Responsive image
博碩士論文 etd-0629115-114758 詳細資訊
Title page for etd-0629115-114758
論文名稱
Title
台灣紅藻Laurencia tristicha的化學成分及其生物活性之研究
Chemical Constituents and Biological Activities from the Formosan Red Alga Laurencia tristicha
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
201
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-10
繳交日期
Date of Submission
2015-07-29
關鍵字
Keywords
抗菌活性、細胞毒殺、抗發炎、扁柏烷、紅藻、花側柏烯
red algae, cytotoxicity, antibacterial, chamigrane, anti-inflammation
統計
Statistics
本論文已被瀏覽 5679 次,被下載 24
The thesis/dissertation has been browsed 5679 times, has been downloaded 24 times.
中文摘要
本研究是從台灣小琉球所採集的紅藻 Laurencia tristicha 的有機萃取物中尋找具有生物活性的化學成分。從此紅藻的研究中總共得到了 18 個天然化合物 1–18,其中包含了 8 個新的 chamigrane-type sesquiterpenes 類化合物 1–8,1個新的 cuparane-type sesquiterpene 類化合物 9,以及九個已知化合物,其中化合物2為新骨架化合物。所有化合物的化學構造均由光譜數據分析 (MS, 1D and 2D NMR) 和比對文獻上已知化合物的光譜分析資料而決定。化合物 12 經由 X-ray 晶體繞射來證明其化合物之結構。此外,化合物 10 及 11 為首次在天然物中發現的化合物。
本研究中將獲得的化合物 1–18 分別對於人類肺腺癌細胞 (A549),人類結腸癌細胞 (DLD−1),人類前列腺癌细胞株 (LN-Cap) 進行癌細胞株的細胞毒殺活性測試,結果顯示化合物 13 對於人類肺腺癌細胞 (A549) 有毒殺活性,半抑制濃度為 (IC50) 16.0 ± 3.3 μg/mL。在抗發炎的活性試驗中,化合物 15 和 16 可有效抑制超氧陰離子產生並降低彈性蛋白酶釋放的活性,另外化合物3、6、13和18 能有效的抑制超氧陰離子產生,而化合物 17 則是對於彈性蛋白酶有較佳的抑制活性。在抗菌活性測試的部分化合物 12、14和17 分別對於腸內產氣桿菌有抑菌活性,而化合物 3、11、14、15和17 則對於粘質沙雷氏菌有抑菌活性,化合物 3、14、15 和 17 對於小腸結腸炎耶爾森菌有抑制活性。
Abstract
In order to discover bioactive secondary metabolites, we have studied the chemical constituents from the organic extracts of red algae Laurencia tristicha. This study resulted the isolation of nineteen compounds, including eight new chamigrane-type sesquiterpenes 1–8 and one new cuparane-type sesquiterpene 9 along with nine known compounds. Among them, compound 2 possess new skeleton.The structures of isolated were determined on the basis of extensive spectroscopic analyses (IR, MS, 1D and 2D NMR) and comparison of spectral data with those of related known compounds. The relative configuration of compound 12 was further supported by a single-crystal X-ray diffraction analysis. In addition compound 10 and 11 were isolation for the first time from natural sources.
The cytotoxicity of compounds 1–19 against the A549 (human lung epithelial cell line), DLD-1 (human colon adenocarcinoma), and LN-Cap (human prostate cancer cells) tumor cell lines were determined. The results showd that compound 13 exhibited cytotoxicity against the A549 cell line with an IC50 value of 16.0 ± 3.3 μg/mL. In anti-inflammation assay compounds 15 and 16 displayed strong inhibition of superoxide anion generation and elastase release, compounds 3、6、13 and 18 show strong inhibition of superoxide anion generation and compound 17 displayed strong inhibition of elastase release. Furthermore, compounds 12, 14 and 17 showed antibacterial activity against Enterobacter aerogenes (ATCC13048), compounds 3, 11, 14, 15 and 17 showed activity against Serratia marcescens (ATCC25419), and compounds 3, 14, 15 and 17 showed activity against Yersinia enterocolitica (ATCC23715).
目次 Table of Contents
目 錄 頁 次
論文審定書i

誌謝ii

中文摘要 iii
英文摘要 iv
化合物 118 化學結構 v
第一章、緒論 1
第一節、前言 1
第二節、研究背景與目的 2
第三節、文獻回顧 3
第二章、生物材料與研究方法 31
第一節、研究流程 31
第二節、Laurencia tristicha 樣品採集時間、地點、分類地位及
分離流程 33
2.2.1 Laurencia tristicha 樣品採集時間、地點、分類地位 33
2.2.2 Laurencia tristicha 樣品的萃取分離 34
第三節、實驗設備儀器及材料 36
2.3.1實驗設備儀器 36
2.3.2實驗材料 37
第三章、化合物之結構證明 39
第一節:紅藻 Laurencia tristicha 所分離之化合物結構解析 39
(一)、Tristichone A (1) 化合物結構之解析 39
(二)、Tristichone B (2) 化合物結構造之解析 48
(三)、Tristichol A (3) 化合物結構之解析 57
(四)、Tristichol B (4) 化合物結構之解析 66
(五)、Tristichol C (5) 化合物結構之解析 75
(六)、Tristichol D (6) 化合物結構之解析 85
(七)、Tristichone C (7) 化合物結構之解析 94
(八)、Tristichone D (8) 化合物結構之解析 103
(九)、4α-hydroxybromocuparene (9) 化合物結構之解析 112
(十)、Tristichone E (10) 化合物結構之解析 121
(十一)、Tristichone F (11) 化合物結構之解析 125
(十二)、Ma'ilione (12) 化合物結構之解析 129
(十三)、(1(15)Z,2Z,4S,8R,9S)-8,15-Dibromochamagra -1(15),2,11(12)- trien-9-ol (13) 化合物結構之解析 133
(十四)、1(15)E,2Z,4S,8R,9S)-8,15-dibromochamagra-1(15),2,11 (12)-trien-9-ol (14) 化合物結構之解析 137
(十五)、Ma’iliohydrin (15) 化合物結構造之解析 141
(十六)、Isorigidol (16) 化合物結構之解析 145
(十七)、allo-Isoobtusol (17) 化合物結構之解析 149
(十八)、Majusculone (18) 化合物結構之解析 153
第二節:化合物物理性質及圖譜數據整理 157
第四章、生物活性試驗方法 160
第一節:生物活性試驗方法 160
(一)、細胞毒殺檢測原理及方法 160
(二)、抗發炎活性試驗原理及方法 162
(三)、抗菌活性試驗原理及方法 164
第二節:生物活性試驗結果 165
(一)、細胞毒殺活性試驗結果 165
(一)、抗發炎活性試驗結果 166
(三)、抗菌活性試驗結果 168
第五章、結論 169
第六章、參考文獻 172
附錄(一) 化合物 12 之 X–ray 實驗數據 179
圖 次
Figure 2-1. Laurencia tristicha 實驗流程圖 32
Figure 2-2. Laurencia tristicha 圖 33
Figure 2-3. Laurencia tristicha 紅藻的分離流程 35
Figure 3-1-1. 1H–1H COSY and HMBC correlations for 1. 40
Figure 3-1-2. Selective NOESY correlations for 1. 40
Figure 3-1-3. IR spectrum of 1. 42
Figure 3-1-4. ESIMS spectrum of 1. 42
Figure 3-1-5. HRESIMS spectrum of 1. 43
Figure 3-1-6. 1H-NMR spectrum of 1 in CDCl3. 43
Figure 3-1-7. 1H-NMR (1.6~2.7 ppm) spectrum of 1 in CDCl3. 44
Figure 3-1-8. 13C-NMR spectrum of 1 in CDCl3. 44
Figure 3-1-9. DEPT spectrum of 1 in CDCl3. 45
Figure 3-1-10. HSQC spectrum of 1 in CDCl3. 45
Figure 3-1-11. 1H–1H COSY spectrum of 1 in CDCl3. 46
Figure 3-1-12. HMBC spectrum of 1 in CDCl3. 46
Figure 3-1-13. NOESY spectrum of 1 in CDCl3. 47
Figure 3-2-1. Selective NOESY correlations for 2. 49
Figure 3-2-2. 1H–1H COSY and HMBC correlations for 2. 50
Figure 3-2-3. IR spectrum of 2. 51
Figure 3-2-4. ESIMS spectrum of 2. 51
Figure 3-2-5. HRESIMS spectrum of 2. 52
Figure 3-2-6. 1H-NMR spectrum of 2 in CDCl3. 52
Figure 3-2-7. 1H-NMR (1.7~4.6 ppm) spectrum of 2 in CDCl3. 53
Figure 3-2-8. 13C-NMR spectrum of 2 in CDCl3. 53
Figure 3-2-9. DEPT spectrum of 2 in CDCl3. 54
Figure 3-2-10. HSQC spectrum of 2 in CDCl3. 54
Figure 3-2-11. 1H–1H COSY spectrum of 2 in CDCl3. 55
Figure 3-2-12. HMBC spectrum of 2 in CDCl3. 55
Figure 3-2-13. NOESY spectrum of 2 in CDCl3. 56
Figure 3-3-1. 1H–1H COSY and HMBC correlations for 3. 58
Figure 3-3-2. Selective NOESY correlations for 3. 58
Figure 3-3-3. IR spectrum of 3. 60
Figure 3-3-4. ESIMS spectrum of 3. 60
Figure 3-3-5. HRESIMS spectrum of 3. 61
Figure 3-3-6. 1H-NMR spectrum of 3 in CDCl3. 61
Figure 3-3-7. 1H-NMR (1.4~2.8 ppm) spectrum of 3 in CDCl3. 62
Figure 3-3-8. 1H-NMR (4.0~6.2 ppm) spectrum of 3 in CDCl3. 62
Figure 3-3-9. 13C-NMR spectrum of 3 in CDCl3. 63
Figure 3-3-10. DEPT spectrum of 3 in CDCl3. 63
Figure 3-3-11. HSQC spectrum of 3 in CDCl3. 64
Figure 3-3-12. 1H–1H COSY spectrum of 3 in CDCl3. 64
Figure 3-3-13. HMBC spectrum of 3 in CDCl3. 65
Figure 3-3-14. NOESY spectrum of 3 in CDCl3. 65
Figure 3-4-1. 1H–1H COSY and selective HMBC correlations for 4. 67
Figure 3-4-2. Selective NOESY correlations for 4. 67
Figure 3-4-3. IR spectrum of 4. 69
Figure 3-4-4. ESIMS spectrum of 4. 69
Figure 3-4-5. HRESIMS spectrum of 4. 70
Figure 3-4-6. 1H-NMR spectrum of 4 in CDCl3. 70
Figure 3-4-7. 1H-NMR (1.2~2.8 ppm) spectrum of 4 in CDCl3. 71
Figure 3-4-8. 1H-NMR (4.0~6.0 ppm) spectrum of 4 in CDCl3. 71
Figure 3-4-9. 13C-NMR spectrum of 4 in CDCl3. 72
Figure 3-4-10. DEPT spectrum of 4 in CDCl3. 72
Figure 3-4-11. HSQC spectrum of 4 in CDCl3. 73
Figure 3-4-12. 1H–1H COSY spectrum of 4 in CDCl3. 73
Figure 3-4-13. HMBC spectrum of 4 in CDCl3. 74
Figure 3-4-14. NOESY spectrum of 4 in CDCl3. 74
Figure 3-5-1. 1H–1H COSY and HMBC correlations for 5. 76
Figure 3-5-2. Selective NOESY correlations for 5. 76
Figure 3-5-3. IR spectrum of 5. 78
Figure 3-5-4. ESIMS spectrum of 5. 78
Figure 3-5-5. HRESIMS spectrum of 5. 79
Figure 3-5-6. 1H-NMR spectrum of 5 in CDCl3. 79
Figure 3-5-7. 1H-NMR (1.0~2.0ppm) spectrum of 5 in CDCl3. 80
Figure 3-5-8. 1H-NMR (2.0~2.7 ppm) spectrum of 5 in CDCl3. 80
Figure 3-5-9. 1H-NMR (2.5~6.5 ppm) spectrum of 5 in CDCl3. 81
Figure 3-5-10. 13C-NMR spectrum of 5 in CDCl3. 81
Figure 3-5-11. DEPT spectrum of 5 in CDCl3. 82
Figure 3-5-12. HSQC spectrum of 5 in CDCl3. 82
Figure 3-5-13. 1H–1H COSY spectrum of 5 in CDCl3. 83
Figure 3-5-14. HMBC spectrum of 5 in CDCl3. 83
Figure 3-5-15. NOESY spectrum of 5 in CDCl3. 84
Figure 3-6-1. 1H–1H COSY and selective HMBC correlations for 6. 86
Figure 3-6-2. Selective NOESY correlations of 6. 86
Figure 3-6-3. IR spectrum of 6. 88
Figure 3-6-4. ESIMS spectrum of 6. 88
Figure 3-6-5. HRESIMS spectrum of 6. 89
Figure 3-6-6. 1H-NMR spectrum of 6 in CDCl3. 89
Figure 3-6-7. 1H-NMR (1.5~6.0 ppm) spectrum of 6 in CDCl3. 90
Figure 3-6-8. 13C-NMR spectrum of 6 in CDCl3. 90
Figure 3-6-9. DEPT spectrum of 6 in CDCl3. 91
Figure 3-6-10. HSQC spectrum of 6 in CDCl3. 91
Figure 3-6-11. 1H–1H COSY spectrum of 6 in CDCl3. 92
Figure 3-6-12. HMBC spectrum of 6 in CDCl3. 92
Figure 3-6-13. NOESY spectrum of 6 in CDCl3. 93
Figure 3-7-1. 1H–1H COSY and selective HMBC correlations for 7. 95
Figure 3-7-2. Selective NOESY correlations of 7. 95
Figure 3-7-3. IR spectrum of 7. 97
Figure 3-7-4. ESIMS spectrum of 7. 97
Figure 3-7-5. HRESIMS spectrum of 7. 98
Figure 3-7-6. 1H-NMR spectrum of 7 in CDCl3. 98
Figure 3-7-7. 1H-NMR (1.0~2.6 ppm) spectrum of 7 in CDCl3. 99
Figure 3-7-8. 13C-NMR spectrum of 7 in CDCl3. 99
Figure 3-7-9. DEPT spectrum of 7 in CDCl3. 100
Figure 3-7-10. HSQC spectrum of 7 in CDCl3. 100
Figure 3-7-11. 1H–1H COSY spectrum of 7 in CDCl3. 101
Figure 3-7-12. HMBC spectrum of 7 in CDCl3. 101
Figure 3-7-13. NOESY spectrum of 7 in CDCl3. 102
Figure 3-8-1. 1H–1H COSY and selective HMBC correlations for 8. 104
Figure 3-8-2. Selective NOESY correlations of 8. 104
Figure 3-8-3. IR spectrum of 8. 106
Figure 3-8-4. ESIMS spectrum of 8. 106
Figure 3-8-5. HRESIMS spectrum of 8 107
Figure 3-8-6. 1H-NMR spectrum of 8 in CDCl3. 107
Figure 3-8-7. 1H-NMR (1.1~2.8 ppm) spectrum of 8 in CDCl3. 108
Figure 3-8-8. 13C-NMR spectrum of 8 in CDCl3. 108
Figure 3-8-9. DEPT spectrum of 8 in CDCl3. 109
Figure 3-8-10. HSQC spectrum of 8 in CDCl3. 109
Figure 3-8-11. 1H–1H COSY spectrum of 8 in CDCl3. 110
Figure 3-8-12. HMBC spectrum of 8 in CDCl3. 110
Figure 3-8-13. NOESY spectrum of 8 in CDCl3. 111
Figure 3-9-1. 1H–1H COSY and selective HMBC correlations for 9. 113
Figure 3-9-2. Selective NOESY correlations of 9. 113
Figure 3-9-3. IR spectrum of 9. 115
Figure 3-9-4. ESIMS spectrum of 9. 115
Figure 3-9-5. HRESIMS spectrum of 9 116
Figure 3-9-6. 1H-NMR spectrum of 9 in CDCl3. 116
Figure 3-9-7. 1H-NMR spectrum of 9 in CDCl3. 117
Figure 3-9-8. 13C-NMR spectrum of 9 in CDCl3. 117
Figure 3-9-9. DEPT spectrum of 9 in CDCl3. 118
Figure 3-9-10. HSQC spectrum of 9 in CDCl3. 118
Figure 3-9-11. 1H–1H COSY spectrum of 9 in CDCl3. 119
Figure 3-9-12. HMBC spectrum of 9 in CDCl3. 119
Figure 3-9-13. NOESY spectrum of 9 in CDCl3. 120
Figure 3-10-1. Plausible reaction to derive compounds 10 and 11. 122
Figure 3-10-2. ESIMS spectrum of 10. 123
Figure 3-10-3. 1H-NMR spectrum of 10. 123
Figure 3-10-4. 13C-NMR spectrum of 10. 124
Figure 3-11-1. ESIMS spectrum of 11. 127
Figure 3-11-2. 1H NMR spectrum of 11. 127
Figure 3-11-3. 13C NMR spectrum of 11. 128
Figure 3-12-1. X-ray crystal structure of 12. 130
Figure 3-12-1. ESIMS spectrum of 12. 131
Figure 3-12-2. 1H-NMR spectrum of 12. 131
Figure 3-12-3. 13C-NMR spectrum of 12. 132
Figure 3-13-1. ESIMS spectrum of 13. 135
Figure 3-13-2. 1H-NMR spectrum of 13. 135
Figure 3-13-3. 13C-NMR spectrum of 13. 136
Figure 3-14-1. ESIMS spectrum of 14. 139
Figure 3-14-2. 1H-MR spectrum of 14. 139
Figure 3-14-3. 13C-MR spectrum of 14. 140
Figure 3-15-1. ESIMS spectrum of 15. 143
Figure 3-15-2. 1H-NMR spectrum of 15. 143
Figure 3-15-3. 13C-NMR spectrum of 15. 144
Figure 3-16-1. ESIMS spectrum of 16. 147
Figure 3-16-2. 1H-NMR spectrum of 16. 147
Figure 3-16-3. 13C-NMR spectrum of 16. 148
Figure 3-17-1. ESIMS spectrum of 17. 151
Figure 3-17-2. 1H-NMR spectrum of 17. 151
Figure 3-17-3. 13C-NMR spectrum of 17. 152
Figure 3-18-1. ESIMS spectrum of 18. 155
Figure 3-18-2. 1H-NMR spectrum of 18. 155
Figure 3-18-3. 13C-NMR spectrum of 18. 156
Figure 4-1. Alamar Blue reduction. 160
表 次
Table 1-1.藻類 Laurencia tristicha 所含天然化合物其生物活性文獻回顧
3
Table 1-2.藻類 Laurencia 屬所含 Chemigrane 類化合物其生物活性文獻回顧 11
Table 1-3. 藻類 Laurencia 屬所含 Cuparene 類化合物其生物活文獻回顧
27
Table 3-1. 1H and 13C NMR Data, HMBC and NOESY Correlations of 1. 41
Table 3-2. 1H and 13C NMR Data, HMBC and NOESY Correlations of 2. 50
Table 3-3. 1H and 13C NMR Data, HMBC and NOESY Correlations of 3. 59
Table 3-4. 1H and 13C NMR Data, HMBC and NOESY Correlations of 4. 68
Table 3-5. 1H and 13C NMR Data, HMBC and NOESY Correlations of 5. 77
Table 3-6. 1H and 13C NMR Data, HMBC and NOESY Correlations of 6. 87
Table 3-7. 1H and 13C NMR Data, HMBC and NOESY Correlations of 7. 96
Table 3-8. 1H and 13C NMR Data, HMBC and NOESY Correlations of 8. 105
Table 3-9. 1H and 13C NMR Data, HMBC and NOESY Correlations of 9. 114
Table 3-10. 1H and 13C NMR Data of 10. 122
Table 3-11. 1H and 13C NMR Data of 11. 126
Table 3-12. 1H and 13C NMR Data of 12. 130
Table 3-13. 1H and 13C NMR Data of 13. 134
Table 3-14. 1H and 13C NMR Data of 14. 138
Table 3-15. 1H and 13C NMR Data of 15. 142
Table 3-16. 1H and 13C NMR Data of 16. 146
Table 3-17. 1H and 13C NMR Data of 17. 150
Table 3-18. 1H and 13C NMR Data of 18. 154
Table 4-1. 化合物 1–18 之細胞毒殺活性數據 165
Table 4-2. Effects of compounds on superoxide anion generation in FMLP/CB-induced human neutrophils. 166
Table 4-3. Effects of compounds on elastase release in FMLP/CB-induced human neutrophils. 167
Table 4-4. 化合物 1–8、10–18 之抗菌活性數據 168
參考文獻 References
第六章、參考文獻
1. 李玲玲,生物多樣性概論,教育部,2006,頁95-115
2. 江永棉、黃淑芬、王瑋龍,台灣海藻簡介,台灣省立博物館,1990
3. 謝明村, 中國藥材學, 國立編譯館, 1988
4. Newman D. J.; Cragg, G. M. “ Marine Natural Products and Related Compounds in Clinical and Advanced Preclinical Trials” J. Nat. Prod. 2004, 67, 1216-1238
5. Simmons, T. L;Andrianasolo, E.; McPhail, K.; Flatt, P.; Gerwick, W. H. Molecular Cancer Therapeutics. 2005, 4 333-342
6. 江昆達、林全信,豐富的海洋資源,臺灣書店,1998,117–126
7. Lu, C.-K.; Chou, H.-N.; Lee, C.-K.; Lee, T.-H. “Prorocentin, a New Polyketide from the Marine Dinoflagellate Prorocentrumlima” Org Lett. 2005, 7, 3893–3896.
8. Lu, C.-K.; Lee, G.-H.; Hwang, R.; Chou, H.-N. “Spiro-prorocentrimine, a novel macrocyclic lactone from a benthicProrocentrum sp. of Taiwan” Tetrahedron Lett. 2001, 42, 1713– 1716
9. Lee, T.-H.; Chou, H.-N. “Isolation and identification of seven microcystins from a cultured M.TN-2 strain of Microcystis aeruginosa” Bot. Bull. Academia Sinica. 2000, 41, 197–202
10. Lee, T.-H.; Chen, Y.-M.; Chou, H.-N. “First report of microcystins in Taiwan” Toxicon. 1998, 36, 247–255
11. Sheu, J.-H.; Liaw, C.-C.; Duh, C.-Y. “Oxygenated Clerosterols Isolated from the Marine Alga Codium arabicum”J. Nat. Prod. 1995, 58, 1521–1526
12. Sheu, J.-H.; Huang, S.-Y.; Duh, C.-Y.“ Cytotoxic Oxygenated Desmosterols of the Red Alga Galaxaura marginata” J. Nat. Prod. 1996, 59, 23–26
13. Sheu, J.-H.; Huang, S.-Y.; Wang, K.-H.; Duh, C.-Y. “Study on Cytotoxic Oxygenated Desmosterols Isolated from the Red AlgaGalaxaura marginata” J. Nat. Prod. 1997, 60, 900–903
14. Sheu, J.-H.; Wang, G.-H.; Sung, P.-J.; Chiu, Y.-H.; Duh, C.-Y. “Cytotoxic sterols from the formosan brown alga Turbinaria ornata.”Planta Medica. 1997, 63, 571–572
15. Sheu, J.-H.; Wang, G.-H.; Sung, P.-J.; Duh, C.-Y. “New Cytotoxic Oxygenated Fucosterols from the Brown Alga Turbinaria conoides”J. Nat. Prod. 1999, 62, 224–227
16. El-Gamal, A A. H.; Wang, W.-L.; Duh, C.-Y. “ Sulfur-Containing Polybromo indoles from the Formosan Red Alga Laurenciabrongniartii ”J. Nat. Prod. 2005, 68, 815–817


17. Fang H.-Y.; Chiou, S.-F.; Uvarani, C.; Wen, Z.-H.; Hsu, C.-H.; Wu, Y.-C.; Wang, W.-L.; Liaw, C.-C.; Sheu, J.-H. “Cytotoxic, Anti-inflammatory, and Antibacterial Sulfur-Containing Polybromoindoles from the Formosan Red Alga Laurencia brongniartii ”Bull. Chem. Soc. Jpn. 2014, 87, 1278–1280
18. Sun, J.; Shi, D.; Ma, M.; Li, S.; Wang, S.; Han, L.; Yang, Y.; Fan, X.; Shi, J.; He, L. “Sesquiterpenes from the Red Alga Laurencia tristicha” J. Nat. Prod. 2005, 68, 915-919
19. Sun, J.; Shi, D-Y.; Li, S.; Wang, S.-J.; Han, L.-J.; Fan, X.; Yang, Y-C.; Shi, J-G. “Chemical constituents of the red alga Laurencia tristicha” Journal of Asian Natural Products Research, 2007, 9, 725–734
20. Ji, N.-Y.; Li, X.-M.; Li, K; Ding, L.-P., Wang, B.-G. “Laurane-derived sesquiterpenes from the marine red alga Laurencia tristicha (Rhodomelaceae)” Natural Product Research. 2008, 22, 715–718
21. Sims, J. J.; Fenical, W.; Wing, R.-M.; Radlick, P. “Marine natural products. IV. Prepacifenol, a halogenated epoxy sesquiterpene and precursor to pacifenol from the red alga, Laurencia filiformis” J. Am. Chem. Soc. 1973, 95, 972
22. Faulkner, D. J.; Stallard, M. O.; Ireland, C. “Prefacifenol epoxide, a halogenated sesquiterpene diepoxide ”Tetrahedron Lett. 1974, 15, 3571-3574
23. Suzuki, M.; Kurosawa, E.; Irie, T. “Three new sesquiterpenoids containing bromine, minor constituents of Laurencia glandulifera Kützing”Tetrahedron Lett. 1974, 15, 821-824
24. Suzuki, M.; Kurosawa, E.; Irie, T. “Glanduliferol, a new halogenated sesquiterpenoid from Laurencia glandulifera kützing” Tetrahedron Lett. 1974, 15, 1807-1808
25. Suzuki, M.; Furusaki, A.; Kurosawa, E. “The absolute configurations of halogenated chamigrene derivatives from the marine alga, laurencia glandulifera kützing” Tetrahedron. 1979, 35, 823–831
26. Sims, J. J.; Lin, G. H. Y.; Wing, R. M.“Marine natural products X elatol, a halogenated sesquiterpene alcohol from the red alga Laurencia elata.”Tetrahedron Lett. 1974, 15, 3487-3490
27. Juagdan, E. G.; Kalidindi, R.; Scheuer, P. “Two new chamigranes from an hawaiian red alga, Laurencia cartilaginea” Tetrahedron. 1997, 53, 521–528


28. Dias T, Brito I, Moujir L, Paiz N, Darias J, Cueto M. “Cytotoxic Sesquiterpenes from Aplysia dactylomela” J. Nat. Prod. 2005, 68, 1677-1679
29. Vairappan, C.-S.; Daitoh, M.; Suzuki, M.; Abe, T.; Masuda, M. “Antibacterial halogenated metabolites from the Malaysian Laurencia species.”Phytochemistry. 2001, 58, 291–297
30. Waraszkiewicz, S.-M.; Erickson, K.-L. “Halogenated sesquiterpenoids from the hawaiian marine alga Laurencia Nidifica: Nidificene and nidifidiene” Tetrahedron Lett. 1974, 15, 2003–2006
31. McMillan, J. A.; Paul, I. C.; White, R. H.; Hager, L. P. “Molecular structure of acetoxyintricatol: A new bromo compound fromLaurencia Intricata.”Tetrahedron Lett. 1974, 15, 2039–2042
32. Howard, B.-M.; Fenical, W. “Structures and chemistry of two new halogen-containing chamigrene derivatives from laurencia” Tetrahedron Lett. 1975, 16, 1687-1690
33. Waraszkiewicz, S. M.; Erickson, K. L. “Halogenated sesquiterpenoids from the Hawaiian marine alga Laurencia nidifica. II. Nidifidienol” Tetrahedron Lett. 1975, 16, 281–284
34. Howard, B.-M.; Fenical, W. “10-bromo-α-chamigrene” Tetrahedron Lett. 1976, 17, 2519–2520.
35. González, A.-G.; Darias, J.; Díaz, A.; Fourneron, J.-D.; Martín, J.-D.; Pérez, C. “Evidence for the biogenesis of halogenated chamigrenes from the red alga laurencia obtusa” Tetrahedron Lett. 1976, 17, 3051–3054.
36. González, A. G.; Martín, J. D.; Martín, V. S.; Martínez-Ripoll, M.; Fayos, J. “X ray study of sesquiterpene constituents of the alga L. obtusa leads to structure revision” Tetrahedron Lett. 1979, 20, 2717–2718
37. Fenical, W. “Chemical variation in a new bromochamigrene derivative from the red seaweed Laurencia pacifica” Phytochemistry. 1976, 15, 511–512
38. Wessels, M.; Ko¨nig, G.-M.; Wright, A.-D. “New Natural Product Isolation and Comparison of the Secondary Metabolite Content of Three Distinct Samples of the Sea Hare Aplysia dactylomela from Tenerife” J. Nat. Prod. 2000, 63, 920-928.
39. Suzuki, M.; Kurosawa, E.; Furusaki, A. “ The structure and absolute stereochemistry of a Halogenated chamigrene derivative from the red alga Laurencia species.” Bull. Chem. Soc. Jpn. 1988, 61, 3371–3373
40. González, A. G.; Martín, J. D.; Martín, V. S.; Norte, M.; Fayos, J.; Martínez-Ripoll, M. “A new polyhalogenated sesquiterpene from laurencia obtusa” Tetrahedron Lett. 1978, 19, 2035–2036
41. Suzuki, M.; Kurosawa, E. “Two new halogenated sesquiterpenes from the red alga laurencia majuscula Harvey” Tetrahedron Lett. 1978, 19, 4805–4808
42. Suzuki, M.; Furusaki, A.; Hashiba, N.; Kurosawa, E. “The structures and absolute stereochemistry of two halogenated chamigrenes from the red alga Laurencia majuscula Harvey ” Tetrahedron Lett. 1979, 20, 879–882
43. González, A. G.; Martín, J. D.; Martín, V. S.; Norte, M. “Carbon-13 NMR application to Laurencia polyhalogenated sesquiterpenes” Tetrahedron Lett. 1979, 20, 2719–2722
44. Ojika, M.; Shizuri, Y.; Yamada, K. “A halogenated chamigrane epoxide and six related halogen-containing sesquiterpenes from the red alga Laurencia okamurai ” Phytochemistry. 1982, 21, 2410–2411
45. Furusaki, A.; Matsumoto, T.; Kurata, K.; Suzuki, T.; Suzuki, M.; Kurosawa, E. “X-Ray Structure Determination of (-)-Obtusane, a New Sesquiterpene from the Red Alga, Laurencia nipponica Yamada” Bull. Chem. Soc. Jpn. 1983, 56, 3501–3502
46. Suzuki, M.; Segawa, M.; Suzuki, T.; Kurosawa, E. “Structures of halogenated chamigrene derivatives, minor constituents from the red alga Laurencia nipponica Yamada” Bull. Chem. Soc. Jpn. 1983, 56, 3824–3826
47. Kurata, K.; Suzuki, T.; Suzuki, M.; Kurosawa, E.; Furusaki, A.; Suehiro, K.; Matsumoto, T.; Katayama, C.“ Structures of two new halogenated chamigrane-type sesquiterpenoids from the red alga Laurencia nipponica Yamada.”Chem. Lett. 1983, 12, 561–564
48. Suzuki, M.; Segawa, M.; Suzuki, T.; Kurosawa, E. “ Structures of two new halochamigrene derivatives from the red alga Laurencia nipponica Yamada.” Bull. Chem. Soc. Jpn. 1985, 58, 2435–2436
49. Bittner, M. L.; Silva, M.; Paul, V. J.; Fenical, W. “A rearranged chamigrene derivative and its potential biogenetic precursor from a new species of the marine red algal genus Laurencia (rhodomelaceae)” Phytochemistry. 1985, 24, 987–989
50. Gerwick, W. H.; Lopez, A.; Davila, R.; Albors, R. “Two New Chamigrene Sesquiterpenoids from the Tropical Red Alga Laurencia obtusa”J. Nat. Prod. 1987, 50, 1131–1135
51. Brennan, M. R.; Erickson, K. L.; Minott, D. A.; Pascoe, K. O. “Chamigrane metabolites from a Jamaican variety of laurencia obtusa” Phytochemistry. 1987, 26, 1053–1057
52. Caccamese, S.; Compagnini, A.; Toscano, R.-M.; Nicolo, F.; Chapuis, G. “A new labile bromoterpenoid from the red alga laurencia majuscula: Dehydrochloroprepacifenol” Tetrahedron. 1987, 43, 5393–5399
53. Suzuki, M.; Kurosawa, E.; Kurata K. “Majusculone, a novel norchamigrane-type metabolite from the red alga Laurencia majuscula Harvey” Bull. Chem. Soc. Jpn. 1987, 60, 3795–3796
54. Kennedy, D. J.; Selby, I. A.; Thomson, R. H. “Chamigrane metabolites from Laurencia obtusa and L. scoparia” Phytochemistry. 1988, 27, 1761−1766
55. Watanabe, K.; Umeda, K.; Miyakado, M. “Isolation and Identification of Three Insecticidal Principles from the Red Alga Laurencia nipponica Yamada” Agric. Biol. Chem. 1989, 53, 2513–2515.
56. Elsworth, J. F.; Thomson, R. H. “A New Chamigrane from Laurencia glomerata” J. Nat. Prod. 1989, 52, 893–895
57. Martin, J. D.; Caballero, P.; Fernandez, J. J.; Norte, M.; Perez, R.; Rodriguez, M. L. “Metabolites from Laurencia obtusa” Phytochemistry. 1989, 28, 3365−3367
58. Coll, J. C.; Wright, A. D. “ Tropical marine algae. III New sesquiterpenes from Laurencia majuscula (Rhodophyta, Rhodophyceae, Ceramiales, Rhodomelaceae).” Aust. J. Chem. 1989, 42, 1591–1603
59. Suzuki, M.; Kurosawa E. “Two new halogenated sesquiterpenes from the red alga Laurencia majuscula Harvey” Tetrahedron Letters. 1978, 48, 4805–4808
60. Suzuki, M.; Furusaki, A.; Hashiba, N.; Kurosawa, E. “The structures and absolute stereochemistry of two halogenated chamigrenes from the red alga Laurencia majuscula Harvey” Tetrahedron Letters. 1979, 10, 879−882
61. DeNys, R.; König, G. M.; Wright, A. D.; Sticher, O. “ Two metabolites from the red alga Laurencia flexilis ” Phytochemistry. 1993, 34, 725–728
62. Wright, A.-D.; Coll, J.-C.; Price, I.-R.“Tropical Marine Algae, VII. The Chemical Composition of Marine Algae from North Queensland Waters”J. Nat. Prod. 1990, 53, 845–861
63. Ahmad, V. U.; Ali, M. S. “Pinnatifinone, a new halogenated chamigrene from the red alga Laurencia pinnatifida” Sci. Pharm. 1991, 59, 243–246
64. DeNys, R.; König, G. M.; Wright, A. D.; Sticher, O. “ Two metabolites from the red alga Laurencia flexilis ” Phytochemistry. 1993, 34, 725–728
65. König, G. M.; Wright, A. D. “Laurencia rigida:  Chemical Investigations of Its Antifouling Dichloromethane Extract” J. Nat. Prod. 1997, 60, 967–970
66. Masuda, M.; Itoh, T.; Matsuo, Y.; Suzuki, M. “Halogenated secondary metabolites of Laurencia majuscula (Ceramiales, Rhodophyta) from Ryukyu Islands. ”Phycol. Res. 1997, 45, 59–64
67. Guella, G.; Öztunç, A.; Mancini, I.; Pietra, F. “The singular reduction of 1,8-bis-hydroxymethylnaphthalene to a benzonorcaradiene by LiAlH4” Tetrahedron Lett. 1997, 38, 8261–8264
68. Francisco, M. E. Y.; Turnbull, M. M.; Erickson, K. L. “Cartilagineol, the fourth lineage of Laurencia-derived polyhalogenated chamigrene” Tetrahedron Lett. 1998, 39, 5289–5292
69. Kimura, J.; Kamada, N.; Tsujimoto, Y. “Fourteen chamigrane derivatives from a red alga, Laurencia nidifica.”Bull. Chem. Soc. Jpn. 1999, 72, 289–292
70. Davyt, D.; Fernandez, R.; Suescun, L.; Mombru, A. W.; Saldana, J.; Dominguez, L.; Coll, J.; Fujii, M. T.; Manta, E. “New Sesquiterpene Derivatives from the Red Alga Laurencia scoparia.Isolation, Structure Determination, and Anthelmintic Activity” J. Nat. Prod. 2001, 64, 1552–1555
71. Suescun, L.; Mombrú, A. W.; Mariezcurrena, R. A.; Davyt, D.; Fernández, R.; Manta, E. “Two natural products from the algae Laurencia scoparia.”Acta Crystallogr. 2001, 57, 286–288
72. Vairappan, C. S.; Suzuki, M.; Abe, T.; Masuda, M.“Halogenated metabolites with antibacterial activity from the Okinawan Laurencia species.” Phytochemistry 2001, 58, 517−523.
73. Francisco, M. E. Y.; Erickson, K. L.“Ma’iliohydrin, a Cytotoxic Chamigrene Dibromohydrin from a Philippine Laurencia Species.” J. Nat. Prod. 2001, 64, 790–791
74. Brito, I.; Cueto, M.; Díaz-Marrero, A. R.; Darias, J.; San Martín, A. “Oxachamigrenes, New Halogenated Sesquiterpenes from Laurencia obtusa” J. Nat. Prod. 2002, 65, 946–948
75. Ji, N. Y.; Li, X. M.; Li, K.; Ding, L. P.; Gloer, J. B.; Wang, B. G. “Diterpenes, Sesquiterpenes, and a C15-Acetogenin from the Marine Red Alga Laurencia mariannensis” J. Nat. Prod. 2007, 70, 1901–1905
76. Ji, N. Y.; Li, X. M.; Zhang, Y.; Wang, B. G. “Two new halogenated chamigrane-type sesquiterpenes and other secondary metabolites from the marine red alga Laurencia okamurai and their chemotaxonomic significance” Biochem. Syst. Ecol. 2007, 35, 627–630
77. Ji, N. Y.; Li, X. M.; Li, K.; Wang, B.-G. “Halogenated Sesquiterpenes from the Marine Red Alga Laurencia saitoi (Rhodomelaceae)”Helv. Chim. Acta. 2009, 92, 1873–1879
78. Suzuki, T., Suzuki, M., Kurosawa, E. “α-bromocuparene and α-isobromocuparene, new bromo compounds from laurencia species” Tetrahedron letters, 1975, 16, 3057–3058
79. Kladi M.; Vagias C.; Papazafiri P,; Furnari G,; Serio D.; Roussis V. “New sesquiterpenes from the red alga Laurencia microcladia” Tetrahedron, 2007, 63, 7606–7611
80. Anthony D. Wright , Gabriele M. König , Rocky de Nys , Otto Sticher., “Seven New Metabolites from the Marine Red Alga Laurencia majuscula” J. Nat. Prod. 1993, 56, 394-401.
81. Kladi M, Vagias C, Furnari G, Moreau D, Roussakis C, Rousis V. “Cytotoxic cuparene sesquiterpenes from Laurencia microcladia” Tetrahedron Letters, 2005 , 46, 5723–5726
82. Vairappan, C. S.;Ishii, I.;T., Lee, T. K., Suzuki, M., and Zhaoqi, Z. “Antibacterial Activities of a New Brominated Diterpene from Borneon Laurencia spp.” Mar. Drugs. 2010, 8, 1743-1749
83. Xiao-Dong Li , Feng-Ping Miao, Ke Li , Nai-Yun Ji. “Sesquiterpenes and acetogenins from the marine red alga Laurencia okamurai” Fitoterapia. 2012, 83, 518–522
84. Rihab F.; Angawi, Walied M. Alarif,; Rehab I. Hamza,; Farid A. Badria ; Seif-Eldin N. Ayyad.“New Cytotoxic Laurene-, Cuparene-, and Laurokamurene-Type Sesquiterpenes from the Red Alga Laurencia obtusa” Helv. Chim. Acta. 2014, 97, 1388–1395
85. O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. “Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity.” Eur. J. Biochem. 2000, 267, 5421–5426.
86. Hwang, T. L.; Leu, Y. L.; Kao, S. H.; Tang, M. C.; Chang, H. L. “Viscolin, a new chalcone from Viscum coloratum, inhibits human neutrophilsuperoxide anion and elastase release via a cAMP-dependent pathway.” Free Radical Bio. Med. 2006, 41, 1433–1441.
87. Chen S. L.;Chiou S. F.;Chokkalingam U.;Fang H. Y.;Hwang T. L.;Sheu J.-H.;Wang W.-L.“Bioactive chemical constituents from the brown alga homoeostrichus formosana” Int. J. Mol. Sci. 2015, 16, 736-746
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code