Responsive image
博碩士論文 etd-0629114-160510 詳細資訊
Title page for etd-0629114-160510
論文名稱
Title
應用於低密度分波多工之晶圓貼合三五族與矽結合光偵測器
Wafer Bonding III-V/SOI Photodetector for Coarse Wavelength Division Multiplexing (CWDM) Application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-22
繳交日期
Date of Submission
2014-07-29
關鍵字
Keywords
量子井熱混和技術、共振耦合器、次微米光波導、晶圓貼合、乾蝕刻製程
Sub-micro Waveguide, Quantum Well Intermixing, Resonant Method Coupling, Wafer Bonding, Dry Etching
統計
Statistics
本論文已被瀏覽 5625 次,被下載 0
The thesis/dissertation has been browsed 5625 times, has been downloaded 0 times.
中文摘要
在現今高數據傳輸量的需求下光通訊提供了一個解決之道,低密度波長多工系統讓我們能在短距離得到很高的傳輸量且不需要昂貴的架設,目前光通訊元件的材料以三五族材料為主因為其為直接能隙材料能有效地放光及吸收光,並且三五族材料是唯一能整合主動元件在同一片晶圓上的材料,例如我們能整合光電調變器和半導體光放大器但是三五族的缺點就是有比較大的傳輸損耗及不能跟先進矽製程做整合,但是矽是間接能矽材料無法當作光電元件所以我們利用晶圓貼合來結合這兩種材料,我們利用稀釋的DVSBCB溶液當作我們的膠材來結合我們的材料其介面的厚度為40奈米,為了達到低密度波長多工系統的要求我們利用了量子井熱混和的製程技術來創造不同的吸收波長我們在650度充滿氮氣的環境對晶圓做熱退火的處理我們成功的移動了吸收波長達120奈米並且晶圓的表面還是保持得非常光滑的情況,為了能把光從矽波導耦合到三五族波導我們利用共振耦合來設計了一個耦合器,利用波導的寬度來達到折射率的匹配藉此來做光的轉換,在三五族波導寬度為0.3微米矽波導寬度為0.7微米的條件下,此元件只需要35微米的耦合長度就可以達到95%的耦合率並且對波常非常不敏感,再來為了達到我們設計耦合器的寬度我們利用底切的製程技術來達到0.3微米和0.7微米的波導寬度,為了要保持這微細的結構我們利用乾蝕刻技術來蝕刻我們的波導,在高真空高溫的環境下利用氬氣甲烷及氯氣的混合氣來達到垂直及平滑的光波導,再來利用氫氧化鉀的蝕刻液我們也做出了垂直及平滑的矽光波導
Abstract
Silicon photonics is a promising technique for improving optical transmission capability in optical interconnect and fiber transmission due to its mutual processing. However, the indirect bandgap render Si material with inefficient and absorption properties, leading to low flexibility and less functionality in designing receivers in photonic integration. Lately because of the constantly growing requirement of data rate, coarse wavelength division multiplexer (CWDM) technique offers a good solution for increasing data capacity, inducing the need of wavelength-selective device and the integration. In this work, a novel CWDM-based photodetectors integrated with silicon-on-insulator (SOI) waveguide template and hybrid tapered waveguide coupler is proposed. Using multi-quantum well (MQW) intermixing in III-V material bonded with SOI substrate, CWDM functionality of III-V waveguide can be integrated with the passive element in SOI template.
With InGaAsP MQW intermixing to extract 3 sectional of different bandgap tailoring, the material is successfully bonded to SOI material. By utilizing impurity free vacancy disordering methods, absorption wavelength of 3 sections are shifted by 1540nm, 1500nm, 1450nm and 1400nm. A low temperature bonding processing with 40 nm ultra-thin bonding interface was achieved and bonding area is 1cm x 1cm. By applying resonant coupling, only 35 um coupling length in directional coupler is designed, attaining 95% coupling coefficient. 0.3um wide tip tapered waveguide is also is obtained by undercut Cr etching technique and an etching depth 2.7nm smooth and vertical profile is obtained. In silicon waveguide 0.7um width smooth and vertical waveguide was also obtained.
目次 Table of Contents
ACKNOWLEDGEMENT iii
摘要 iv
ABSTRACT vi
INTRODUCTION 1
1.1 PREFACE 1
1.2 MOTIVATION 3
1.3 STATE-OF-ART IN INTEGRATION WITH III-V MATERIAL AND SILICON MATERIAL AND DEVICE FOR CWDM SYSTEM 5
1.4 BAND GAP ENGINEERING 13
1.5 THESIS OUTLINE 15
1.6 REFERENCE 16
CHAPTER 2 20
MULTI-QUANTUM WELL SIMULATION 20
2.1 OPTOELECTRONIC SEMICONDUCTOR 20
2.2 MATERIAL BANDGAP 21
2.3 OPTICAL ABSORPTION IN QUANTUM WELL 26
2.4 ABSORPTION COEFFICIENTS WITH EXCITON EFFECT 36
2.5 MATERIAL REFRACTIVE INDEX 42
2.6 REFERENCE 45
CHAPTER 3 47
RESONANT COUPLING COUPLER DESIGN 47
3.1. BASIC MECHANISM 47
3.2. COUPLE MODE THEORY 49
3.3. DEVICE DESIGN 52
3.4. REFERENCE 64
CHAPTER 4 65
FABRICATION AND MEASUREMENTS 65
4.1 LAYER STRUCTURE 65
4.2 QUANTUM WELL INTERMIXING 66
4.3 WAFER BONDING 68
4.4 WAVEGUIDE ETCHING 73
4.5 DEVICE FABRICATION 83
4.6 REFERENCE 87
CHAPTER 5 88
SUMMARY AND FUTURE WORK 88
5.1 SUMMARY 88
5.2 FUTURE WORK 89
參考文獻 References
[1] Y. Mochida, N. Yamaguchi, and G. Ishikawa, "Technology-oriented review and vision of 40-Gb/s-based optical transport networks," Lightwave Technology, J., vol. 20, pp. 2272 – 2281, Dec 2002
[2] http://www.ecvv.com/product/3281094.html
[3] www.cisco.com
[4] Agrawal “fiber optic communication system” third edition
[5] D. A. B.Miller, D. S. Chemla, and T. C. Damen, "Electric field dependence of optical absorption near the band gap of quantum-well structures," Phys. Rev. B, vol. 32, pp. 1043–1060, July 15
[6] DANIEL S. CHEMLA, DAVID A. B. MILLER, PETER W. SMITH, FELLOW, IEEE, ARTHUR C. GOSSARD, AND WILLIAM WIEGMANN, "Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures," Ieee J. Quantum Electron. , vol. 20, pp. 265 – 275, Mar 1984.
[7] Martin a. green “solar cells operating principle technology and system applications” first edition
[8] S.Lourdudoss, "Heteroepitaxy and selective area heteroepitaxy for silicon photonics," Photonic Nanostructure Materials, Processing and Characterization, vol. 16, pp. 91–99, Apr 2012.
[9] G. Roelkens, Dries Van Thourhout, R. Baets, "Coupling schemes for heterogeneous integration of III-V membrane devices and silicon-on-insulator waveguides," J. Lightwave Technology, vol. 23, pp. 3827 – 3831, Nov. 2005.
[10] Liu Liu∗, Günther Roelkens, Joris Van Campenhout†, Joost Brouckaert,
Dries Van Thourhout, and Roel Baets, "III–V/Silicon-on-Insulator Nanophotonic Cavities for Optical Network-on-Chip," J. Nanoscience Nanotechnology , vol. 10, pp. 1461–1472, Mar 2010
[11] M. Pantouvaki, P. Verheyen, G. Lepage, J. De Coster, H. Yu, P. De Heyn, Van Campenhout, "20Gb/s silicon ring modulator co-integrated with a Ge monitor photodetector,"Optical Communication (ecoc 2013), 39th European Conf. Exhibition , pp. 1 – 3, Sept. 2013.
[12] Léopold Virot, Laurent Vivien, Jean-Marc Fédéli, Yann Bogumilowicz, Jean-Michel Hartmann, Frédéric Boeuf, Paul Crozat, Delphine Marris-Morini, and Eric Cassan1, "High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications [Invited]," Photonics Research, vol. 1, pp. 140–147, 2013.
[13] Xiaofeng Duan, Yongqing Huang, Xiaomin Ren, Wei Wang,
Hui Huang, Qi Wang, and Shiwei Cai, "Long Wavelength Multiple Resonant Cavities RCE Photodetectors on GaAs Substrates," Ieee Trans. Electron Devices, vol. 58, pp. 3948 – 3953, Nov. 2011.
[14] M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, "Low-Threshold Heterogeneously Integrated InP/SOI Lasers With a Double Adiabatic Taper Coupler," Ieee Photonics Technology Lett., vol. 24, pp. 76 – 78, Jan.1, 2012.
[15] Gunther Roelkens, Joost Brouckaert, Dirk Taillaert, Pieter Dumon, Wim Bogaerts, Dries Van Thourhout, Roel Baets, "Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits," Optics Express, vol. 13, pp. 10102–10108, 2005.
[16] Marko Galarza, Dries Van Thourhout, Roel Baets, and Manuel Lopez-Amo1, "Compact and highly-efficient polarization independent vertical resonant couplers for active-passive monolithic integration," Optics Express, vol. 16, pp. 8350–8358, 2008.
[17] Gunther Roelkens , Liu Liu, Di Liang, Richard Jones, Alexander Fang, Brian Koch, and John Bowers, "III-V/silicon photonics for on-chip and intra-chip optical interconnects," Laser & Photonics Reviews, vol. 4, p. 751–779, Nov 2010
[18] H. S. Diie and T. Mei, "Plasma-induced quantum well intermixing for monolithic photonic integration," J. Selected Topics Quantum Electron. , vol. 11, pp. 373 – 382, Mar 2005
[19] J. E. Epler, F.A. Ponce, F.J. Endicott, and T.L. Paoli, "Layer disordering of GaAs-AlGaAs superlattices by diffusion of laser-incorporated Si," J. Applied Physics, vol. 64, p. 3439, Oct 1988
[20] Wataru Kobayashi, Masakazu Arai, Takayuki Yamanaka, Naoki Fujiwara, Takeshi Fujisawa, Takashi Tadokoro, Ken Tsuzuki, Yasuhiro Kondo and Fumiyoshi Kano, "Design and Fabrication of 10-/40-Gb/s, Uncooled Electroabsorption Modulator Integrated DFB Laser With Butt-Joint Structure," J. Lightwave Technology, vol. 28, pp. 164 – 171, Jan.1, 2010
[21] S. SK, Y. DH, Y. KH, "Area selectivity of InGaAsP-InP multiquantum-well intermixing by impurity-free vacancy diffusion," J. Selected Topics Quantum Electron., vol. 4, pp. 619 – 623, Jul 1998.
[22] S. L. Chuang, Physics of optoelectronic devices. New York: Wiley, 1995.
[23] J. Minch, S. H. Park, T. Keating, and S. L. Chuang, "Theory and experiment of In1-xGaxAsy P1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers," Quantum Electron., vol. 35, pp. 771 – 782, May 1999.
[24] L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits. New York: Wiley, 1995.
[25] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Weigmann, T. H. Wood, and C. A. Burrus, "Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect," Phys. Rev. Lett, vol. 53, pp. 2173–-2176, 26 Nov. 1984.
[26] W. A. Harrison, "Elementary theory of heterojunctions," J. Vacuum Science Technology, vol. 14, pp. 1016 – 1021, Jul 1977.
[27] H. Kroemer, Quantum Mechanics: For Engineering, Material Science, and Applied Physics, Prentice Hall, 1994. (chapter 5)
[28] S.M. Sze, Physics of Semiconductor Devices, 1987
[29] S. Adachi, "Optical properties of In1-xGaxAsyP1-y alloys," Physical Rev. B, vol. 39, pp. 12612–12621, Jan. 1989
[30] D. W. Jenkins, "Optical properties of AlxGa1-xAs alloys," Physical Rev. B, vol. 39, pp. 12345–12352, Dec.1988.
[31] M. Guden and J. Piprek, "Material parameters of quaternary III – V semiconductors for multilayer mirrors at 1.55um wavelength," Modelling Simul. Mater. Sci. Eng, vol. 4, pp. 349–364, Apr.1996.
[32] P. V. Studenkov, M. R. Gokhale, and S. R. Forrest, "Efficient coupling in integrated twin-waveguide lasers using waveguide tapers," Photonics Technology Lett., vol. 11, pp. 1096 – 1098, Sept. 1999.
[33] S. L. Chuang, Physics of optoelectronic devices. New York: Wiley, 1995.
[34] Milos popovic, “Theory and design of high-index-contrast microphotonic circuits” Massachusetts Institute of Technology Thesis
[35] G¨unther Roelkens, Liu Liu, Di Liang, Richard Jones, Alexander Fang, Brian Koch, and John Bowers , "III-V/silicon photonics for on-chip and intra-chip optical interconnects," Laser & Photonics Reviews, vol. 4, p. 751–779, Nov. 2010.
[36] S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, "Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate," Optical Materials Express, vol. 3, pp. 35–46, Jan. 1, 2013.
[37] David Lishan, “Dry etching for compound semiconductor application” 2014 plasma workshop in NTHU
[38] Dubravko Babic,”Notes on GaAs and InP material techniques”1994 UCSB ECE note
[39] http://www.oxfordplasma.de/technols/oe.htm
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.169.50
論文開放下載的時間是 校外不公開

Your IP address is 18.218.169.50
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code