Responsive image
博碩士論文 etd-0629115-114946 詳細資訊
Title page for etd-0629115-114946
論文名稱
Title
以環糊精來限制具有聚集誘導放光分子之鏈轉動
Use of cyclodextrin to impose rotational restriction of luminogens with aggregation-induced emission property
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-01
繳交日期
Date of Submission
2015-07-29
關鍵字
Keywords
環糊精、聚醚二胺、抑制轉動、聚苯乙烯、聚集誘導放光
Cyclodextrin, Jeffamine, Polystyrene, rotational restriction, Aggregation-induced emission
統計
Statistics
本論文已被瀏覽 5722 次,被下載 54
The thesis/dissertation has been browsed 5722 times, has been downloaded 54 times.
中文摘要
因為限制分子轉動為聚集誘導放光(AIE)特性的主要機制,所以本研究以環糊精之聚醚二胺(JCD)來作為剛硬模板,有效增強具AIE特性的二羥本亞甲基聯胺(CN4OH)發光,此外以環糊精來強化聚醚二胺(Jeffamine),利用環糊精上的羥基與CN4OH產生氫鍵,發光CN4OH/JCD混合體比起純的CN4OH有較高的放光效率,隨著混合體比例變化,CN4OH在混和體中的排列有所不同,進而影響其限制轉動與放光強度,AIE分子的放光行為與分子排列和限制轉動間的關係,為本研究的重點。在第二章中,具有AEE特性的雙苯乙烯基四苯基噻吩(TP2S)分子,具有雙苯基乙烯的放光與四苯基噻吩(TP)的中央放光,以β-環糊精作為主體去套住TP2S,提升中央放光與減少雙苯基乙烯的放光,因限制轉動的因素,TP2S/CD錯合物的放光強度會高於純的TP2S發光體,為了防止β-環糊精從TP2S中滑出,以聚苯乙烯(PS)作為模板透過TP2S與PS間的苯環π-π作用力防止β-環糊精滑出,當PS混合後,TP2S/CD/PS混合體會比TP2S/CD錯合物有較高的放光強度。
Abstract
In Chapter 1, Because restricted molecular rotation is the main mechanism responsible for the aggregation-induced emission (AIE), a Jeffamine-included polyrotaxane (JCD) was therefore used in this study as rigid template to impose effective rotational restriction on the AIE-active luminogen of 1,2-bis(2,4-dihydroxybenzylidene)hydrazine (CN4OH). Besides rigidifying the flexible Jeffamine chain, the β-cyclodextrin (β-CD) rings of JCD also provided hydroxyl (OH) groups to hydrogen bond to the OHs of CN4OH, furnishing emissive CN4OH/JCD(x/y) (x/y: molar ratio between CN4OH and JCD) blends with emission efficiency higher than the pure CN4OH itself. Dependent on the composition of the blends, CN4OHs in the blends are arrayed differently to experience varied levels of rotational restriction and thus emit with an intensity correlated with molecular arrangement of the CN4OHs in the blends. The relationship between molecular arrangement, restricted molecular rotation and AIE-oriented emission behavior is the focus of this study. In Chapter 2, 3,4-diphenyl-2,5-bis(4-styryl)thiophene(TP2S)with AEE property showed 2,5-diphenylethene arms emission and tetraphenylthiophene (TP) center emission. β-CD were used as host molecule to encapsulate TP2S and showed an enhanced center emission and a decreased arm emission. Due to the rotational restriction, the TP2S/CD(x/y) (x/y: molar ratio between TP2S and β-CD)complex with emission intensity higher than the pure TP2S. In order to hinder TP2S slip out from β-CD, polymeric PS was used as template to grip the encapsulated TP2Ss through the π-π interactions of the aromatic phenyl rings in TP2S and in PS.When bind to PS, TP2S/CD/PS blends with higher emission intensity than the TP2S/CD complex.
目次 Table of Contents
Outline of contents
Verification letter from the Oral Examination Committee……………………………..i
Chinese Abstract……………………………………………………………..………..ii
English Abstract…………………………...………………………………………….iii
Outline of Contents………………………………………………………………….…v
List of Figure……………………………………………………………………...…..viii
List of Scheme................................................................................................……….xi
List of Table………………………………………………………….…….....…..…xii

Chapter 1
Rigid Jeffamine-included polyrotaxane as hydrogen-bond template for salicylideneazine with aggregation-enhanced emission………………….…….…..1
1.1 Introduction............................................................................................................1
1.1.1. Aggregation-induced emission (AIE)..................................................................2
1.1.2. Salicylideneazine………………………………………………………………..2
1.1.3. Polyrotaxane………………………………………………………...……..........4
1.2 Experimental…………...........................................................................................7
1.2.1. Materials...............................................................................................................7
1.2.2. Preparation of samples..........................................................................................8
1.2.3. Instrumentations…...............................................................................................9
1.3 Results and discussion..........................................................................................10
1.3.1. Solution mixtures of CN4OH/JCD(x/y)…………………..……………...........10
1.3.2. Solid CN4OH/JCD(x/y) blend………………………………...……...…….…14
1.3.3. WAXD spectra of the solid blend…………………………….………………..16
1.3.4. Thermal analysis of the solid blends……………………….........………...…..20
1.3.5. Molecular arrangement of the solid blends…………………………….……...25
1.4 Conclusion……….................................................................................................29
1.5 References….........................................................................................................32
Chapter 2
Enhanced rotational restriction of AIEgenin the cavity of β-cyclodextrin and in the viscous polystyrene matrix …………………………………………………….38
2.1 Introduction..........................................................................................................38
2.1.1. Cyclodextrins…………………………………………………………………38
2.1.2. Luminogenic polymers………………………………………………………...39
2.2 Experimental………….........................................................................................41
2.2.1. Materials.............................................................................................................41
2.2.2. Instrumentations.................................................................................................42
2.2.3. Preparation of samples…....................................................................................42
2.3 Results and discussion……………………………………..………………..…..44

2.3.1. Emission behavior of TP2S………………………………………………..…..44
2.3.2. Emission behavior of TP2S/CD complex………………………………….….47
2.3.3. 1H NMR analysis………………………………………………………………50
2.3.4. Emission behavior of TP2S/CD/PS blends………………………………..…..53
2.3.5. Thermal analysis of the solid blends……………………………………......…57
2.4 Conclusion……………………………………………………...……………..…61
2.5 References.............................................................................................................62
Supporting information………………………………………………………….…65
參考文獻 References
Chapter 1
1. J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem. Commun., 2001, 1740.
2. B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu and D. J. Zhu, Mater. Chem., 2001, 11, 2974.
3. Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Commun., 2009, 4332.
4. D. Ding, K. Li, B. Liu and B. Z. Tang, Acc. Chem. Res., 2013, 46, 2441.
5. Z. Zhao, J. W. Y. Lam and B. Z. J. Tang, Mater. Chem., 2012, 22, 23726.
6. M. Wang, G. Zhang, D. Zhang, D. Zhu and B. Z. J. Tang, Mater. Chem., 2010, 20, 1858..
7. Z. Zhao, J. W. Y. Lam and B. Z. Tang, Soft Matter, 2013, 9, 4564.
8. Aggregation-Induced Emission: Fundamentals, ed. A. Qin, and B. Z. Tang, John Wiley & Sons, Ltd, NY, 2013.
9. J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang and B. Z. Tang, Adv. Mater., 2014, 26, 5429.
10. X. Zhang, Z. Chi, H. Li, B. Xu, X. Li, S. Liu, Y. Zhanga and J. Xu, J. Mater. Chem., 2011, 21, 1788.
11. Z. Wang, J. H. Ye, J, Li, Y. Bai, W. Zhanga and W. He, RSC Adv., 2015, 5, 8912.
12. J. Zhang, B. Xu, J. Chen, L. Wang, and W. Tian, J. Phys. Chem. C, 2013, 117, 23117.
13. S. Y. Su, H. H. Lin and C. C. Chang, J. Mater. Chem., 2010, 20, 8653.
14. B. Sun, X. Yang, L. Ma, C. Niu, F. Wang, N. Na, J. Wen and J. Ouyang, Langmuir, 2013, 29, 1956.
15. X. Zhang, Z. Chi, B. Xu, C. Chen, X. Zhou, Y. Zhang, S. Liua and J. Xu, J. Mater. Chem., 2012, 22, 18505.
16. H. Li, Z. Chi, B. Xu, X. Zhang, Z. Yang, X. Li, S. Liu, Y. Zhanga and J. Xu, J. Mater. Chem., 2010, 20, 6103.
17. H. Li, Z. Chi, X. Zhang, B. Xu, S. Liu, Y. Zhang and J. Xu, Chem. Commun., 2011, 47, 11273.
18. J. He, B. Xu , F. Chen , H. Xia , K. Li , L. Ye and W. Tian, J. Phys. Chem. C, 2009, 113, 9892.
19. B. Xu, J. Zhang, H. Fang, S. Ma, Q. Chen, H. Sun, C. Imc and W. Tian, Polym. Chem., 2014, 5, 479.
20. S. Dong , Z. Li and J. Qin, J. Phys. Chem. B, 2009, 113, 434.
21. J. Huang, X. Yang, J. Wang, C. Zhong, L. Wang, J. Qina and Z. Li, J. Mater. Chem., 2012, 22, 2478.
22. Z. Wei, Z. Y. Gu, R. K. Arvapally, Y. P. Chen, R. N. McDougald, Jr., J. F. Ivy, A. A. Yakovenko, D. Feng, M. A. Omary, and H. C. Zhou, J. Am. Chem. Soc., 2014, 136, 8269.
23. N. B. Shustova, T. –C. Ong, A. F. Cozzolino, V. K. Michaelis, R. G. Griffin and M. Dincă, J. Am. Chem. Soc., 2012, 134, 15061.
24. X. Zhang, X. Zhang, L. Tao, Z. Chi, J. Xub and Y. Wei, J. Mater. Chem. B, 2014, 2, 4398.
25. X. Zhang, X. Zhang, B. Yang, M. Liu, W. Liu, Y. Chena and Y. Wei, Polym. Chem., 2014, 5, 356.
26. M. C. Hsieh, C. H. Chien, C. C. Chang and T. C. Chang, J. Mater. Chem. B, 2013, 1, 2350.
27. J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu and B. Z. Tang, Chem. Mater., 2003, 15, 1535.
28. J. Shi, N. Chang, C. Li, J. Mei, C. Deng, X. Luo, Z. Liu, Z. Bo, Y. Q. Dong and B. Z. Tang, Chem. Commun., 2012, 48, 10675.
29. S. H. Huang, Y. W. Chiang and J. L. Hong, Polym. Chem., 2015, 6, 497.
30. W. L. Chien, C. M. Yang, T. L. Chen, S. T. Li and J. L. Hong, RSC Adv., 2013, 3, 6930.
31. S. L. Deng, T. L. Chen, W. L. Chien and J. L. Hong, J. Mater. Chem. C, 2014, 2, 651.
32. K. Y. Shih, Y. C. Lin, T. S. Hsiao, S. L. Deng, S. W. Kuo and J. L. Hong, Polym. Chem., 2014, 5, 5765.
33. R. H. Chien, C. T. Lai and J. L. Hong, J. Phys. Chem. C, 2011, 115, 20732.
34. T. Mutai, H. Tomoda, T. Ohkawa, Y. Yabe and J. Araki, Angew. Chem., Int. Ed., 2008, 47, 9522.
35. Y. Qian, S. Y. Li, G. Q. Zhang, Q. Wang, S. Q. Wang, H. J. Xu, C. Z. Li, Y. Li and G. Q. Yang, J. Phys. Chem. B, 2007, 111, 5861.
36. W. X. Tang, Y. Xiang and A. J. Tong, J. Org. Chem., 2009, 74, 2163.
37. S. Scheiner and V. M. Kolb, Proc. Natl. Acad. Sci. U. S. A., 1980, 77, 5602.
38. H. Birkedal and P. Pattison, ActaCrystallogr., Sect. C: Cryst. Struct. Commun., 2006, 62, 139.
39. M. Y. Berezin and S. Achilefu, Chem. Rev., 2010, 110, 2641.
40. C. C. Hsieh, Y. M. Cheng, C. J. Hsu, K. Y. Chen and P. T. Chou, J. Phys. Chem. A, 2008, 112, 8323.
41. M. M. Henary and C. J. Fahrni, J. Phys. Chem. A, 2002, 106, 5210.
42. A. Mordzinski and A. Grabowska, Chem. Phys. Lett., 1982, 90, 122.
43. A. Douhal, F. Lahmani and A. H. Zewail, Chem. Phys., 1996, 207, 477.
44. S. Lochbrunner, T. Schultz, M. Schmitt, J. P. Shaffer, M. Z. Zgierski and A. Stolow, J. Chem. Phys., 2001, 114, 2519.
45. J. Goodman and L. E. Brus, J. Am. Chem. Soc., 1978, 100, 7472.
46. J. Wu, W. Liu, J. Ge, H. Zhang and P. Wang, Chem. Soc. Rev., 2011, 40, 3483.
47. J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London, 1970.
48. T. S. Hsiao, S. L. Deng, K. Y. Shih and J. L. Hong, J. Mater. Chem. C, 2014, 2, 4828.
49. T. Höfler and G. Wenz, J. Inclus. Phenom. Mol., 1996, 25, 81.
50. K. A. Udachin and J. A. Ripmeester, J. Am. Chem. Soc., 1998, 120, 1080.
51. M. T. Stone and H. L. Anderson, Chem. Commun., 2007, 2387.
52. M. Okada, Y. Kawaguchi, H. Okumura, M. Kamachi and A. Harada, J. Polym. Sci. Pol. Chem.,2000, 38, 4839.
53. J. Li, X. Ni, Z. Zhou and K. W. Leong, J. Am. Chem. Soc., 2003, 125, 1788.
54. M. V. Rekharsky and Y. Inoue, Chem. Rev., 1998, 98, 1875.
55. T. Ooya, H. S. Choi, A. Yamashita, N. Yui, Y. Sugaya, A. Kano, A. Maruyama, H. Akita, R. Ito, K. Kogure and H. Harashima, J. Am. Chem. Soc., 2006, 128, 3852.
56. X .Q. Guo, L. X. Song, F. Y. Du, Z. Dang and M. Wang, J. Phys. Chem. B, 2011, 115, 1139.
57. L. X. Song, X. Q. Guo, F. Y. Du and L. Bai, Polym. Degrad. Stabil.,2010, 95, 508.
58. Y. Liu, Y. L. Zhao, Y. Chen and M. Wang, Macromol. Rapid Commun., 2005, 26, 401.
59. M. E. Davis, Mol. Pharmaceutics, 2009, 6, 659.
60. D. W. Pack1, A. S. Hoffman, S. Pun and P. S. Stayton, Nat. Rev. Drug Discov., 2005, 4, 581.
61. H. Okumura and Y. Kawaguchi and A. Harada, Macromolecules, 2001, 34, 6338.
62. Y. Liu, A. Qin,X. Chen, X. Y. Shen, L. Tong, R. Hu, J. Z. Sun and B. Z. Tang, Chem. Eur. J., 2011, 17, 14736.
63. G. Liang, J. W. Y. Lam, W. Qin, J. Li, N. Xie and B. Z. Tang, Chem. Commun., 2014, 50, 1725.
64. S. Song, H. F. Zheng, D. M. Li, J. H. Wang, H. T. Feng, Z. H. Zhu, Y. C. Chen and Y. S. Zheng. Org. Lett., 2014, 16, 2170.
65. G. Fleury, G. Schlatter, C. Brochon and G, Hadziioannou, Polymer, 2005, 46, 8494.
66. Z. Li, Y. Dong, B. Mi, Y. Tang, M. Häussler, H. Tong, Y. Dong, J. W. Y. Lam, Y. Ren, H. H. Y. Sung, K. S. Wong, P. Gao, I. D. Williams, H. S. Kwok and B. Z. J. Tang, J. Phys. Chem. B, 2005, 109, 10061.
67. C. T. Lai, R. H. Chien, S. W. Kuo and J. L. Hong, Macromolecules, 2011, 44, 6546.
Chapter 2
1. J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem. Commun., 2001, 1740.
2. B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu and D. J. Zhu, Mater. Chem., 2001, 11, 2974.
3. X. Zhang, Z. Chi, H. Li, B. Xu, X. Li, S. Liu, Y. Zhanga and J. Xu, J. Mater. Chem., 2011, 21, 1788.
4. Z. Wang, J. H. Ye, J, Li, Y. Bai, W. Zhanga and W. He, RSC Adv., 2015, 5, 8912.
5. J. He, B. Xu , F. Chen , H. Xia , K. Li , L. Ye and W. Tian, J. Phys. Chem. C, 2009, 113, 9892.
6. B. Xu, J. Zhang, H. Fang, S. Ma, Q. Chen, H. Sun, C. Imc and W. Tian, Polym. Chem., 2014, 5, 479.
7. H. Li, Z. Chi, B. Xu, X. Zhang, Z. Yang, X. Li, S. Liu, Y. Zhanga and J. Xu, J. Mater. Chem., 2010, 20, 6103.
8. H. Li, Z. Chi, X. Zhang, B. Xu, S. Liu, Y. Zhang and J. Xu, Chem. Commun., 2011, 47, 11273.
9. J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang and B. Z. Tang, Adv. Mater., 2014, 26, 5429.
10. M. C. Hsieh, C. H. Chien, C. C. Chang and T. C. Chang, J. Mater. Chem. B, 2013, 1, 2350.
11. C.R. Cristian, L. Constantin, E.T. Alan, Macromolecules2001, 34, 1318–1322.
12. G. Liang, J.W.Y. Lam, W. Qin, J. Li, N. Xie and B.Z. Tang, Chem. Commun., 2014, 50, 1725–1727.
13. S. Song, H.F Zheng, D.M Li, J.H Wang, H.T Feng, Z.H Zhu, Y.C Chen and Y.S Zheng, Org. Lett., 2014, 28.
14. J. W. Chen, C. C. W. Law, J. W. Y. Lam, Y. P. Dong, S. M. F. Lo, I. D. Williams, D. B. Zhu and B. Z. Tang, Chem.Mater., 2003,15, 1535–1546.
15. A. Maheshwari et al., Carbohyd. Res. 2011, 346, 1809.
16. G. Yu, K. Jie, and F. Huang, Chem. Rev., 2014, 10, 1021.
17. S. L. Deng, T. L. Chen, W. L. Chien and J. L. Hong, J. Mater. Chem. C, 2014, 2, 651
18. Z. Li, Y. Dong, B. Mi, Y. Tang, M. Häussler, H. Tong, Y. Dong, J. W. Y. Lam, Y. Ren, H. H. Y. Sung, K. S. Wong, P. Gao, I. D. Williams, H. S. Kwok and B. Z. J. Tang, J. Phys. Chem. B, 2005, 109, 10061.
19. Aggregation-Induced Emission: Fundamentals, ed. A. Qin and B. Z. Tang, John Wiley & Sons, Ltd., New York, 2013.
20. H. Tong, Y. Hong, Y. Dong, M. Häußler, J.W.Y. Lam, Z. Li, Zu. Guo, Zh. Guo, and B.Z. Tang, Chem. Commun., 2006, 3705.
21. M. T. Stone and H. L. Anderson, Chem. Commun., 2007, 2387.
22. H. Okumura, Y. Kawaguchi and A. Harada, Macromolecules, 2001, 34, 6338.
23. T. Ooya, H. S. Choi, A. Yamashita, N. Yui, Y. Sugaya, A. Kano, A. Maruyama, H. Akita, R. Ito, K. Kogure and H. Harashima, J. Am. Chem. Soc., 2006, 128, 3852.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code