Responsive image
博碩士論文 etd-0629114-134105 詳細資訊
Title page for etd-0629114-134105
論文名稱
Title
以熱分析法結合低溫電漿游離質譜法分析高分子聚合物
Low-Temperature Plasma Ionization Mass Spectrometry Combined with Thermal Analysis for Polymer Characterization
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-25
繳交日期
Date of Submission
2014-07-29
關鍵字
Keywords
熱裂解、低溫電漿游離、大氣壓力質譜法、聚合物、熱重分析、逸散氣體
evolved gas analysis, thermogravimetry, pyrolysis, low-temperature plasma, polymer, Atmospheric pressure ionization
統計
Statistics
本論文已被瀏覽 5716 次,被下載 528
The thesis/dissertation has been browsed 5716 times, has been downloaded 528 times.
中文摘要
高分子聚合物與日常生活息息相關,在合成及加工的過程中,如何有效地對其結構、化性及物性分析,對於品質管理是相當重要的一環。在分析前,通常需要較為繁瑣的前處理及層析分離方法來將目標分析物純化,以便於更進一步利用光譜分析或是質譜儀等技術進行化學組成鑑定。然而,聚合物本身的揮發性及溶解度相當低,無法直接進行游離與偵測,因此文獻中大多搭配熱裂解裝置(Pyrolyzer)的使用,先將分析物進行裂解與氣化,再導入氣相層析質譜儀(Gas chromatography/Mass spectrometry, GC/MS)進行分析;而對於高分子樣品的材料特性亦常見有使用熱重分析儀(Thermogravimetric analyzer, TGA)進行分析,透過質量與溫度之間的變化關係及逸散氣體的質譜分析可有效監測材料性能的變化。相較於傳統質譜游離法中游離源處於高度的真空環境,大氣壓力游離質譜法能夠在常溫常壓下進行游離反應,並且不受前處理及層析分離本身系統特性的限制,就能夠有效地偵測到目標分析物,不僅具有快速、即時等特點,也能夠進行高通量分析。
第一部分、熱裂解儀與大氣壓力質譜法結合介面之開發與應用
第一部分研究中致力於熱裂解法與低溫電漿游離質譜法的結合(Pyrolysis-Low temperature plasma ionization, Py-LTP),將熱裂解後的中性分析物直接導入低溫電漿游離源,藉由氮氣所產生的活性物種,以Penning ionization的游離機制將分析物游離。研究中對於聚乙二醇(Polyethylene glycol, PEG)、雙酚A型聚碳酸酯(Polybisphenol A carbonate, PC)、纖維素,及聚乳酸(Polylactic acid)等聚合物及天然高分子進行分析,在裂解溫度400℃下都能夠得到裂解產物完整的分析物離子,而進一步將裂解溫度提高,也能夠得到其斷片及單體訊號。接著對非極性的聚乙烯(Polyethylene, PE)及正烷烴混合標準品進行分析,由文獻搜尋可知正烷烴具有相較於其他有機物較高的沸點,並且因為不具官能基,在常溫下不易游離,然而在熱裂解裝置所提供的400℃高溫下,可得到長碳鏈烷烴的[M+O-3H]+及[M-H]+氧化訊號,於600℃下更可分析碳數高達一百個以上的正烷烴,並且僅得到些微的熱裂解斷片訊號。由以上結果可得知,高溫環境可使電子及活性物種具有較高的動能,使其與分析物的碰撞機率增加,以提高低溫電漿的游離效率。
第二部分、熱重分析儀與大氣壓力質譜法結合介面之開發與應用
在傳統將熱重分析儀與質譜儀連結介面開發中,如何避免逸散氣體的冷凝及如何與質譜的高度真空環境相容為兩項重要的課題。研究中對於熱重分析法與低溫電漿游離質譜法結合介面的開發(Thermogravimetric analyzer-Low temperature plasma ionization, TGA-LTP),為透過一自製的加熱傳輸線進行逸散氣體傳輸,其能夠將熱重分析儀中逸散的裂解產物有效地傳送至低溫電漿游離源進行游離,以乙醯水楊酸、聚己內醯胺(Polycaprolactam, PCL),及聚丁二酸丁二醇酯的分析結果為例,在每分鐘20℃的升溫速度下從30℃升溫至650℃,可觀察到在開始重量損失及達到最大重量損失時的質譜圖變化,其中包含不同系列的裂解產物訊號;對於真實樣品的分析,以聚丙烯材質餐盤為例的結果中,除了能夠觀察到隨著程式升溫所產生的熱裂解碎片訊號,也能夠觀察到抗氧化添加劑的訊號,結果顯示此分析系統的建立能夠以線上(On-line)的方式快速檢測對於聚合物的熱穩定性及熱裂解機制。此項技術的開發將可提供高分子材料更直接且即時的分析。
Abstract
Polymer is highly related to our daily life, the analysis of its structure, chemical properties, and physical poperties is very important during manufacture quality control. Analysis procedure always accompany with tedius pretreatment to purify it before further detection. However, both synthetic and natural polymer has quite low volatility and solubility, common solvent system won’t dissolve it. Therefore, many studies have focused on using pyrolysis-GC/MS for analysis by decomposing it to deectable low molecular weight compound. Thermogravimetry-MS is also one of commonly used instrument to study thermal stability of material through monitoring weight loss during heating. Compare to high vacuum operating environment in conventional mass spectrometry, atmospheric pressure ionization mass spectrometry has advantages of less or non-pretreatment, rapidness, and high throughput analysis to detect target compound with effective and less complicated methods.
At the first part of thesis, the study focused on development of interface to connect Pyrolyzer and low-temperature plasma ionization mass spectrometry, neutral pyrolysates was directly transferred to ionization source and interacted with reactive species generateed from low-temperature plasma, and proceed Penning ionization as major ionization mechanism. Poly(ethylene glycol), poly(bisphenol A carbonate), cellulose, polylactic acid and many polymer materials were analyzed under various temperature. The result show that intact oligomer molecular ions can be detected, even higher pyrosis temperature(600℃) was used, , intact pyrolysates and monomer ions still can be detected without fragment peak induced from ionization source. Non-polar polyethylene and long chain normal alkane were also analyzed, it is well known that normal alkane has higher boiling point and can’t be easily ionized under room temperature, but it can be ionized using Py-LTP MS under 400℃, spectra signal were detected as [M+O-3H]+ and [M-H]+, signal of normal alkane with carbon number up to 120 can also be detected. From above result, it can be concluded that electron and plasma species has higher kinetic energy to increase its opportunity to interact with gas phase analyte, and enhance the ionization efficiency of low-temperature plasma.
At the second part of thesis, the study focused on development of interface to connect thermogravimetry analyzer and low-temperature plasma ionization mass spectrometry, during conventional TGA-MS development, it is important to avoid condensation of evolved gas, and maintain the compatibility of high vacuum operating environment, therefore, the interface was constructed using home-made heated transfer line, and proceed ionization under ambient environment. During analysis of acetysalicyclic acid, polycaprolactam, and poly(butylene succininate), dynamic temperature was set from 30℃ to 650℃ at 20℃/min, variation of mass spectra signal can be recorded and observed with arising temperature and weight-loss. Further study on real sample, such as non-reuseable polypropyleny plate, not only Pyrolysates signal can be observed, but anti-oxidant signal from additive can also be detected. The above results show that TGA-LTP MS can rapidly monitoring thermal stability and thermal degradation mechanism on-line, provide a useful, direct, and rapid method to analyze polymer material during synthesis and development.
目次 Table of Contents
目錄
論文審定書 i
謝誌 ii
論文摘要 iv
Abstract vi
目錄 viii
圖次 xi
表次 xvi
符號說明表 xvii
縮寫對照表 xviii
第一章 緒論 1
一、 前言 1
1. 電噴灑游離法 (Electrospray ionization, ESI) 2
2. 大氣壓力光游離法(Atmospheric pressure photoionization, APPI) 4
3. 大氣壓力化學游離法 (Atmospheric pressure chemical ionization, APCI) 6
二、 大氣壓力微電漿游離質譜法 7
1. 尖端放電電漿(Corona discharge plasma) 10
2. 輝光放電電漿(Glow discharge plasma) 13
3. 微波誘導電漿(Microwave induced plasma, MIP) 14
4. 介電質放電電漿(Dielectric barrier discharge plasma) 15
三、 熱裂解與大氣壓力質譜法結合的發展歷史、原理及機制 19
1. 熱裂解過程與機制34 20
2. 熱裂解裝置 22
3. 熱裂解-大氣壓力質譜法之文獻回顧 26
四、 熱重分析法與大氣壓力質譜法結合的發展歷史、原理與機制 31
1. 熱重分析法 31
2. 熱重分析儀 33
3. 熱重分析-大氣壓力質譜法之文獻回顧 34
五、 研究動機與論文目標 37
第二章 熱裂解儀與低溫電漿游離質譜法結合介面之開發 38
一、 實驗 38
1. 實驗裝置 38
2. 實驗藥品 40
3. 實驗操作 41
二、 結果與討論 41
1. 低溫電漿游離源之建立 41
2. 熱裂解儀與低溫電漿游離質譜法結合介面(Py-LTP MS)之建立 42
3. 熱裂解儀與低溫電漿游離質譜法結合介面實驗參數最適化之探討 45
4. 以熱裂解儀-低溫電漿游離質譜法進行樣品分析 49
三、 結論 66
第三章 熱重分析儀與低溫電漿游離質譜法結合介面之開發 67
一、 實驗 67
1. 實驗裝置 67
2. 實驗藥品 68
3. 實驗操作 68
二、 結果與討論 69
1. 熱重分析儀與低溫電漿游離質譜法結合介面(TGA-LTP MS)之建立 69
2. 以熱重分析儀-低溫電漿游離質譜法進行樣品分析 71
三、 結論 88
參考文獻 89
參考文獻 References
參考文獻
1. Yamashita, M.; Fenn, J. B., Electrospray Ion Source. Another Variation on the Free-Jet Theme. The Journal of Physical Chemistry 1984, 88 (20), 4451-4459.
2. Iribarne, J. V.; Thomson, B. A., On the Evaporation of Small Ions from Charged Droplets. The Journal of Chemical Physics 1976, 64 (6), 2287-2294.
3. Konermann, L.; Ahadi, E.; Rodriguez, A. D.; Vahidi, S., Unraveling the Mechanism of Electrospray Ionization. Anal. Chem. 2013, 85 (1), 2-9.
4. Robb, D. B.; Covey, T. R.; Bruins, A. P., Atmospheric Pressure Photoionization:  An Ionization Method for Liquid Chromatography−Mass Spectrometry. Anal. Chem. 2000, 72 (15), 3653-3659.
5. Dzidic, I.; Carroll, D. I.; Stillwell, R. N.; Horning, E. C., Comparison of Positive Ions Formed in Nickel-63 and Corona Discharge Ion Sources Using Nitrogen, Argon, Isobutane, Ammonia and Nitric Oxide as Reagents in Atmospheric Pressure Ionization Mass Spectrometry. Anal. Chem. 1976, 48 (12), 1763-1768.
6. Carroll, D. I.; Dzidic, I.; Stillwell, R. N.; Haegele, K. D.; Horning, E. C., Atmospheric Pressure Ionization Mass Spectrometry. Corona Discharge Ion Source for Use in a liquid Chromatograph-Mass Spectrometer-Computer Analytical System. Anal. Chem. 1975, 47 (14), 2369-2373.
7. Langmuir, I., Oscillations in Ionized Gases. Proc. Natl. Acad. Sci. U. S. A. 1928, 14 (8), 627-637.
8. Schutze, A.; Jeong, J. Y.; Babayan, S. E.; Park, J.; Selwyn, G. S.; Hicks, R. F., The Atmospheric-Pressure Plasma Jet: a Review and Comparison to Other Plasma Sources. IEEE Transactions on Plasma Sciences 1998, 26 (6), 1685-1694.
9. Raizer, Y. P.; Kisin, V. I.; Allen, J. E., Gas Discharge Physics. Springer-Verlag Berlin: 1991; Vol. 1.
10. Pappas, D., Status and Potential of Atmospheric Plasma Processing of Materials. Journal of Vacuum Science & Technology A 2011, 29 (2), -.
11. Bhat Manager, D. G., Advanced Surface Coatings a Handbook of Surface Engineering. Taylor & Francis: Glasgow and London, England, 1993; Vol. 8, p 393-397.
12. Ding, X.; Duan, Y., Plasma-Based Ambient Mass Spectrometry Techniques: The Current Status and Future Prospective. Mass Spectrom. Rev. 2014.
13. McEwen, C. N.; McKay, R. G.; Larsen, B. S., Analysis of Solids, Liquids, and Biological Tissues Using Solids Probe Introduction at Atmospheric Pressure on Commercial LC/MS Instruments. Anal. Chem. 2005, 77, 7826-7831.
14. Smith, M. J.; Cameron, N. R.; Mosely, J. A., Evaluating Atmospheric pressure Solids Analysis Probe (ASAP) Mass Spectrometry for the Analysis of Low Molecular Weight Synthetic Polymers. Analyst 2012, 137 (19), 4524-30.
15. Cody, R. B.; Laramée, J. A.; Durst, H. D., Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 2005, 77 (8), 2297-2302.
16. http://www.jeolusa.com/PRODUCTS/AnalyticalInstruments/MassSpectrometers/AccuTOF™DART®/AccuTOF™DART™Technology/tabid/449/Default.aspx.
17. Gross, J. H., Direct Analysis in Real Time-a Critical Review on DART-MS. Anal. Bioanal. Chem. 2014, 406 (1), 63-80.
18. 陳亮村. 開發以大氣壓力質譜法對各式樣品中揮發性成分的分析. 國立中山大學, 台灣, 2007.
19. Wang, H.; Sun, W.; Zhang, J.; Yang, X.; Lin, T.; Ding, L., Desorption Corona Beam Ionization Source for Mass Spectrometry. Analyst 2010, 135 (4), 688-695.
20. Ratcliffe, L. V.; Rutten, F. J. M.; Barrett, D. A.; Whitmore, T.; Seymour, D.; Greenwood, C.; Aranda-Gonzalvo, Y.; Robinson, S.; McCoustra, M., Surface Analysis under Ambient Conditions Using Plasma-Assisted Desorption/Ionization Mass Spectrometry. Anal. Chem. 2007, 79 (16), 6094-6101.
21. Andrade, F. J.; Shelley, J. T.; Wetzel, W. C.; Webb, M. R.; Gamez, G.; Ray, S. J.; Hieftje, G. M., Atmospheric Pressure Chemical Ionization Source. 1. Ionization of Compounds in the Gas Phase. Anal. Chem. 2008, 80 (8), 2646-2653.
22. Shelley, J. T.; Wiley, J. S.; Hieftje, G. M., Ultrasensitive Ambient Mass Spectrometric Analysis with a Pin-to-Capillary Flowing Atmospheric-Pressure Afterglow Source. Anal. Chem. 2011, 83 (14), 5741-5748.
23. Brion, C. E., A Windowless Photoionizaion Source for High Resolution Analytical Mass Spectrometers. Anal. Chem. 1965, 37 (13), 1706-1709.
24. Iza, F.; Hopwood, J. A., Low-Power Microwave Plasma Source Based on a Microstrip Split-Ring Resonator. IEEE Transactions on Plasma Sciences 2003, 31 (4), 782-787.
25. Zhan, X.; Zhao, Z.; Yuan, X.; Wang, Q.; Li, D.; Xie, H.; Li, X.; Zhou, M.; Duan, Y., Microwave-Induced Plasma Desorption/Ionization Source for Ambient Mass Spectrometry. Anal. Chem. 2013, 85 (9), 4512-4519.
26. Kogelschatz, U.; Eliasson, B.; Egli, W., From Ozone Generators to at Television Screens: History and Future Potential of Dielectric-Barrier Discharges. Pure Appl. Chem. 1999, 71 (10), 1819-1828.
27. Na, N.; Zhao, M.; Zhang, S.; Yang, C.; Zhang, X., Development of a Dielectric Barrier Discharge Ion Source for Ambient Mass Spectrometry. J. Am. Soc. Mass. Spectrom. 2007, 18 (10), 1859-1862.
28. Harper, J. D.; Charipar, N. A.; Mulligan, C. C.; Zhang, X.; Cooks, R. G.; Ouyang, Z., Low-Temperature Plasma Probe for Ambient Desorption Ionization. Anal. Chem. 2008, 80 (23), 9097-9104.
29. Nørgaard, A. W.; Kofoed-Sørensen, V.; Svensmark, B.; Wolkoff, P.; Clausen, P. A., Gas Chromatography Interfaced with Atmospheric Pressure Ionization-Quadrupole Time-of-Flight-Mass Spectrometry by Low-Temperature Plasma Ionization. Anal. Chem. 2012, 85 (1), 28-32.
30. Madorsky, S. L.; Straus, S., High Vacuum Pyrolytic Fractionation of Polystyrene. Industrial & Engineering Chemistry 1948, 40 (5), 848-852.
31. Bradt, P.; Dibeler, V. H.; Mohler, F. L., A New Technique for the Mass Spectrometric Study of the Pyrolysis Products of Polystyrene. Journal of Research of the National Bureau of Standards 1953, 50 (4), 201-202.
32. J, J., Innovation has driven growth in Polyolefins – how about India? In Fifth annual India chemical industry outlook conference, Mumbai, 2012.
33. Tsuge, S.; Ohtani, H.; Watanabe, C., Pyrolysis-GC/MS Data Book of Synthetic Polymers: Pyrograms, Thermograms and MS of Pyrolyzates. Elsevier: 2011.
34. Wampler, T. P., Applied Pyrolysis Handbook. Second ed.; Taylor & Francis: 2006.
35. Chapter 2 Thermal decomposition of polymers. In Techniques and Instrumentation in Analytical Chemistry, Serban, C. M., Ed. Elsevier: 2005; Vol. Volume 25, pp 31-107.
36. http://www.frontier-lab.com/product/catalogue/py3030.pdf.
37. Fernández, Y.; Arenillas, A.; Menéndez, J. Á., Microwave Heating Applied to Pyrolysis. In Advances in Induction and Microwave Heating of Mineral and Organic Materials, Grundas, S., Ed. InTech: 2011; p 766.
38. Folmer, O. F.; Azarraga, L. V., A Laser Pyrolysis Apparatus for Gas Chromatography. J. Chromatogr. Sci. 1969, 7 (11), 665-670.
39. Schulten, H. R.; Simmleit, N.; Mueller, R., High-temperature, High-sensitivity Pyrolysis Field Ionization Mass Spectrometry. Anal. Chem. 1987, 59 (24), 2903-2908.
40. Snyder, A. P.; Kremer, J. H.; Meuzelaar, H. L. C.; Windig, W.; Taghizadeh, K., Curie-Point Pyrolysis Atmospheric Pressure Chemical Ionization Mass Spectrometry: Preliminary Performance Data for Three Biopolymers. Anal. Chem. 1987, 59, 1945-1951.
41. Hong, C.-M.; Tsai, F.-C.; Shiea, J., A Multiple Channel Electrospray Source Used To Detect Highly Reactive Ketenes from a Flow Pyrolyzer. Anal. Chem. 2000, 72, 1175-1178.
42. Hsu, H.-J.; Kuo, T.-L.; Wu, S.-H.; Oung, J.-N.; Shiea, J., Characterization of Synthetic Polymers by Electrospray-Assisted Pyrolysis Ionization-Mass Spectrometry. Anal. Chem. 2005, 77, 7744-7749.
43. Adam, T.; Streibel, T.; Mitschke, S.; Mühlberger, F.; Baker, R. R.; Zimmermann, R., Application of Time-of-Flight Mass Spectrometry with Laser-Based Photoionization Methods for Analytical Pyrolysis of PVC and Tobacco. J. Anal. Appl. Pyrolysis 2005, 74 (1–2), 454-464.
44. Zhang, S.; Shin, Y. S.; Mayer, R.; Basile, F., On-Probe Pyrolysis Desorption Electrospray Ionization (DESI) Mass Spectrometry for the Analysis of Non-Volatile Pyrolysis Products. J. Anal. Appl. Pyrolysis 2007, 80 (2), 353-359.
45. Jones, R. W.; Reinot, T.; McClelland, J. F., Molecular Analysis of Primary Vapor and Char Products during Stepwise Pyrolysis of Poplar Biomass. Energy & Fuels 2010, 24 (9), 5199-5209.
46. Dunn, J. G., Thermogravimetry. In Encyclopedia of Analytical Chemistry, Meyers, R. A., Ed. John Wiley & Sons Ltd: 2012; pp 14012-14032.
47. Wendlandt, W. W.; Southern, T. M., An Apparatus for Simultaneous Gas Evolution Analysis and Mass Spectrometric Analysis. Anal. Chim. Acta 1965, 32 (0), 405-410.
48. Baumgartner, E.; Nachbaur, E., Thermogravimetry Combined with Chemical Ionization Mass Spectrometry a New Technique in Thermal Analysis. Thermochim. Acta 1977, 19 (1), 3-12.
49. Prime, R. B.; Shushan, B., Thermogravimetric Analyzer/Atmospheric Pressure Chemical Ionization Tandem Triple Quadrupole Mass Spectrometer System for Evolved Gas Analysis. Analytical Chemistry 1989, 61, 1195-1201.
50. Saraji-Bozorgzad, M.; Geissler, R.; Streibel, T.; Mühlberger, F.; Sklorz, M.; Kaisersberger, E.; Denner, T.; Zimmermann, R., Thermogravimetry Coupled to Single Photon Ionization Quadrupole Mass Spectrometry:  A Tool To Investigate the Chemical Signature of Thermal Decomposition of Polymeric Materials. Anal. Chem. 2008, 80 (9), 3393-3403.
51. http://forum.arduino.cc/index.php/topic,8386.0.html.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code