. Lin, J.K. Chang, H.T. Chen, C.H. Chen, S.Y. Lin, G.J. Wang, M.L. Ho, Menopause, 20 (2013) 687-694.
[158] J.S.C. Jang, S.R. Jian, C.F. Chang, L.J. Chang, Y.C. Huang, T.H. Li, J.C. Huang, C.T. Liu, J. Alloys Compd., 478 (2009) 215–219.
[159] J.S.C. Jang, Y.W. Chen, L.J. Chang, G.J. Chen, Mater. Chem. Phys., 88 (2004) 227–233.
[160] J.S.C. Jang, K.C. Wu, S.R. Jian, P.J. Hsieh, J.C. Huang, C.T. Liu, J. Alloys Compd., 509 (2011) S109–S114.
[161] B.A. Green, R.V. Steward, I. Kim, C.K. Choi, P.K. Liaw, K.D. Kihm, Y. Yokoyama, Intermetallics, 17 (2009) 568–571.
[162] F.X. Qin, X.M. Wang, A. Kawashima, S.L. Zhu, H. Kimura, A. Inoue, Mater. Trans., 47 (2006) 1934–1937.
[163] H.B. Lu, L.C. Zhang, A. Gebert, L. Schultz, J. Alloys Compd., 462 (2008) 60–67.
[164] C.H. Huang, J.C. Huang, J.B. Li, J.S.C. Jang, Mater. Sci. Eng. C, 33 (2013) 4183-4187.
[165] C.H. Lin, C.H. Huang, J.F. Chuang, J.C. Huang, J.S.C. Jang, C.H. Chen, Mater. Sci. Eng. C, 33 (2013) 4520-4526.
[166] Z.P. Lu, C.T. Liu, Phys. Rev. Lett., 91 (2003) 115505.
[167] B. Yang, C.T. Liu, T.G. Nieh, Appl. Phys.Lett., 88 (2006) 221911.
[168] J.B. Li, H.C. Lin, J.S.C. Jang, C.N. Kuo, J.C. Huang, Mater. Lett. 105 (2013) 140-143.
[169] L. Huang, D. Qiao, B. A. Green, P. K. Liaw, J. Wang , S. Pang,T. Zhang, Intermetallics, 17 (2009) 195–199.
[170] A. Kawashima, K. Ohmura, Y. Yokoyama, A. Inoue, Corros. Sci., 53 (2011) 2778–2784.
[171] J. Fornell, N. Van Steenberge, A. Varea, E. Rossinyol, E. Pellicer, S. Surinach, M.D. Baro, J. Sort, J. Mech. Behav. Biomed., 4 (2011) 1709-1717.
[172] Y.B. Wang, Y.F. Zheng, S.C. Wei, M. Li, J. Biomed. Mater. Res. B, 96B (2011) 34–46.
[173] G. Rondelli, P. Torricelli, M. Fini, L. Rimondini, R. Giardino, J. Biomed. Mater. Res. B, 79 (2006) 320–324.
[174] Z.W. Hsiao, C.C. Fu, P.H. Tsai, J.S.C. Jang, S.R. Jian, J.C. Huang, Mater. Sci. Forum
638–642 (2010) 2933–2937.
[175] J.S.C. Jang, S.C. Lu, L.J. Chang, T.H. Hung, J.C. Huang, C.Y.A. Tsao, J. Metall. Nano.
Mater., 24–25 (2005) 201–204.
[176] J.S.C. Jang, S.F. Tsao, L.J. Chang, J.C. Huang, C.T. Liu, Intermetallics, 17 (2009) 56–64.
[177] P.H. Tsai, S.K. Wang, S.R. Jian, I.S. Lee, Y.Z. Chang, Y.Z. Lin, J.S.C. Jang, C. Li, Mater. Technol., 27 (2012) 43–45.
[178] M. Mehmood, B.-P. Zhang, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, Corros. Sci., 40 (1998) 1–17.
[179] A.M. Lucente, J.R. Scully, Corros. Sci., 49 (2007) 2351–2361
[180] M.R.S. Abouzari, F. Berkemeier, G. Schmitz, D. Wilmer, Solid State Ionics, 180 (2009) 922–927.
[181] K. Mondal, B.S. Murty, U.K. Chatterjee, Corros. Sci., 48 (2006) 2212–2225.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code