Responsive image
博碩士論文 etd-0629114-155250 詳細資訊
Title page for etd-0629114-155250
論文名稱
Title
超微型表面電漿子極化轉換器
Ultra-Compact Polarization Rotators Based on Surface Plasmon Polariton
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-16
繳交日期
Date of Submission
2014-07-29
關鍵字
Keywords
極化轉換器、表面電漿波
Surface Plasmon Polariton, Polarization Rotator
統計
Statistics
本論文已被瀏覽 5699 次,被下載 95
The thesis/dissertation has been browsed 5699 times, has been downloaded 95 times.
中文摘要
絕緣體上鍍矽波導在近幾年來被高度地關注並應用於光積體電路中,這是由於其高折射率差的結構特性能夠產生較強的光場侷限效果,進而實現光積體電路微型化的目的。然而,絕緣體上鍍矽波導結構本身具有強烈的極化相依現象,因此限制了和其他光學元件的相容性。過去提出了許多極化轉換器的相關研究,而大部分的設計為了達到高極化消光比和低鑲嵌損耗的特性,通常會忽略元件長度的考量,因而無法得到微型化的極化轉換元件。
在本研究中我們引入表面電漿效應來縮短極化轉換所需的長度,進而達到元件尺寸微型化的目的。首先,我們利用三維有限元素法(3D-FEM)來分析我們所設計的雙向漸變金屬結構極化轉換器,由模擬結果顯示,極化消光比會隨著金屬覆蓋面積的比例增加而上升,並隨著間隔層的厚度增加而減少。因此我們透過最佳化的程序,可以達到垂直極化光轉水平極化光在元件長度為5.2 μm時有20.76 dB的極化消光比和2.89 dB的鑲嵌損耗,水平極化光轉垂直極化光則是在元件長度為5 μm時有17.36 dB的極化消光比和2.7 dB的鑲嵌損耗結果。
除此之外,我們也提出傾斜金屬光柵和矩形波導所組成的極化轉換器,當固定金屬光柵的傾斜角時,極化消光比會隨著金屬結構的比例上升而增加,並隨著間隔層厚度的增加而減少。因此我們透過結構參數的優化,得到水平極化光轉垂直極化光時,元件長度為2.2 μm、極化消光比為17.36 dB和鑲嵌損耗為2.7 dB的結果,成功地利用表面電漿效應縮短極化轉換器的長度。
Abstract
Silicon-On-Insulator (SOI) waveguides have attracted great attention for their ability to confine light in a small region. However, one of the main drawbacks of SOI waveguides is their strong polarization dependence. To overcome this issue, variety types of silicon-based polarization rotators have been proposed with long device lengths to achieve sufficient extinction ratios and low insertion losses.
We first utilize the surface plasmon polariton (SPP) effect to design an ultra-compact polarization rotator consisting of a SOI waveguide covered by a linearly tapered aluminum with a silica gap. The numerical results from a three-dimensional finite element method (3-D FEM) show that the extinction ratio can be enhanced by increasing the device length and reducing the gap. We can obtain a 5.2-μm long polarization rotator with 20.76-dB extinction ration and 2.9-dB loss for TM–TE conversion, and 5-μm long device length with 17.36-dB extinction ration and 2.7-dB insertion loss for TE–TM conversion.
We have also proposed a tilt-metal-grating polarization rotator to achieve TE–TM conversion with high extinction ratio. The polarization conversion efficiency is in proportional to the increased metal thickness and decreased silica gap. Finally, we can obtain a 2.2-μm long polarization rotator with 20.84-dB extinction ration and 3.3-dB insertion loss by optimizing the performance of the rotator.
目次 Table of Contents
誌謝......................................................................................................................i
中文摘要…………………………………………………………………..…...ii
Abstract………………………………..……………………..………………..iii
目錄………………………………………………………………….…… ......iv
表目錄…………………………………………………………..……………..vi
圖目錄………………………………………………………….……………..vii
第一章 緒論……….…………………………………………………...…...........…1
1-1 絕緣體上鍍矽光波導……………………………...……………….1
1-2 極化分集系統……………………………………………………....2
1-3 極化轉換器……………………………………………………...….3
1-4 混和式表面電漿波元件…………………………………………….7
1-5 研究動機…………………………………………………………..11
第二章 表面電漿波………………………………………...……..........…...........13
2-1 表面電漿波簡介…………………………………..………….........13
2-2 表面電漿波之共振模態………………………………..…….....…14
2-3 表面電漿波之激發架構………………………………..………….22
第三章 漸變金屬極化轉換器之數值分析……………………..……..……....26
3-1 漸變金屬結構之極化轉換器……………………………….....…26
3-2 雙向漸變金屬極化轉換器……………………………...…………29
3-3 雙向漸變金屬極化轉換器之特性分析………………………..….33
第四章 傾斜金屬光柵極化轉換器之數值分析………………….……….......46
4-1 金屬週期性結構之極化相關元件…………………….…………..46
4-2 傾斜金屬光柵極化轉換器………………….…………….……….48
4-3 傾斜金屬光柵極化轉換器之特性分析………………….………..52
第五章 結論…………………………………………………………………........62
第六章 參考文獻…………………………………………………………….......63
參考文獻 References
[1] S. E. Miller, “Integrated optics: an introduction,” Bell Syst. Tech. J., vol. 48, pp. 2059-2068, 1969.
[2] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron., vol. 27, pp. 242-246, 2008.
[3] T. Barwicz, M.R. Watts, M.A. Popvi’c, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics, vol. 1 , pp. 57-60, 2006.
[4] H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express, vol. 16, pp. 2628-2635, 2008.
[5] J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron., vol.16, pp. 53-60, 2010.
[6] M. Farhat, O. Hameed, and S. S. A. Obayya, “Design of passive polarization rotator based on silica photonic crystal fiber,” Opt. Lett., vol. 36, pp. 3133-3135, 2011.
[7] J. Wang, B. Niu, Z. Sheng, A. Wu, X. Wang, S. Zou, M. Qi, and F. Gan, “Design of a SiO2 top-cladding and compact polarization splitter-rotator based on a rib directional coupler,” Opt. Express, vol. 22, pp. 4137-4143, 2013.
[8] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature, vol. 424, pp. 824-830, 2003.
[9] J. Homola, “Present and future of surface plasmon resonance biosensors,” Analytical and Bioanalytical Chemistry, vol. 377, pp. 528-539, 2003.
[10] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett., vol. 78, pp. 1667-1670, 1997.
[11] M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Topics Quantum Electron., vol. 8, pp. 839-863, 2002.
[12] M. T. Hill1, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express, vol. 17, pp. 11107-11112, 2009.
[13] R. F. Oulton, V. J. Sorge, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nature Photonics, vol. 2, pp. 496-500, 2008.
[14] D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express, vol. 17, pp. 16646-16653, 2009.
[15] M. Z. Alam, J. S. Aitchison, and M. Mojahedi1, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Express, vol. 37, pp. 55-57, 2012.
[16] J. N. Caspers, M. Z. Alam, and M. Mojahedi, “Compact hybrid plasmonic polarization rotator,” Opt. Lett., vol. 37, pp. 4615-4617, 2012.
[17] E. K. Akowuah, T. Gorman, and S. Haxha, “Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration,” Opt. Express, vol. 17, pp. 23511-23521, 2009.
[18] E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science, vol. 257, pp. 189-195, 1992.
[19] A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yehd, “High-power laser light source for near-field optics and its application to high-density optical data storage,” J. Appl. Phys., vol. 75, pp. 1515-1517, 1999.
[20] B. O'regan and M. Grfitzeli, “A low-cost, high-efficiency solar cell based on dye-sensitized,” Nature, vol. 353, pp. 737-740, 1991.
[21] V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical meta-materials,” Opt. Lett., vol. 30, pp. 3356-3358, 2005.
[22] R. L. Olmon and M. B. Raschke, “Corrigendum: Antenna–load interactions at optical frequencies: impedance matching to quantum systems,” Nanotechnology, vol. 23, pp. 4484-4502, 2012.
[23] K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express, vol. 16, pp. 9781-9790, 2008.
[24] J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Elsevier Science, vol.54, pp. 16-24, 1999.
[25] M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett., vol. 30, pp. 138-140, 2005.
[26] M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett., vol. 30, pp. 967-969, 2005.
[27] J. Zhang, S. Zhu, H. Zhang, S. Chen, G. Q. Lo, and D. L. Kwong, “An ultra-compact polarization rotator based on surface plasmon polariton effect,” IEEE Photon. Technol. Lett. 23, 1606–1608 (2011).
[28] M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” IEEE Photon. J., vol. 4, pp. 707-714, 2012.
[29] Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer sub-wavelength metal grating structure fabricated using nano-imprint lithography,” J. Appl. Phys., vol. 77, pp. 927-930, 2000.
[30] L. Zhou and W. Liu, “Broadband polarizing beam splitter with an embedded metal-wire nano-grating,” Opt. Lett., vol. 30, pp. 1434-1436, 2005.
[31] X. Xiao, Y. Li, B. Hou, B. Zhou, and W. Wen, “Sub-wavelength polarization rotators via double-layer metal hole arrays,” Opt. Lett., vol. 37, pp. 3594-3596, 2012.
[32] L. Gao, Y. Huo, J. S. Harris, and Z. Zhou, “ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett., vol. 28, pp. 2081-2083, 2013.
[33] L. Jin, Q. Chen, and L. Wen, “Mode-coupling polarization rotator based on plasmonic waveguide,” Opt. Lett., vol. 39, pp. 2798-2801, 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code