Responsive image
博碩士論文 etd-0629115-125816 詳細資訊
Title page for etd-0629115-125816
論文名稱
Title
野外型軟珊瑚Paralemnalia thyrsoides和Sinularia erecta與養殖型軟珊瑚Sinularia brassica和Sarcophyton glaucum所含化學成份及其生物活性之研究
Chemical Constituents and Biological Activities of the Wild-Type Soft Corals Paralemnalia thyrsoides and Sinularia erecta, and the Cultured Soft Corals Sinularia brassica and Sarcophyton glaucum
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
432
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-10
繳交日期
Date of Submission
2015-07-29
關鍵字
Keywords
野生型軟珊瑚、抗發炎、神經保護活性、細胞毒殺、天然化合物、養殖型軟珊瑚
wild-type soft coral, natural product, anti-inflammatory, cultured soft coral, cytotoxicity, neuroprotective activity
統計
Statistics
本論文已被瀏覽 5680 次,被下載 21
The thesis/dissertation has been browsed 5680 times, has been downloaded 21 times.
中文摘要
本研究主要是從野生型軟珊瑚Paralemnalia thyrsoides與Sinularia erecta及養殖型軟珊瑚Sinularia brassica 與Sarcophyton glaucum中分離出三十七個天然化合物,其中二十六個為新的化合物 (1–5, 9–11, 15 和17–33) 包含nardosinane-type sesquiterpenoids (1–5)、norcembranoids (9 和10)、cembranoid (11)、withanolides (17–28) 和 biscembranoids (32 和33) 類。代謝物的結構均藉由光譜方法來做分析鑑定,特別是一維和二維核磁共振實驗。絕對立體構型部份,化合物1的是經由Mosher’s方法之酯化反應,化合物17藉由X-ray晶體繞射,而化合物33 則是比較相似化合物之圓二色 (CD) 光譜數據加以確立。
從以上的代謝物中發現化合物9、11、15–18、20–22、24–27、29和31–33對多種癌細胞具有顯著的細胞毒殺活性。在神經活性測試的結果中得知化合物1、3、6和7具有神經保護效果,值得進一步研究其對神經退化性疾病的治療潛力。而在抗發炎活性測試中顯示化合物 9、10、16、17、19、28和30–33可有效抑制經fMLP/CB刺激嗜中性白血球所造成之超氧陰離子產生並降低彈性蛋白酶釋放的活性;另外,化合物32和33對抑制脂多醣 (lipopolysaccharide,LPS) 誘導小鼠巨噬細胞RAW264.7產生發炎性蛋白質iNOS或COX-2的表現具有顯著的抗發炎活性。由於生物活性的發現,這些化合物在未來有可能成為有用的藥物。此外,在本研究中具活性之化合物17、18−22 和24−37是由養殖型軟珊瑚所分離獲得,這些化合物可以透過水產養殖的方式適當地提供進一步的藥理學研究。
Abstract
Chemical investigation of the natural products from the wild-type soft corals Paralemnalia thyrsoides and Sinularia erecta, and cultured soft corals Sinularia brassica and Sarcophyton glaucum have afforded thirty-seven natural products 1–37, among which twenty-six are new compounds 1–5, 9–11, 15 and 17–33, including nardosinane-type sesquiterpenoids 1–5, norcembranoids 9 and 10, cembranoid 11, withanolides 17–28, and biscembranoids 32 and 33. The structures of metabolites were elucidated on the basis of extensive spectroscopic methods, in particular 1D and 2D NMR experiments. The absolute configuration of 1 was determined by the application of Mosher’s method, compound 17 was established by X-ray crystallographic analysis, and compounds 33 were further confirmed by comparison of the CD (circular dichroism) spectroscopic data with structurally related compound. In the above metabolites, compounds 9, 11, 15–18, 20–22, 24–27, 29 and 31–33 were found to exhibit significant cytotoxicity toward several cancer cell lines. From the neurological activity results, compounds 1, 3, 6 and 7 were found to possess neuroprotective activity, and deserve for further studies against therapeutic potential neurodegenerative diseases. In anti-inflammation assay, compounds 9, 10, 16, 17, 19, 28 and 30–33 displayed strong inhibition of superoxide anion generation and elastase release in human neutrophils stimulated by fMLP/CB. Moreover, compounds 32 and 33 exhibited significant anti-inflammatory effect on inhibition of inducible nitric oxide synthetase (iNOS) and cyclooxygenase-2 (COX-2) protein expression of LPS-induced RAW264.7 macrophage cells. Owing to these attractive biological activities, those compounds might be useful for future medicinal application. In addition, bioactive metabolites 17, 18−22 and 24−37 were isolated from the cultured soft corals could be adequately supplied for further pharmacological investigation by aquaculture.
目次 Table of Contents
Contents Page
論文審定書 i
誌謝 ii
Abstract (Chinese) iii
Abstract (English) iv
Contents viii
List of Figures xi
List of Tables xxiii
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
Section 2-1 Literature Review of the Genus Paralemnalia and Lemnalia 4
Section 2-2 Literature Review of the Soft Coral Sinularia erecta 19
Section 2-3 Literature Review of the Soft Coral Sinularia brassica 21
Section 2-4 Literature Review of the Soft Coral Sarcophyton glaucum 72
Chapter 3 Experimental Section 85
Section 3-1 General Experimental Procedures 85
Section 3-2 Organism and Extraction 86
Section 3-3 Chemical Method to Assist Structural Elucidation of Natural Products 97
Section 3-4 Biological activities 98
3.4.1. Cytotoxicity Assay 98
3.4.2. Neuroprotective Activity Assay 99
3.4.3. Anti-inflammatory Assay I 99
3.4.4. Anti-inflammatory Assay II 100
Chapter 4 Compound Identification 102
4.1 Structural Elucidation of Paralemnolin Q (1) 102
4.2 Structural Elucidation of Paralemnolin R (2) 111
4.3 Structural Elucidation of Paralemnolin S (3) 119
4.4 Structural Elucidation of Paralemnolin T (4) 127
4.5 Structural Elucidation of Paralemnolin U (5) 135
4.6 Structural Elucidation of 2-Deoxylemnacarnol (6), 2-Deoxy-7-O- methyllemnacarnol (7) and 2-Oxolemnacarnol (8) 143
4.7 Structural Elucidation of Sinulerectol A (9) 149
4.8 Structural Elucidation of Sinulerectol B (10) 158
4.9 Structural Elucidation of Sinulerectol C (11) 167
4.10 Structural Elucidation of Norcembrene (12), Sinularectin (13), and Ineleganolide (14) 176
4.11 Structural Elucidation of Sinulerectol D (15) 183
4.12 Structural Elucidation of (Z)-N-[2-(4-Hydroxyphenyl) ethyl]-3- methyldodec-2-enamide (16) 191
4.13 Structural Elucidation of Sinubrasolide A (17) 194
4.14 Structural Elucidation of Sinubrasolide B (18) 203
4.15 Structural Elucidation of Sinubrasolide C (19) 213
4.16 Structural Elucidation of Sinubrasolide D (20) 221
4.17 Structural Elucidation of Sinubrasolide E (21) 230
4.18 Structural Elucidation of Sinubrasolide F (22) 238
4.19 Structural Elucidation of Sinubrasolide G (23) 245
4.20 Structural Elucidation of Sinubrasolide H (24) 253
4.21 Structural Elucidation of Sinubrasolide I (25) 261
4.22 Structural Elucidation of Sinubrasolide J (26) 269
4.23 Structural Elucidation of Sinubrasolide K (27) 281
4.24 Structural Elucidation of Sinubrasolide L (28) 289
4.25 Structural Elucidation of Sinubrasolide M (29) 297
4.26 Structural Elucidation of Sinubrasolide N (30) 306
4.27 Structural Elucidation of Sinubrasolide O (31) 315
4.28 Structural Elucidation of Glaucumolide A (32) 323
4.29 Structural Elucidation of Glaucumolide B (33) 333
4.30 Structural Elucidation of Ximaolide A (34) 343
4.31 Structural Elucidation of Isosarcophytonolide D (35), Sarcophine (36), and 10,11-Dihydrosarcophine (37) 347
Chapter 5 Reactions 354
Chapter 6 Bioactivities 355
Section 6-1 Cytotoxicity Assay 383
Section 6-2 Neuroprotective Activity Assay for Compounds 1−8 385
Section 6-3 Anti-inflammatory Assay for Compounds 9−37
(Measurement of superoxide anion generation and elastase release) 359
Section 6-4 Anti-inflammatory Assay for Compounds 32−34
(Measurement of pro-inflammatory iNOS and COX-2 proteins) 361
Chapter 7 Conclusion 364
Chapter 8 Physical Properties and Data Collections 369
Chapter 9 References 375
APPENDICES 395
Crystal Data and Structure Refinement for Sinubrasolide A (17) 395
Curriculum Vitae 403


List of Figures Page

Figure 3-1. The isolated processes of the soft coral Paralemnalia thyrsoides 87
Figure 3-2. The isolated processes of the soft coral Sinularia erecta 89
Figure 3-3. The isolated processes of the cultured soft coral Sinularia brassica 92
Figure 3-4. The isolated processes of the cultured soft coral Sarcophyton glaucum 95
Figure 4-1-1. COSY and HMBC correlations of 1 103
Figure 4-1-2. Selective NOESY correlations of 1 104
Figure 4-1-3. 1H-NMR chemical shift differences δ (δS –δR) in ppm for the MTPA esters of 1 104
Figure 4-1-4. IR spectrum of 1 104
Figure 4-1-5. ESIMS spectrum of 1 106
Figure 4-1-6. HRESIMS spectrum of 1 106
Figure 4-1-7. 1H-NMR spectrum of 1 107
Figure 4-1-8. 1H-NMR (1.5−4.5 ppm) spectrum of 1 107
Figure 4-1-9. 13C-NMR spectrum of 1 108
Figure 4-1-10. DEPT spectra of 1 108
Figure 4-1-11. HSQC spectrum of 1 109
Figure 4-1-12. COSY spectrum of 1 109
Figure 4-1-13. HMBC spectrum of 1 110
Figure 4-1-14. NOESY spectrum of 1 110
Figure 4-2-1. COSY and HMBC correlations of 2 112
Figure 4-2-2. Selective NOESY correlations of 2 112
Figure 4-2-3. IR spectrum of 2 114
Figure 4-2-4. ESIMS spectrum of 2 114
Figure 4-2-5. HRESIMS spectrum of 2 115
Figure 4-2-6. 1H-NMR spectrum of 2 115
Figure 4-2-7. 13C-NMR spectrum of 2 116
Figure 4-2-8. DEPT spectra of 2 116
Figure 4-2-9. HSQC spectrum of 2 117
Figure 4-2-10. COSY spectrum of 2 117
Figure 4-2-11. HMBC spectrum of 2 118
Figure 4-2-12. NOESY spectrum of 2 118
Figure 4-3-1. COSY and HMBC correlations of 3 120
Figure 4-3-2. Selective NOESY correlations of 3 120
Figure 4-3-3. IR spectrum of 3 122
Figure 4-3-4. ESIMS spectrum of 3 122
Figure 4-3-5. HRESIMS spectrum of 3 123
Figure 4-3-6. 1H-NMR spectrum of 3 123
Figure 4-3-7. 13C-NMR spectrum of 3 124
Figure 4-3-8. DEPT spectra of 3 124
Figure 4-3-9. HSQC spectrum of 3 125
Figure 4-3-10. COSY spectrum of 3 125
Figure 4-3-11. HMBC spectrum of 3 126
Figure 4-3-12. NOESY spectrum of 3 126
Figure 4-4-1. COSY and HMBC correlations of 4 128
Figure 4-4-2. Selective NOESY correlations of 4 128
Figure 4-4-3. IR spectrum of 4 130
Figure 4-4-4. ESIMS spectrum of 4 130
Figure 4-4-5. HRESIMS spectrum of 4 131
Figure 4-4-6. 1H-NMR spectrum of 4 131
Figure 4-4-7. 13C-NMR spectrum of 4 132
Figure 4-4-8. DEPT spectra of 4 132
Figure 4-4-9. HSQC spectrum of 4 133
Figure 4-4-10. COSY spectrum of 4 133
Figure 4-4-11. HMBC spectrum of 4 134
Figure 4-4-12. NOESY spectrum of 4 134
Figure 4-5-1. COSY and HMBC correlations of 5 135
Figure 4-5-2. Selective NOESY correlations of 5 136
Figure 4-5-3. IR spectrum of 5 136
Figure 4-5-4. ESIMS spectrum of 5 138
Figure 4-5-5. HRESIMS spectrum of 5 138
Figure 4-5-6. 1H-NMR spectrum of 5 139
Figure 4-5-7. 13C-NMR spectrum of 5 139
Figure 4-5-8. DEPT spectra of 5 140
Figure 4-5-9. HSQC spectrum of 5 140
Figure 4-5-10. COSY spectrum of 5 141
Figure 4-5-11. HMBC spectrum of 5 141
Figure 4-5-12. NOESY spectrum of 5 142
Figure 4-6-1. ESIMS spectrum of 6 145
Figure 4-6-2. ESIMS spectrum of 7 145
Figure 4-6-3. ESIMS spectrum of 8 146
Figure 4-6-4. 1H-NMR spectrum of 6 146
Figure 4-6-5. 1H-NMR spectrum of 7 147
Figure 4-6-6. 1H-NMR spectrum of 8 147
Figure 4-6-7. 13C-NMR spectrum of 6 148
Figure 4-6-8. 13C-NMR spectrum of 8 148
Figure 4-7-1. COSY and HMBC correlations of 9 151
Figure 4-7-2. Selective NOESY correlations of 9 151
Figure 4-7-3. IR spectrum of 9 153
Figure 4-7-4. ESIMS spectrum of 9 153
Figure 4-7-5. HRESIMS spectrum of 9 154
Figure 4-7-6. 1H-NMR spectrum of 9 154
Figure 4-7-7. 13C-NMR spectrum of 9 155
Figure 4-7-8. DEPT spectra of 9 155
Figure 4-7-9. HSQC spectrum of 9 156
Figure 4-7-10. COSY spectrum of 9 156
Figure 4-7-11. HMBC spectrum of 9 157
Figure 4-7-12. NOESY spectrum of 9 157
Figure 4-8-1. COSY and HMBC correlations of 10 159
Figure 4-8-2. Selective NOESY correlations of 10 160
Figure 4-8-3. IR spectrum of 10 160
Figure 4-8-4. ESIMS spectrum of 10 162
Figure 4-8-5. HRESIMS spectrum of 10 162
Figure 4-8-6. 1H-NMR spectrum of 10 163
Figure 4-8-7. 1H-NMR (3.5−6.5 ppm) spectrum of 10 163
Figure 4-8-8. 13C-NMR spectrum of 10 164
Figure 4-8-9. DEPT spectra of 10 164
Figure 4-8-10. HSQC spectrum of 10 165
Figure 4-8-11. COSY spectrum of 10 165
Figure 4-8-12. HMBC spectrum of 10 166
Figure 4-8-13. NOESY spectrum of 10 166
Figure 4-9-1. COSY and HMBC correlations of 11 169
Figure 4-9-2. Selective NOESY correlations of 11 169
Figure 4-9-3. IR spectrum of 11 169
Figure 4-9-4. ESIMS spectrum of 11 171
Figure 4-9-5. HRESIMS spectrum of 11 171
Figure 4-9-6. 1H-NMR spectrum of 11 172
Figure 4-9-7. 1H-NMR (1.5−4.6 ppm) spectrum of 11 172
Figure 4-9-8. 13C-NMR spectrum of 11 173
Figure 4-9-9. DEPT spectra of 11 173
Figure 4-9-10. HSQC spectrum of 11 174
Figure 4-9-11. COSY spectrum of 11 174
Figure 4-9-12. HMBC spectrum of 11 175
Figure 4-9-13. NOESY spectrum of 11 175
Figure 4-10-1. ESIMS spectrum of 12 178
Figure 4-10-2. ESIMS spectrum of 13 178
Figure 4-10-3. ESIMS spectrum of 14 179
Figure 4-10-4. 1H-NMR spectrum of 12 179
Figure 4-10-5. 1H-NMR spectrum of 13 180
Figure 4-10-6. 1H-NMR spectrum of 14 180
Figure 4-10-7. 13C-NMR spectrum of 12 181
Figure 4-10-8. 13C-NMR spectrum of 13 181
Figure 4-10-9. 13C-NMR spectrum of 14 182
Figure 4-11-1. COSY and HMBC correlations of 15 184
Figure 4-11-2. Selective NOESY correlations of 15 184
Figure 4-11-3. IR spectrum of 15 184
Figure 4-11-4. ESIMS spectrum of 15 186
Figure 4-11-5. HRESIMS spectrum of 15 186
Figure 4-11-6. 1H-NMR spectrum of 15 187
Figure 4-11-7. 1H-NMR (2.3−7.0 ppm) spectrum of 15 187
Figure 4-11-8. 13C-NMR spectrum of 15 188
Figure 4-11-9. DEPT spectra of 15 188
Figure 4-11-10. HSQC spectrum of 15. 189
Figure 4-11-11. COSY spectrum of 15 189
Figure 4-11-12. HMBC spectrum of 15 190
Figure 4-11-13. NOESY spectrum of 15 190
Figure 4-12-1. ESIMS spectrum of 16 191
Figure 4-12-2. 1H-NMR spectrum of 16 193
Figure 4-12-3. 13C-NMR spectrum of 16 193
Figure 4-13-1. COSY and HMBC correlations of 17 195
Figure 4-13-2. X-ray crystal structure of 17 196
Figure 4-13-3. IR spectrum of 17 196
Figure 4-13-4. ESIMS spectrum of 17 198
Figure 4-13-5. HRESIMS spectrum of 17 198
Figure 4-13-6. 1H-NMR spectrum of 17 199
Figure 4-13-7. 13C-NMR spectrum of 17 199
Figure 4-13-8. DEPT spectra of 17 200
Figure 4-13-9. HSQC spectrum of 17 200
Figure 4-13-10. COSY spectrum of 17 201
Figure 4-13-11. HMBC spectrum of 17 201
Figure 4-13-12. NOESY spectrum of 17 202
Figure 4-14-1. COSY and HMBC correlations of 18 204
Figure 4-14-2. Selective NOESY correlations of 18 204
Figure 4-14-3. IR spectrum of 18 206
Figure 4-14-4. ESIMS spectrum of 18 206
Figure 4-14-5. HRESIMS spectrum of 18 207
Figure 4-14-6. 1H-NMR spectrum of 18 207
Figure 4-14-7. 13C-NMR spectrum of 18 208
Figure 4-14-8. DEPT spectra of 18 208
Figure 4-14-9. HSQC spectrum of 18 209
Figure 4-14-10. COSY spectrum of 18 209
Figure 4-14-11. HMBC spectrum of 18 210
Figure 4-14-12. NOESY spectrum of 18 210
Figure 4-14-13. The ESI-MS fragmentations of 17 (a) and 18 (b) 211
Figure 4-14-14. (a) The LC profiles and (b) LC-ESI-MS spectra of compounds 19, 21 and 22 212
Figure 4-15-1. COSY and HMBC correlations of 19 214
Figure 4-15-2. Selective NOESY correlations of 19 214
Figure 4-15-3. IR spectrum of 19 216
Figure 4-15-4. ESIMS spectrum of 19 216
Figure 4-15-5. HRESIMS spectrum of 19 217
Figure 4-15-6. 1H-NMR spectrum of 19 217
Figure 4-15-7. 13C-NMR spectrum of 19 218
Figure 4-15-8. DEPT spectra of 19 218
Figure 4-15-9. HSQC spectrum of 19 219
Figure 4-15-10. COSY spectrum of 19 219
Figure 4-15-11. HMBC spectrum of 19 220
Figure 4-15-12. NOESY spectrum of 19 220
Figure 4-16-1. COSY and HMBC correlations of 20 222
Figure 4-16-2. Selective NOESY correlations of 20 222
Figure 4-16-3. IR spectrum of 20 224
Figure 4-16-4. ESIMS spectrum of 20 224
Figure 4-16-5. HRESIMS spectrum of 20 225
Figure 4-16-6. 1H-NMR spectrum of 20 225
Figure 4-16-7. 13C-NMR spectrum of 20 226
Figure 4-16-8. DEPT spectra of 20 226
Figure 4-16-9. HSQC spectrum of 20 227
Figure 4-16-10. COSY spectrum of 20 227
Figure 4-16-11. HMBC spectrum of 20 228
Figure 4-16-12. NOESY spectrum of 20 228
Figure 4-16-13. The ESI-MS fragmentation of 20 229
Figure 4-17-1. COSY and HMBC correlations of 21 231
Figure 4-17-2. Selective NOESY correlations of 21 231
Figure 4-17-3. IR spectrum of 21 233
Figure 4-17-4. ESIMS spectrum of 21 233
Figure 4-17-5. HRESIMS spectrum of 21 234
Figure 4-17-6. 1H-NMR spectrum of 21 234
Figure 4-17-7. 13C-NMR spectrum of 21 235
Figure 4-17-8. DEPT spectra of 21 235
Figure 4-17-9. HSQC spectrum of 21 236
Figure 4-17-10. COSY spectrum of 21 236
Figure 4-17-11. HMBC spectrum of 21 237
Figure 4-17-12. NOESY spectrum of 21 237
Figure 4-18-1. COSY and HMBC correlations of 22 238
Figure 4-18-2. IR spectrum of 22 239
Figure 4-18-3. ESIMS spectrum of 22 239
Figure 4-18-4. HRESIMS spectrum of 22 241
Figure 4-18-5. 1H-NMR spectrum of 22 241
Figure 4-18-6. 13C-NMR spectrum of 22 242
Figure 4-18-7. DEPT spectra of 22 242
Figure 4-18-8. HSQC spectrum of 22 243
Figure 4-18-9. COSY spectrum of 22 243
Figure 4-18-10. HMBC spectrum of 22 244
Figure 4-18-11. NOESY spectrum of 22 244
Figure 4-19-1. COSY and HMBC correlations of 23 246
Figure 4-19-2. Selective NOESY correlations of 23 246
Figure 4-19-3. IR spectrum of 23 248
Figure 4-19-4. ESIMS spectrum of 23 248
Figure 4-19-5. HRESIMS spectrum of 23 249
Figure 4-19-6. 1H-NMR spectrum of 23 249
Figure 4-19-7. 13C-NMR spectrum of 23 250
Figure 4-19-8. DEPT spectra of 23 250
Figure 4-19-9. HSQC spectrum of 23 251
Figure 4-19-10. COSY spectrum of 23 251
Figure 4-19-11. HMBC spectrum of 23 252
Figure 4-19-12. NOESY spectrum of 23 252
Figure 4-20-1. COSY and HMBC correlations of 24 253
Figure 4-20-2. Selective NOESY correlations of 24 253
Figure 4-20-3. IR spectrum of 24 254
Figure 4-20-4. ESIMS spectrum of 24 256
Figure 4-20-5. HRESIMS spectrum of 24 256
Figure 4-20-6. 1H-NMR spectrum of 24 257
Figure 4-20-7. 1H-NMR (1.3−5.4 ppm) spectrum of 24 257
Figure 4-20-8. 13C-NMR spectrum of 24 258
Figure 4-20-9. DEPT spectra of 24 258
Figure 4-20-10. HSQC spectrum of 24 259
Figure 4-20-11. COSY spectrum of 24 259
Figure 4-20-12. HMBC spectrum of 24 260
Figure 4-20-13. NOESY spectrum of 24 260
Figure 4-21-1. COSY and HMBC correlations of 25 261
Figure 4-21-2. Selective NOESY correlations of 25 262
Figure 4-21-3. IR spectrum of 25 262
Figure 4-21-4. ESIMS spectrum of 25 264
Figure 4-21-5. HRESIMS spectrum of 25 264
Figure 4-21-6. 1H-NMR spectrum of 25 265
Figure 4-21-7. 1H-NMR (1.3−7.1 ppm) spectrum of 25 265
Figure 4-21-8. 13C-NMR spectrum of 25 266
Figure 4-21-9. DEPT spectra of 25 266
Figure 4-21-10. HSQC spectrum of 25 267
Figure 4-21-11. COSY spectrum of 25 267
Figure 4-21-12. HMBC spectrum of 25 268
Figure 4-21-13. NOESY spectrum of 25 268
Figure 4-22-1. COSY and HMBC correlations of 26 270
Figure 4-22-2. Selective NOESY correlations of 26 270
Figure 4-22-3. IR spectrum of 26 270
Figure 4-22-4. ESIMS spectrum of 26 273
Figure 4-22-5. HRESIMS spectrum of 26 273
Figure 4-22-6. 1H-NMR spectrum of 26 in CDCl3 274
Figure 4-22-7. 1H-NMR (1.3−4.8 ppm) spectrum of 26 in CDCl3 274
Figure 4-22-8. 13C-NMR spectrum of 26 in CDCl3 275
Figure 4-22-9. DEPT spectra of 26 in CDCl3 275
Figure 4-22-10. HSQC spectrum of 26 in CDCl3 276
Figure 4-22-11. COSY spectrum of 26 in CDCl3 276
Figure 4-22-12. HMBC spectrum of 26 in CDCl3 277
Figure 4-22-13. NOESY spectrum of 26 in CDCl3 277
Figure 4-22-14. 1H-NMR spectrum of 26 in C6D6 278
Figure 4-22-15. 13C-NMR spectrum of 26 in C6D6 278
Figure 4-22-16. HSQC spectrum of 26 in C6D6 279
Figure 4-22-17. COSY spectrum of 26 in C6D6 279
Figure 4-22-18. HMBC spectrum of 26 in C6D6 280
Figure 4-22-19. NOESY spectrum of 26 in C6D6 280
Figure 4-23-1. COSY and HMBC correlations of 27 282
Figure 4-23-2. Selective NOESY correlations of 27 282
Figure 4-23-3. IR spectrum of 27 282
Figure 4-23-4. ESIMS spectrum of 27 284
Figure 4-23-5. HRESIMS spectrum of 27 284
Figure 4-23-6. 1H-NMR spectrum of 27 285
Figure 4-23-7. 1H-NMR (2.4−7.0 ppm) spectrum of 27 285
Figure 4-23-8. 13C-NMR spectrum of 27 286
Figure 4-23-9. DEPT spectra of 27 286
Figure 4-23-10. HSQC spectrum of 27 287
Figure 4-23-11. COSY spectrum of 27 287
Figure 4-23-12. HMBC spectrum of 27 288
Figure 4-23-13. NOESY spectrum of 27 288
Figure 4-24-1. COSY and HMBC correlations of 28 290
Figure 4-24-2. Selective NOESY correlations of 28 290
Figure 4-24-3. IR spectrum of 28 290
Figure 4-24-4. ESIMS spectrum of 28 292
Figure 4-24-5. HRESIMS spectrum of 28 292
Figure 4-24-6. 1H-NMR spectrum of 28 293
Figure 4-24-7. 1H-NMR (1.3−4.5 ppm) spectrum of 28 293
Figure 4-24-8. 13C-NMR spectrum of 28 294
Figure 4-24-9. DEPT spectra of 28 294
Figure 4-24-10. HSQC spectrum of 28 295
Figure 4-24-11. COSY spectrum of 28 295
Figure 4-24-12. HMBC spectrum of 28 296
Figure 4-24-13. NOESY spectrum of 28 296
Figure 4-25-1. COSY and HMBC correlations of 29 298
Figure 4-25-2. Selective NOESY correlations of 29 299
Figure 4-25-3. IR spectrum of 29 299
Figure 4-25-4. ESIMS spectrum of 29 301
Figure 4-25-5. HRESIMS spectrum of 29 301
Figure 4-25-6. 1H-NMR spectrum of 29 302
Figure 4-25-7. 1H-NMR (1.2−7.0 ppm) spectrum of 29 302
Figure 4-25-8. 13C-NMR spectrum of 29 303
Figure 4-25-9. DEPT spectra of 29 303
Figure 4-25-10. HSQC spectrum of 29 304
Figure 4-25-11. COSY spectrum of 29 304
Figure 4-25-12. HMBC spectrum of 29 305
Figure 4-25-13. NOESY spectrum of 29 305
Figure 4-26-1. IR spectrum of 30 307
Figure 4-26-2. COSY and HMBC correlations of 30 307
Figure 4-26-3. Selective NOESY correlations of 30 308
Figure 4-26-4. ESIMS spectrum of 30 310
Figure 4-26-5. HRESIMS spectrum of 30 310
Figure 4-26-6. 1H-NMR spectrum of 30 311
Figure 4-26-7. 1H-NMR (2.1−7.1 ppm) spectrum of 30 311
Figure 4-26-8. 13C-NMR spectrum of 30 312
Figure 4-26-9. DEPT spectra of 30 312
Figure 4-26-10. HSQC spectrum of 30 313
Figure 4-26-11. COSY spectrum of 30 313
Figure 4-26-12. HMBC spectrum of 30 314
Figure 4-26-13. NOESY spectrum of 30 314
Figure 4-27-1. COSY and HMBC correlations of 31 315
Figure 4-27-2. Selective NOESY correlations of 31 316
Figure 4-27-3. IR spectrum of 31 316
Figure 4-27-4. ESIMS spectrum of 31 318
Figure 4-27-5. HRESIMS spectrum of 31 318
Figure 4-27-6. 1H-NMR spectrum of 31 319
Figure 4-27-7. 1H-NMR (6.0−7.2 ppm) spectrum of 31 319
Figure 4-27-8. 13C-NMR spectrum of 31 320
Figure 4-27-9. DEPT spectra of 31 320
Figure 4-27-10. HSQC spectrum of 31 321
Figure 4-27-11. COSY spectrum of 31 321
Figure 4-27-12. HMBC spectrum of 31 322
Figure 4-27-13. NOESY spectrum of 31 322
Figure 4-28-1. COSY and HMBC correlations of 32 324
Figure 4-28-2. Selective NOESY correlations of 32 325
Figure 4-28-3. IR spectrum of 32 327
Figure 4-28-4. ESIMS spectrum of 32 328
Figure 4-28-5. HRESIMS spectrum of 32 328
Figure 4-28-6. 1H-NMR spectrum of 32 329
Figure 4-28-7. 1H-NMR (3.9−6.0 ppm) spectrum of 32 329
Figure 4-28-8. 13C-NMR spectrum of 32 330
Figure 4-28-9. DEPT spectra of 32 330
Figure 4-28-10. HSQC spectrum of 32 331
Figure 4-28-11. COSY spectrum of 32 331
Figure 4-28-12. HMBC spectrum of 32 332
Figure 4-28-13. NOESY spectrum of 32 332
Figure 4-29-1. COSY and HMBC correlations of 33 334
Figure 4-29-2. Experimental CD spectrum of 33 334
Figure 4-29-3. IR spectrum of 33 337
Figure 4-29-4. ESIMS spectrum of 33 338
Figure 4-29-5. HRESIMS spectrum of 33 338
Figure 4-29-6. 1H-NMR spectrum of 33 339
Figure 4-29-6. 1H-NMR (3.9−6.0 ppm) spectrum of 33 339
Figure 4-29-7. 13C-NMR spectrum of 33 340
Figure 4-29-8. DEPT spectra of 33 340
Figure 4-29-9. HSQC spectrum of 33 341
Figure 4-29-10. COSY spectrum of 33 341
Figure 4-29-11. HMBC spectrum of 33 342
Figure 4-29-12. NOESY spectrum of 33 342
Figure 4-30-1. ESIMS spectrum of 34 345
Figure 4-30-2. 1H-NMR spectrum of 34 345
Figure 4-30-3. 13C-NMR spectrum of 34 346
Figure 4-31-1. ESIMS spectrum of 35 347
Figure 4-31-2. 1H-NMR spectrum of 35 350
Figure 4-31-3. 13C-NMR spectrum of 35 350
Figure 4-31-4. ESIMS spectrum of 36 351
Figure 4-31-5. 1H-NMR spectrum of 36 351
Figure 4-31-6. 13C-NMR spectrum of 36 352
Figure 4-31-7. ESIMS spectrum of 37 352
Figure 4-31-8. 1H-NMR spectrum of 37 353
Figure 4-31-9. 13C-NMR spectrum of 37 353
Figure 6-1. The neuroprotective effects of 1, 3, 6 and 7 on 6-OHDA-induced neurotoxicity in human neuroblastoma SH-SY5Y cells 358
Figure 6-2. Effect of compounds 32–34 on iNOS protein expression of RAW264.7 macrophage cells by immunoblot analysis 362
Figure 6-3. Effect of compounds 32–34 on COX-2 protein expression of RAW264.7 macrophage cells by immunoblot analysis 363
Scheme 4-29. Plausible Diels-Alder reaction to derive compounds 32 and 33 335


List of Tables Page

Table 2-1. Literature review of the genus Paralemnalia and Lemnalia 5
Table 2-2. Literature review of the soft coral Sinularia erecta 20
Table 2-3. Literature review of natural withanolides 22
Table 2-4. Literature review of withanolides from marine natural products 70
Table 2-5. Literature review of cembrane-type diterpenoids and biscembranoids the soft coral Sarcophyton glaucum 72
Table 4-1. 1H and 13C NMR, COSY, and HMBC data of 1 105
Table 4-2. 1H and 13C NMR, COSY, and HMBC data of 2 113
Table 4-3. 1H and 13C NMR, COSY, and HMBC data of 3 121
Table 4-4. 1H and 13C NMR, COSY, and HMBC data of 4 129
Table 4-5. 1H and 13C NMR, COSY, and HMBC data of 5 137
Table 4-6. 1H and 13C NMR data of 6−8 144
Table 4-7. 1H and 13C NMR, COSY, and HMBC data of 9 152
Table 4-8. 1H and 13C NMR, COSY, and HMBC data of 10. 161
Table 4-9. 1H and 13C NMR, COSY, and HMBC data of 11 170
Table 4-10-1. 1H NMR data of 12−14 176
Table 4-10-2. 13C NMR data of 12−14 177
Table 4-11. 1H and 13C NMR, COSY, and HMBC data of 15 185
Table 4-12. 1H and 13C NMR data 16 192
Table 4-13. 1H and 13C NMR, COSY, and HMBC data of 17 197
Table 4-14. 1H and 13C NMR, COSY, and HMBC data of 18 205
Table 4-15. 1H and 13C NMR, COSY, and HMBC data of 19 215
Table 4-16. 1H and 13C NMR, COSY, and HMBC data of 20 223
Table 4-17. 1H and 13C NMR, COSY, and HMBC data of 21 232
Table 4-18. 1H and 13C NMR, COSY, and HMBC data of 22 240
Table 4-19. 1H and 13C NMR, COSY, and HMBC data of 23 247
Table 4-20. 1H and 13C NMR, COSY, and HMBC data of 24 255
Table 4-21. 1H and 13C NMR, COSY, and HMBC data of 25 263
Table 4-22-1. 1H and 13C NMR, COSY, and HMBC data of 26 in CDCl3 271
Table 4-22-2. 1H and 13C NMR data of 26 in C6D6 272
Table 4-23. 1H and 13C NMR, COSY, and HMBC data of 27 283
Table 4-24. 1H and 13C NMR, COSY, and HMBC data of 28 291
Table 4-25. 1H and 13C NMR, COSY, and HMBC data of 29 300
Table 4-26. 1H and 13C NMR, COSY, and HMBC data of 30 309
Table 4-27. 1H and 13C NMR, COSY, and HMBC data of 31 317
Table 4-28. 1H and 13C NMR, COSY, and HMBC data of 32 326
Table 4-29. 1H and 13C NMR, COSY, and HMBC data of 33 336
Table 4-30. 1H and 13C NMR data of 34 345
Table 4-31-1. 1H and 13C NMR data of 35 348
Table 4-31-2. 1H and 13C NMR data of 36 and 37 349
Table 6-1. Cytotoxicity data of compounds 9–37 356
Table 6-2. Inhibitory effects of compounds compounds 9–37 on superoxide anion generation and elastase release in fMLP/CB-induced human neutrophils at 10 M 360
Table 6-3. iNOS protein expression data of compounds 32–34 362
Table 6-4. COX-2 protein expression of compounds 32–34 363
參考文獻 References
1. Kijjoa, A.; Sawangwong, P. Drugs and Cosmetics from the Sea. Mar. Drugs 2004, 2, 73–82.
2. Lin, K. H.; Tseng, Y. J.; Chen, B. W.; Hwang, T. L.; Chen, H. Y.; Dai, C. F.; Sheu, J. H. Tortuosenes A and B, New Diterpenoid Metabolites from the Formosan Soft Coral Sarcophyton tortuosum. Org. Lett. 2014, 16 (5), 1314–1317.
3. Tseng, Y. J.; Wen, Z. H.; Dai, C. F.; Chiang, M. Y.; Sheu, J. H. Nanolobatolide, a New C-18 Metabolite from the Formosan Soft Coral Sinularia nanolobata. Org. Lett. 2009, 11 (21), 5030–5032.
4. Tseng, Y. J.; Ahmed, A. F.; Dai, C. F.; Chiang, M. Y.; Sheu, J. H. Sinulochmodins A–C, Three Novel Terpenoids from the Soft Coral Sinularia lochmodes. Org. Lett. 2005, 7 (17), 3813–3816.
5. Chen, S. C.; Chien, Y. C.; Pan, C. H.; Sheu, J. H.; Chen, C. Y.; Wu, C. H. Inhibitory Effect of Dihydroaustrasulfone Alcohol on the Migration of Human Non-Small Cell Lung Carcinoma A549 Cells and the Antitumor Effect on a Lewis Lung Carcinoma-Bearing Tumor Model in C57BL/6J Mice. Mar. Drugs 2014, 12 (1), 196–213.
6. Lin, Y. Y.; Jean, Y. H.; Lee, H. P.; Chen, W. F.; Sun, Y. M.; Su, J. H.; Lu, Y.; Huang, S. Y.; Hung, H. C.; Sung, P. J.; Sheu, J. H.; Wen, Z. H. A Soft Coral-Derived Compound, 11-epi-Sinulariolide Acetate Suppresses Inflammatory Response and Bone Destruction in Adjuvant-Induced Arthritis. Plos One 2013, 8 (5), e62926.
7. Liang, C. H.; Wang, G. H.; Chou, T. H.; Wang, S. H.; Lin, R. J.; Chan, L. P.; So, E. C.; Sheu, J. H. 5-epi-Sinuleptolide Induces Cell Cycle Arrest and Apoptosis Through Tumor Necrosis Factor/Mitochondria-Mediated Caspase Signaling Pathway in Human Skin Cancer Cells. Biochim. Biophys. Acta-Gen. Subj. 2012, 1820 (7), 1149–1157.
8. Wei, W. C.; Lin, S. Y.; Chen, Y. J.; Wen, C. C.; Huang, C. Y.; Palanisamy, A.; Yang, N. S.; Sheu, J. H. Topical Application of Marine Briarane-type Diterpenes Effectively Inhibits 12-O-Tetradecanoylphorbol-13-acetate-induced Inflammation and Dermatitis in Murine Skin. J. Biomed. Sci. 2011, 18: 94.
9. Wen, Z. H.; Chao, C. H.; Wu, M. H.; Sheu, J. H. A Neuroprotective Sulfone of Marine Origin and the in Vivo Anti-inflammatory Activity of an Analogue. Eur. J. Med. Chem. 2010, 45 (12), 5998–6004.
10. Ahond, A.; Chiaroni, A.; Coll, J. C.; Fourneron, J. D.; Riche, C.; Braekman, J. C.; Daloze, D.; Tursch, B.; Dunstan, P. J. Studies of Australian Soft Corals .17. Isolation and Properties of Lemnalactone, 7-Epi-Lemnalactone and Their Derivatives − Correction of Several Literature Assignments, Supported by X-Ray-Diffraction. Bull. Soc. Chim. Belg. 1979, 88 (5), 313–324.
11. Daloze, D.; Braekman, J. C.; Georget, P.; Tursch, B. Chemical Studies of Marine-Invertebrates. XXII. Two Novel Sesquiterpenes from Soft Corals of Genera Lemnalia and Para-Lemnalia (Coelenterata, Octocorallia, Alcyonacea). Bull. Soc. Chim. Belg. 1977, 86 (1-2), 47–54.
12. Bowden, B. F.; Coll, J. C.; Mitchell, S. J. Studies of Australian Soft Corals. XIX. 2 New Sesquiterpenes with the Nardosinane Skeleton from a Paralemnalia Species. Aust. J. Chem. 1980, 33 (4), 885–890.
13. Izac, R. R.; Schneider, P.; Swain, M.; Fenical, W. New nor-Sesquiterpenoids of Apparent Nardosinane Origin from the Pacific Soft Coral Paralemnalia thyrsoides. Tetrahedron Lett. 1982, 23 (8), 817–820.
14. Su, J. Y.; Zhong, Y. L.; Zeng, L. M. 2 New Sesquiterpenoids from the Soft Coral Paralemnalia thyrsoides. J. Nat. Prod. 1993, 56 (2), 288–291.
15. Huang, H. C.; Chao, C. F.; Liao, J. H.; Chiang, M. Y.; Dai, C. F.; Wu, Y. C.; Sheu, J. H. A Novel Chlorinated Norsesquiterpenoid and Two Related New Metabolites from the Soft Coral Paralemnalia thyrsoides. Tetrahedron Lett. 2005, 46 (45), 7711–7714.
16. Huang, H. C.; Wen, Z. H.; Chao, C. H.; Ahmed, A. F.; Chiang, M. Y.; Kuo, Y. H.; Hsu, C. H.; Sheu, J. H. Novel Sesquiterpenoids from the Formosan Soft Coral Paralemnalia thyrsoides. Tetrahedron Lett. 2006, 47 (49), 8751–8755.
17. Huang, H. C.; Chao, C. H.; Su, J. H.; Hsu, C. H.; Chen, S. P.; Kuo, Y. H.; Sheu, J. H. Neolemnane-type Sesquiterpenoids from a Formosan Soft Coral Paralemnalia thyrsoides. Chem. Pharm. Bull. 2007, 55 (6), 876–880.
18. Cheng, S. Y.; Lin, E. H.; Huang, J. S.; Wen, Z. H.; Duh, C. Y. Ylangene-Type and Nardosinane-Type Sesquiterpenoids from the Soft Corals Lemnalia flava and Paralemnalia thyrsoides. Chem. Pharm. Bull. 2010, 58 (3), 381–385.
19. Wang, G. H.; Huang, H. C.; Su, J. H.; Wu, Y. C.; Sheu, J. H. Paralemnolins J−P, New Sesquiterpenoids from the Soft Coral Paralemnalia thyrsoide. Chem. Pharm. Bull. 2010, 58 (1), 30–33.
20. Wang, S.-K.; Lee, Y.-S.; Duh, C.-Y. Paralemnolide A, an Unprecedented Bisnorsesquiterpene from the Taiwanese Soft Coral Paralemnalia thyrsoides. Mar. Drugs 2012, 10, 1528–1535.
21. Tseng, Y.-J.; Lee, Y.-S.; Wang, S.-K.; Sheu, J.-H.; Duh, C.-Y. Parathyrsoidins A–D, Four New Sesquiterpenoids from the Soft Coral Paralemnalia thyrsoides. Mar. Drugs 2013, 11, 2501–2509.
22. Tursch, B.; Braekman, J. C.; Daloze, D.; Fritz, P.; Kelecom, A.; Karlsson, R.; Losman, D. Chemical Studies of Marine Invertebrates. VIII. Africanol, an Unusual Sesquiterpene from Lemnalia africana (Coelenterata, Octocorallia, Alcyonacea). Tetrahedron Lett. 1974, (9), 747–750.
23. Bowden, B. F.; Coll, J. C.; Mitchell, S. J.; Skelton, B. W.; White, A. H. Studies of Australian Soft Corals. XXII. The Structures of Two Novel Sesquiterpenes and a nor Sesquiterpene from Lemnalia africana, Confirmed by a Single-Crystal X-Ray Study. Aust. J. Chem. 1980, 33 (12), 2737–2747.
24. Izac, R. R.; Fenical, W.; Tagle, B.; Clardy, J. Neolemnane and Eremophilane Sesquiterpenoids from the Pacific Soft Coral Lemnalia africana. Tetrahedron 1981, 37 (15), 2569–2573.
25. Izac, R. R.; Bandurraga, M. M.; Wasylyk, J. M.; Dunn, F. W.; Fenical, W. Germacrene Derivatives from Diverse Marine Soft Corals (Octocorallia). Tetrahedron 1982, 38 (2), 301–304.
26. Carney, J. R.; Pham, A. T.; Yoshida, W. Y.; Scheuer, P. J. Napalilactone, a New Halogenated Norsesquiterpenoid from the Soft Coral Lemnalia africana. Tetrahedron Lett. 1992, 33 (47), 7115–7118.
27. Jurek, J.; Scheuer, P. J. Sesquiterpenoids and Norsesquiterpenoids from the Soft Coral Lemnalia africana. J. Nat. Prod. 1993, 56 (4), 508–513.
28. Zhang, M.; Long, K. H.; Wu, H. M.; Ma, K., A Novel Diterpene Glycoside from the Soft Coral of Lemnalia bournei. J. Nat. Prod. 1994, 57 (1), 155–160.
29. Zhang, M.; Huang, Z. S. Two New Diterpene Glycosides from the Soft Coral Lemnalia bournei. J. Nat. Prod. 1998, 61 (10), 1300–1301.
30. Tursch, B.; Colin, M.; Daloze, D.; Losman, D.; Karlsson, R. Chemical Studies of Marine Invertebrates .12. Lemnacarnol, a Novel Sesquiterpene from Soft Coral Lemnalia carnosa (Octocorallia-Alcyonacea). Bull. Soc. Chim. Belg. 1975, 84 (1-2), 81–82.
31. Bowden, B. F.; Coll, J. C.; Engelhardt, L. M.; Tapiolas, D. M.; White, A. H. Studies of Australian Soft Corals. XXXVI. The Isolation and Structure Determination of 11 Calamenene-Based Sesquiterpenes from Lemnalia cervicornis (Coelenterata, Octocorallia, Alcyonacea). Aust. J. Chem. 1986, 39 (1), 103–121.
32. Rudi, A.; Levi, S.; Benayahu, Y.; Kashman, Y. Lemnaflavoside, a new diterpene glycoside from the soft coral Lemnalia flava. J. Nat. Prod. 2002, 65 (11), 1672–1674.
33. Duh, C. Y.; El-Gamal, A. H. A.; Song, P. Y.; Wang, S. K.; Dai, C. F. Steroids and Sesquiterpenoids from the Soft Corals Dendronephthya gigantea and Lemnalia cervicorni. J. Nat. Prod. 2004, 67 (10), 1650–1653.
34. Cheng, S. Y.; Lin, E. H.; Huang, J. S.; Wen, Z. H.; Duh, C. Y. Ylangene-Type and Nardosinane-Type Sesquiterpenoids from the Soft Corals Lemnalia flava and Paralemnalia thyrsoides. Chem. Pharm. Bull. 2010, 58 (3), 381–385.
35. Lu, Y.; Li, P. J.; Hung, W. Y.; Su, J. H.; Wen, Z. H.; Hsu, C. H.; Dai, C. F.; Chiang, M. Y.; Sheu, J. H. Nardosinane Sesquiterpenoids from the Formosan Soft Coral Lemnalia flava. J. Nat. Prod. 2011, 74 (2), 169–174.
36. Su, J. H.; Lu, Y.; Hung, W. Y.; Huang, C. Y.; Chiang, M. Y.; Sung, P. J.; Kuo, Y. H.; Sheu, J. H. Sesquiterpenoids from the Formosan Soft Coral Lemnalia flava. Chem. Pharm. Bull. 2011, 59 (6), 698–702.
37. Bowden, B. F.; Coll, J. C.; Mitchell, S. J. Studies of Australian soft corals. XVI. Two New Sesquiterpenes from Lemnalia humesi. Aust. J. Chem. 1980, 33 (3), 641–644.
38. El-Gamal, A. A. H.; Chiu, E. P.; Li, C. H.; Cheng, S. Y.; Dai, C. F.; Duh, C. Y. Sesquiterpenoids and Norsesquiterpenoids from the Formosan soft coral Lemnalia laevis. J. Nat. Prod. 2005, 68 (12), 1749–1753.
39. Kikuchi, H.; Tsukitani, Y.; Yamada, Y.; Iguchi, K.; Drexler, S. A.; Clardy, J. Lemnalol, a New Sesquiterpenoid from the Soft Coral Lemnalia tenuis Verseveldt. Tetrahedron Lett. 1982, 23 (10), 1063–1066
40. Jean, Y. H.; Chen, W. F.; Duh, C. Y.; Huang, S. Y.; Hsu, C. H.; Lin, C. S.; Sung, C. S.; Chen, I. M.; Wen, Z. H. Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Participate in Anti-inflammatory and Analgesic Effects of the Natural Marine Compound Lemnalol from Formosan Soft Coral Lemnalia cervicorni. Eur. J. Pharm. 2008, 578 (2-3), 323–331.
41. Yao, G. M.; Vidor, N. B.; Foss, A. P.; Chang, L. C. Lemnalosides A−D, Decalin-type Bicyclic Diterpene Glycosides from the Marine Soft Coral Lemnalia sp. J. Nat. Prod. 2007, 70 (6), 901–905.
42. Blunt, J. W.; Copp, B. R.; Keyzers, R. A.; Munro, M. H. G.; Prinsep, M. R. Marine Natural Products. Nat. Prod. Rep. 2013, 30 (2), 237–323.
43. Kashman, Y.; Bodner, M.; Finermoore, J. S.; Clardy, J. 9(15)-Africanene, a New Sesquiterpene Hydrocarbon from the Soft Coral Sinularia erecta. Experientia 1980, 36 (8), 891–892.
44. Rudi, A.; Dayan, T. L. A.; Aknin, M.; Gaydou, E. M.; Kashman, Y. Several New Isoprenoids from the Soft Coral Sinularia erecta. J. Nat. Prod. 1998, 61 (7), 872–875.
45. Rudi, A.; Shmul, G.; Benayahu, Y.; Kashman, Y., Sinularectin, a New Diterpenoid from the Soft Coral Sinularia erecta. Tetrahedron Lett. 2006, 47 (17), 2937–2939.
46. Ou, Y. F.; Xu, S. H.; Yin, P. H.; Peng, C. H.; Liao, L. NMR Spectral Assignments of Two Sterols from a Soft Coral Sinularia brassica. Magn. Reson. Chem. 2011, 49 (1), 46–49.
47. Lavie, D.; Glotter, E.; Shvo, Y. Constituents of Withania Somnifera Dun .3. Side Chain of Withaferin A. J.Org. Chem. 1965, 30 (6), 1774–1776.
48. Chen, L. X.; He, H.; Qiu, F., Natural Withanolides: an Overview. Nat. Prod. Rep. 2011, 28 (4), 705–740.
49. Manickam, M.; Ray, A. B. Structure of Withatatulin E, a Minor Withanolide of Datura tatula. Indian J. Chem., Sect. B 1996, 35 (12), 1311–1313.
50. Perez-Castorena, A. L.; Oropeza, R. F.; Vazquez, A. R.; Martinez, M.; Maldonado, E. Labdanes and Withanolides from Physalis coztomatl. J. Nat. Prod. 2006, 69 (7), 1029–1033.
51. Minguzzi, S.; Barata, L. E. S.; Shin, Y. G.; Jonas, P. F.; Chai, H. B.; Park, E. J.; Pezzuto, J. M.; Cordell, G. A. Cytotoxic Withanolides from Acnistus arborescens. Phytochemistry 2002, 59 (6), 635–641.
52. Ahmad, S.; Malik, A.; Yasmin, R.; Ullah, N.; Gul, W.; Khan, P. M.; Nawaz, H. R.; Afza, N. Withanolides from Physalis peruviana. Phytochemistry 1999, 50 (4), 647–651.
53. Su, B. N.; Misico, R.; Park, E. J.; Santarsiero, B. D.; Mesecar, A. D.; Fong, H. H. S.; Pezzuto, J. M.; Kinghorn, A. D. Isolation and Characterization of Bioactive Principles of the Leaves and Stems of Physalis philadelphica. Tetrahedron 2002, 58 (17), 3453–3466.
54. Silva, G. L.; Burton, G.; Oberti, J. C. 18-20-Hemiacetal-type and Other Withanolides from Dunalia brachyacantha. J. Nat. Prod. 1999, 62 (7), 949–953.
55. Misico, R. I.; Gil, R. R.; Oberti, J. C.; Veleiro, A. S.; Burton, G. Withanolides from Vassobia lorentzii. J. Nat. Prod. 2000, 63 (10), 1329–1332.
56. Hsieh, P. W.; Huang, Z. Y.; Chen, J. H.; Chang, F. R.; Wu, C. C.; Yang, Y. L.; Chiang, M. Y.; Yen, M. H.; Chen, S. L.; Yen, H. F.; Lubken, T.; Hung, W. C.; Wu, Y. C. Cytotoxic Withanolides from Tubocapsicum anomalum. J. Nat. Prod. 2007, 70 (5), 747–753.
57. Anjaneyulyu, A. S. R.; Rao, D. S. A New Withanolide from the Leaves of Withania somnifera. Indian J. Chem., Sect. B 1997, 36 (2), 161–165.
58. Kuroyanagi, M.; Shibata, K.; Umehara, K. Cell Differentiation Inducing Steroids from Withania somnifera L-(Dun.). Chem. Pharm. Bull. 1999, 47 (11), 1646-1649.
59. Jayaprakasam, B.; Nair, M. G. Cyclooxygenase-2 Enzyme Inhibitory Withanolides from Withania somnifera leaves. Tetrahedron 2003, 59 (6), 841–849.
60. Choudhary, M. I.; Yousuf, S.; Nawaz, S. A.; Ahmed, S.; Atta-ur-Rahman Cholinesterase Inhibiting Withanolides from Withania somnifera. Chem. Pharm. Bull. 2004, 52 (11), 1358–1361.
61. Riaz, N.; Malik, A.; Aziz-ur-Rehman; Nawaz, S. A.; Muhammad, P.; Choudhary, M. I. Cholinesterase-inhibiting Withanolides from Ajuga bracteosa. Chem. Biodivers. 2004, 1 (9), 1289–1295.
62. Dinan, L. N.; Sarker, S. D.; Sik, V. 28-Hydroxywithanolide E from Physalis peruviana. Phytochemistry 1997, 44 (3), 509–512.
63. Maldonado, E.; Torres, F. R.; Martinez, M.; Perez-Castorena, A. L. 18-Acetoxywithanolides from Physalis chenopodifolia. Planta Med. 2004, 70 (1), 59–64.
64. Nagafuji, S.; Okabe, H.; Akahane, H.; Abe, F. Trypanocidal Constituents in Plants 4. Withanolides from the Aerial Parts of Physalis angulata. Biol. Pharm. Bull. 2004, 27 (2), 193–197.
65. Damu, A. G.; Kuo, P. C.; Su, C. R.; Kuo, T. H.; Chen, T. H.; Bastow, K. F.; Lee, K. H.; Wu, T. S. Isolation, Structures, and Structure-cytotoxic Activity Relationships of Withanolides and Physalins from Physalis angulata. J. Nat. Prod. 2007, 70 (7), 1146–1152.
66. Lan, Y. H.; Chang, F. R.; Pan, M. J.; Wu, C. C.; Wu, S. J.; Chen, S. L.; Wang, S. S.; Wu, M. J.; Wu, Y. C. New Cytotoxic Withanolides from Physalis peruviana. Food Chem. 2009, 116 (2), 462–469.
67. Misra, L.; Lal, P.; Sangwan, R. S.; Sangwan, N. S.; Uniyal, G. C.; Tuli, R. Unusually Sulfated and Oxygenated Steroids from Withania somnifera. Phytochemistry 2005, 66 (23), 2702–2707.
68. Benjumea, D.; Martin-Herrera, D.; Abdala, S.; Gutierrez-Luis, J.; Quinones, W.; Cardona, D.; Torres, F.; Echeverri, F. Withanolides from Whitania aristata and Their Diuretic Activity. J. Ethnopharmacol. 2009, 123 (2), 351–355.
69. Lee, S. W.; Pan, M. H.; Chen, C. M.; Chen, Z. T. Withangulatin I, a New Cytotoxic Withanolide from Physalis angulata. Chem. Pharm. Bull. 2008, 56 (2), 234–236.
70. Abe, F.; Nagafuji, S.; Okawa, M.; Kinjo, J. Trypanocidal Constituents in Plants 6. Minor Withanolides from the Aerial Parts of Physalis angulata. Chem. Pharm. Bull. 2006, 54 (8), 1226–1228.
71. Ali, M.; Shuaib, M.; Ansari, S. H. Withanolides from the Stem Bark of Withania somnifera. Phytochemistry 1997, 44 (6), 1163–1168.
72. Khan, P. H.; Nawaz, H. R.; Ahmad, S.; Malik, A. Ajugins C and D, New Withanolides from Ajuga parviflora. Helv. Chim. Acta 1999, 82 (9), 1423–1426.
73. Zhu, X. H.; Takagi, M.; Ikeda, S.; Midzuki, K.; Nohara, T. Withanolide-type Steroids from Solanum cilistum. Phytochemistry 2001, 56 (7), 741–745.
74. Kumar, A.; Ali, M.; Mir, S. R. A New Withanolide from Tile Roots of Withania somnifera. Indian J. Chem., Sect. B 2004, 43 (9), 2001–2003.
75. Perez-Castorena, A. L.; Oropeza, R. F.; Vazquez, A. R.; Martinez, M.; Maldonado, E., Labdanes and Withanolides from Physalis coztomatl. J. Nat. Prod. 2006, 69 (7), 1029–1033.
76. Cordero, C. P.; Morantes, S. J.; Paez, A.; Rincon, J.; Aristizabal, F. A. Cytotoxicity of Withanolides Isolated from Acnistus arborescens. Fitoterapia 2009, 80 (6), 364–368.
77. Maldonado, E.; Alvarado, V. E.; Torres, F. R.; Martinez, M.; Perez-Castorena, A. L. Androstane and Withanolides from Physalis cinerascens. Planta Med. 2005, 71 (6), 548–553.
78. Huang, C. F.; Ma, L.; Sun, L. J.; Ali, M.; Arfan, M.; Liu, J. W.; Hu, L. H. Immunosuppressive Withanolides from Withania coagulans. Chem. Biodivers. 2009, 6, (9), 1415–1426.
79. Khan, P. M.; Malik, A.; Ahmad, S.; Nawaz, H. R. Withanolides from Ajuga parviflora. J. Nat. Prod. 1999, 62 (9), 1290–1292.
80. Su, B. N.; Park, E. J.; Nikolic, D.; Vigo, J. S.; Graham, J. G.; Cabieses, F.; van Breemen, R. B.; Fong, H. H. S.; Farnsworth, N. R.; Pezzuto, J. M.; Kinghorn, A. D. Isolation and Characterization of Miscellaneous Secondary Metabolites of Deprea subtriflora. J. Nat. Prod. 2003, 66 (8), 1089–1093.
81. Ma, L.; Xie, C. M.; Li, J.; Lou, F. C.; Hu, L. H. Daturametelins H, I, and J: Three New Withanolide Glycosides from Datura metel L. Chem. Biodivers. 2006, 3 (2), 180–186.
82. Nawaz, H. R.; Malik, A.; Khan, P. M.; Ahmed, S. Ajugin E and F: Two Withanolides from Ajuga parviflora. Phytochemistry 1999, 52 (7), 1357–1360.
83. Choudhary, M. Q.; Yousaf, S.; Ahmed, S.; Samreen; Yasmeen, K.; Atta-ur-Rahman Antileishmanial Physalins from Physalis minima. Chem. Biodivers. 2005, 2 (9), 1164–1173.
84. Atta-ur-Rahman; Shabbir, M.; Yousaf, M.; Qureshi, S.; e-Shahwar, D.; Naz, A.; Choudhary, M. I. Three Withanolides from Withania coagulans. Phytochemistry 1999, 52 (7), 1361–1364.
85. Zhu, X. H.; Ando, J.; Takagi, M.; Ikeda, T.; Nohara, T. Six New Withanolide-type Steroids from the Leaves of Solanum cilistum. Chem. Pharm. Bull. 2001, 49 (2), 161–164.
86. Atta-ur-Rahman; Choudhary, M. I.; Yousaf, M.; Gul, W.; Qureshi, S. New Withanolides from Withania coagulans. Chem. Pharm. Bull. 1998, 46 (12), 1853–1856.
87. Ahmad, S.; Yasmin, R.; Malik, A. New Withanolide Glycosides from Physalis peruviana L. Chem. Pharm. Bull. 1999, 47 (4), 477–480.
88. Bravo, B. J. A.; Sauvain, M.; Gimenez, T. A.; Balanza, E.; Serani, L.; Laprevote, O.; Massiot, G.; Lavaud, C. Trypanocidal Withanolides and Withanolide Glycosides from Dunalia brachyacantha. J. Nat. Prod. 2001, 64 (6), 720–725.
89. Matsuda, H.; Murakami, T.; Kishi, A.; Yoshikawa, M. Structures of Withanosides I, II, III, IV, V, VI, and VII, New Withanolide Glycosides, from the Roots of Indian Withania somnifera DUNAL. and Inhibitory Activity for Tachyphylaxis to Clonidine in Isolated Guinea-pig ileum. Bioorg. Med. Chem. 2001, 9 (6), 1499–1507.
90. Abdeljebbar, L. H.; Humam, M.; Christen, P.; Jeannerat, D.; Vitorge, B.; Amzazi, S.; Benjouad, A.; Hostettmann, K.; Bekkouche, K. Withanolides from Withania adpressa. Helv. Chim. Acta 2007, 90 (2), 346–352.
91. Zhao, J.; Nakamura, N.; Hattori, M.; Kuboyama, T.; Tohda, C.; Komatsu, K. Withanolide Derivatives from the Roots of Withania somnifera and Their Neurite Outgrowth Activities. Chem. Pharm. Bull. 2002, 50 (6), 760–765.
92. Ramacciotti, N. S.; Nicotra, V. E. Withanolides from Jaborosa kurtzii. J. Nat. Prod. 2007, 70 (9), 1513–1515.
93. Atta-ur-Rahman; Yousaf, M.; Gui, W.; Qureshi, S.; Choudhary, M. I.; Voelter, W.; Hoff, A.; Jens, F.; Naz, A. Five New Withanolides from Withania coagulans. Heterocycles 1998, 48 (9), 1801–1811.
94. Nawaz, H. R.; Riaz, M.; Malik, A.; Khan, P. M.; Ullah, N. Withanolides and Alkaloid from Ajuga parviflora. J. Chem. Soc. Pak. 2000, 22 (2), 138–141.
95. Nawaz, H. R.; Malik, A.; Muhammad, P.; Ahmed, S.; Riaz, M. Chemical Constituents of Ajuga parviflora. Z. Naturforsch., B: Chem. Sci., 2000, 55 (1), 100–103.
96. Gil, R. R.; Misico, R. I.; Sotes, I. R.; Oberti, J. C.; Veleiro, A. S.; Burton, G. 16-Hydroxylated Withanolides from Exodeconus maritimus. J. Nat. Prod. 1997, 60 (6), 568–572.
97. Anjaneyulu, A. S. R.; Rao, D. S. New Withanolides from the Roots of Withania somnifera. Indian J. Chem., Sect. B 1997, 36 (5), 424–433.
98. Kuang, H. X.; Yang, B. Y.; Tang, L.; Xia, Y. G.; Dou, D. Q. Baimantuoluosides A–C, Three New Withanolide Glucosides from the Flower of Datura metel L. Helv. Chim. Acta 2009, 92 (7), 1315–1323.
99. Vankar, P. S.; Srivastava, J.; Molcanov, K.; Kojic-Prodic, B. Withanolide A Series Steroidal Lactones from Eucalyptus globulus bark. Phytochem. Lett. 2009, 2 (2), 67–71.
100. Ma, C. Y.; Williams, I. D.; Che, C. T. Withanolides from Hyoscyamus niger seeds. J. Nat. Prod. 1999, 62 (10), 1445–1447.
101. Lee, S. W.; Pan, M. H.; Chen, C. M.; Chen, Z. T. Withangulatin I, a New Cytotoxic Withanolide from Physalis angulata. Chem. Pharm. Bull. 2008, 56 (2), 234–236.
102. Cardona, D.; Quinones, W.; Torres, F.; Velez, I. D.; Orozco-P., C. I.; Garzon, J. Echeverri, F. Estructura y Actividad Leishmanicida de Larnaxolida A y B, Nuevos Withanólidos de Larnax glabra (Standl.) Sawyer. Actual. Biol., 2005, 27 (1), 81–86.
103. Yang, B. Y.; Wang, Q. H.; Xia, Y. G.; Feng, W. S.; Kuang, H. X. Withanolide Compounds from the Flower of Datura metel L. Helv. Chim. Acta 2007, 90 (8), 1522–1528.
104. Lal, P.; Misra, L.; Sangwan, R. S.; Tuli, R. New Withanolides from Fresh Berries of Withania somnifera. Naturforsch., B: Chem. Sci. 2006, 61 (9), 1143–1147.
105. Yokosuka, A.; Mimaki, Y.; Sashida, Y. Chantriolides A and B, Two New Withanolide Glucosides from the Rhizomes of Tacca chantrieri. J. Nat. Prod. 2003, 66 (6), 876–878.
106. Zhang, L.; Liu, J. Y.; Xu, L. Z.; Yang, S. L. Chantriolide C, a New Withanolide Glucoside and a New Spirostanol Saponin from the Rhizomes of Tacca chantrieri. Chem. Pharm. Bull. 2009, 57 (10), 1126–1128.
107. Liu, H. Y.; Ni, W.; Xie, B. B.; Zhou, L. Y.; Hao, X. J.; Wang, X.; Chen, C. X. Five New Withanolides from Tacca plantaginea. Chem. Pharm. Bull. 2006, 54 (7), 992–995.
108. Habtemariam, S.; Gray, A. I. Withanolides from the Roots of Discopodium penninervium. Planta Med. 1998, 64 (3), 275–276.
109. Misra, L.; Mishra, P.; Pandey, A.; Sangwan, R. S.; Sangwan, N. S.; Tuli, R. Withanolides from Withania somnifera Roots. Phytochemistry 2008, 69 (4), 1000–1004.
110. Manickam, M.; Srivastava, A.; Ray, A. B. Withanolides from the Flowers of Datura fastuosa. Phytochemistry 1998, 47 (7), 1427–1429.
111. Veleiro, A. S.; Cirigliano, A. M.; Oberti, J. C.; Burton, G. 7-Hydroxywithanolides from Datura ferox. J. Nat. Prod. 1999, 62 (7), 1010–1012.
112. Niero, R.; Da Silva, I. T.; Tonial, G. C.; Camacho, B. D.; Gacs-Baitz, E.; Delle Monache, G.; Delle Monache, F. Cilistepoxide and Cilistadiol, Two New Withanofides from Solanum sisymbiifolium. Nat. Prod. Res. 2006, 20 (13), 1164–1168.
113. He, Q. P.; Ma, L.; Luo, J. Y.; He, F. Y.; Lou, L. G.; Hu, L. H. Cytotoxic Withanolides from Physalis angulata L. Chem. Biodivers. 2007, 4 (3), 443–449.
114. Yang, B. Y.; Wang, Q. H.; Xia, Y. G.; Feng, W. S.; Kuang, H. X. Withanolide Compounds from the Flower of Datura metel L. Helv. Chim. Acta 2007, 90 (8), 1522–1528.
115. Misico, R. I.; Veleiro, A. S.; Burton, G.; Oberti, J. C. Withanolides from Jaborosa leucotricha. Phytochemistry 1997, 45 (5), 1045–1048.
116. Nur-e-Alam, M.; Yousaf, M.; Qureshi, S.; Baig, I.; Nasim, S.; Atta-ur-Rahman; Choudhary, M. I. A Novel Dimeric Podophyllotoxin-type Lignan and a New Withanolide from Withania coagulans. Helv. Chim. Acta 2003, 86 (3), 607–614.
117. Nicotra, V. E.; Gil, R. R.; Vaccarini, C.; Oberti, J. C.; Burton, G. 15,21-Cyclowithanolides from Jaborosa bergii. J. Nat. Prod. 2003, 66 (11), 1471–1475.
118. Tettamanzi, M. C.; Veleiro, A. S.; de la Fuente, J. R.; Burton, G. Withanolides from Salpichroa origanifolia. J. Nat. Prod. 2001, 64 (6), 783–786.
119. Cao, C. M.; Zhang, H. P.; Gallagher, R. J.; Timmermann, B. N. Withanolide Artifacts Formed in Methanol. J. Nat. Prod. 2013, 76 (11), 2040–2046.
120. Zhang, H.; Bazzill, J.; Gallagher, R. J.; Subramanian, C.; Grogan, P. T.; Day, V. W.; Kindscher, K.; Cohen, M. S.; Timmermann, B. N. Antiproliferative Withanolides from Datura wrightii. J. Nat. Prod. 2013, 76 (3), 445–449.
121. Zhang, H. P.; Cao, C. M.; Gallagher, R. J.; Day, V. W.; Kindscher, K.; Timmermann, B. N. Withanolides from Physalis coztomatl. Phytochemistry 2015, 109, 147–153.
122. Kawai, M.; Yamamoto, T.; Makino, B.; Yamamura, H.; Araki, S.; Butsugan, Y.; Saito, K. The Structure of Physalin T from Physalis alkekengi var. francheti. J. Asian Nat. Prod. Res. 2001, 3 (3), 199–205.
123. Choudhary, M. I.; Yousuf, S.; Samreen; Ahmed, S.; Atta-Ur-Rahman New Leishmanicidal Physalins from Physalis minima. Nat. Prod. Res. 2007, 21 (10), 877–883.
124. Li, Y. Z.; Pan, Y. M.; Huang, X. Y.; Wang, H. S. Withanolides from Physalis alkekengi var. francheti. Helv. Chim. Acta 2008, 91 (12), 2284–2291.
125. Kuo, P. C.; Kuo, T. H.; Damu, A. G.; Su, C. R.; Lee, E. J.; Wu, T. S.; Shu, R. X.; Chen, C. M.; Bastow, K. F.; Chen, T. H.; Lee, K. H. Physanolide A, a Novel Skeleton Steroid, and Other Cytotoxic Principles from Physalis angulata. Org. Lett. 2006, 8 (14), 2953–2956.
126. Qiu, L.; Zhao, F.; Jiang, Z. H.; Chen, L. X.; Zhao, Q.; Liu, H. X.; Yao, X. S.; Qiu, F. Steroids and Flavonoids from Physalis alkekengi var. franchetii and Their Inhibitory Efects on Nitric Oxide Production. J. Nat. Prod. 2008, 71 (4), 642–646.
127. Qiu, L.; Jiang, Z. H.; Liu, H. X.; Chen, L. X.; Yao, X. S.; Qiu, F. A Pair of 3-Epimeric Physalins from Physalis alkekengi L. var. franchetii. J. Asian Nat. Prod. Res. 2008, 10 (9), 881–885.
128. Chen, R.; Liang, J. Y.; Liu, R. Two Novel Neophysalins from Physalis alkekengi L. var. franchetii. Helv. Chim. Acta 2007, 90 (5), 963–966.
129. Zhang, C. H.; Wang, Z. T.; Yang, Y. P.; Sun, Q. S. A Novel Cytotoxic Neophysalin from Physalis alkekengi var. francheti. Chin. Chem. Lett. 2009, 20 (11), 1327–1330.
130. Ma, L.; Gan, X. W.; He, Q. P.; Bai, H. Y.; Arfan, M.; Lou, F. C.; Hu, L. H. Cytotoxic Withaphysalins from Physalis minima. Helv. Chim. Acta 2007, 90 (7), 1406–1419.
131. Veras, M. L.; Bezerra, M. Z. B.; Lemos, T. L. G.; Uchoa, D. E. D.; Braz Filho, R.; Chai, H. B.; Cordell, G. A.; Pessoa, O. D. L. Cytotoxic Withaphysalins from the Leaves of Acnistus arborescens. J. Nat. Prod. 2004, 67 (4), 710–713.
132. Veras, M. L.; Bezerra, M. Z. B.; Braz-Filho, R.; Pessoa, O. D. L.; Montenegro, R. C.; Pessoa, D.; de Moraes, M. O.; Costa-Lotufo, L. V. Cytotoxic Epimeric Withaphysalins from Leaves of Acnistus arborescens. Planta Med. 2004, 70 (6), 551–555.
133. Usubillaga, A.; Khouri, N.; Baptista, J. C.; Bahsas, A. New Acnistins from Acnistus arborescens. Rev. Latinoam. Quim. 2005, 33 (3)121–127.
134. Habtemariam, S.; Skelton, B. W.; Waterman, P. G.; White, A. H. 17-Epiacnistin-A, a Further Withanolide from the Leaves of Discopodium penninervium. J. Nat. Prod. 2000, 63 (4), 512–513.
135. Kiyota, N.; Shingu, K.; Yamaguchi, K.; Yoshitake, Y.; Harano, K.; Yoshimitsu, H.; Ikeda, T.; Nohara, T. New C-28 Steroidal Glycosides from Tubocapsicum anomalum. Chem. Pharm. Bull. 2007, 55 (1), 34–36.
136. Kiyota, N.; Shingu, K.; Yamaguchi, K.; Yoshitake, Y.; Harano, K.; Yoshimitsu, H.; Miyashita, H.; Ikeda, T.; Tagawa, C.; Nohara, T. New C-28 Steroidal Glycosides from Tubocapsicum anomalum. Chem. Pharm. Bull. 2008, 56 (7), 1038–1040.
137. Siddiqui, B. S.; Afreen, S.; Begum, S. Two New Withanolides from the Aerial Parts of Datura innoxia. Aust. J. Chem. 1999, 52 (9), 905–907.
138. Siddiqui, B. S.; Arfeen, S.; Afshan, F.; Begum, S. Withanolides from Datura innoxia. Heterocycles 2005, 65 (4), 857–863.
139. Siddiqui, B. S.; Hashmi, I. A.; Begum, S. Two New Withanolides from the Aerial Parts of Datura innoxia. Heterocycles 2002, 57 (4), 715–721.
140. Siddiqui, B. S.; Arfeen, S.; Begum, S.; Sattar, F. A. Daturacin, a New Withanolide from Datura innoxia. Nat. Prod. Res. 2005, 19 (6), 619–623.
141. Pan, Y. H.; Wang, X. C.; Hu, X. M. Cytotoxic Withanolides from the Flowers of Datura metel. J. Nat. Prod. 2007, 70 (7), 1127–1132.
142. Nicotra, V. E.; Ramacciotti, N. S.; Gil, R. R.; Oberti, J. C.; Feresin, G. E.; Guerrero, C. A.; Baggio, R. F.; Garland, M. T.; Burton, G. Phytotoxic Withanolides from Jaborosa rotacea. J. Nat. Prod. 2006, 69 (5), 783–789.
143. Nicotra, V. E.; Gil, R. R.; Oberti, J. C.; Burton, G. Withanolides with Phytotoxic Activity from Jaborosa caulescens var. caulescens and J. caulescens var. bipinnatifida. J. Nat. Prod. 2007, 70 (5), 808–812.
144. Atta-ur-Rahman; Shabbir, M.; Dur-e-Shahwar; Choudhary, M. I.; Voelter, W.; Hohnholz, D. New Steroidal Lactones from Withania coagulance. Heterocycles 1998, 47 (2), 1005–1012.
145. Atta-ur-Rahman; Choudhary, M. I.; Qureshi, S.; Gul, W.; Yousaf, M. Two New Ergostane-type Steroidal Lactones from Withania coagulans. J. Nat. Prod. 1998, 61 (6), 812–814.
146. Ahmad, S.; Malik, A.; Muhammad, P.; Gul, W.; Yasmin, R.; Afza, N. A New Withanolide from Physalis peruviana. Fitoterapia 1998, 69 (5), 433–436.
147. Ahmad, S.; Malik, A.; Afza, N.; Yasmin, R. A New Withanolide Glycoside from Physalis peruviana. J. Nat. Prod. 1999, 62 (3), 493–494.
148. Su, B. N.; Park, E. J.; Nikolic, D.; Santarsiero, B. D.; Mesecar, A. D.; Vigo, J. S.; Graham, J. G.; Cabieses, F.; van Breemen, R. B.; Fong, H. H. S.; Farnsworth, N. R.; Pezzuto, J. M.; Kinghorn, A. D. Activity-guided Isolation of Novel Norwithanolides from Deprea subtriflora with Potential Cancer Cemopreventive Activity. J. Org. Chem. 2003, 68 (6), 2350–2361.
149. Tettamanzi, M. C.; Veleiro, A. S.; Oberti, J. C.; Burton, G. New Hydroxylated Withanolides from Salpichroa origanifolia. J. Nat. Prod. 1998, 61 (3), 338–342.
150. Gu, J. Q.; Li, W. K.; Kang, Y. H.; Su, B. N.; Fong, H. H. S.; Van Breemen, R. B.; Pezzuto, J. M.; Kinghorn, A. D. Minor Withanolides from Physalis philadelphica: Structures, Quinone Reductase Induction Activities, and Liquid Chromatography (LC)MS-MS Investigation as Artifacts. Chem. Pharm. Bull. 2003, 51 (5), 530–539.
151. Cirigliano, A. M.; Veleiro, A. S.; Bonetto, G. M.; Oberti, J. C.; Burton, G. Spiranoid Withanolides from Jaborosa runcinata and Jaborosa araucana. J. Nat. Prod. 1996, 59 (8), 717–721.
152. Cirigliano, A. M.; Misico, R. I. Spiranoid Withanolides from Jaborosa odonelliana and Jaborosa runcinata. Naturforsch., B: Chem. Sci. 2005, 60 (8), 867–869.
153. Cirigliano, A. M.; Veleiro, A. S.; Oberti, J. C.; Burton, G. Spiranoid Withanolides from Jaborosa odonelliana. J. Nat. Prod. 2002, 65 (7), 1049–1051.
154. Cirigliano, A. M.; Veleiro, A. S.; Misico, R. I.; Tettamanzi, M. C.; Oberti, J. C.; Burton, G. Withanolides from Jaborosa laciniata. J. Nat. Prod. 2007, 70 (10), 1644–1646.
155. Tettamanzi, M. C.; Biurrun, F. N.; Cirigliano, A. M. A New Antifeedant Withanolide from Jaborosa lanigera. Naturforsch., B: Chem. Sci. 2007, 62 (4), 573–576.
156. Garcia, M. E.; Pagola, S.; Navarro-Vazquez, A.; Phillips, D. D.; Gayathri, C.; Krakauer, H.; Stephens, P. W.; Nicotra, V. E.; Gil, R. R. Stereochemistry Determination by Powder X-Ray Diffraction Analysis and NMR Spectroscopy Residual Dipolar Couplings. Angew. Chem., Int. Ed. 2009, 48 (31), 5670–5674.
157. Fang, S. T.; Li, B.; Liu, J. K. Two New Withanolides from Physalis peruviana. Helv. Chim. Acta 2009, 92 (7), 1304–1308.
158. Ksebati, M. B.; Schmitz, F. J. Minabeolides–a Group of Withanolides from a Soft Coral, Minabea sp. J. Org. Chem. 1988, 53 (17), 3926–3929.
159. Chao, C. H.; Chou, K. J.; Wen, Z. H.; Wang, G. H.; Wu, Y. C.; Dai, C. F.; Sheu, J. H. Paraminabeolides A–F, Cytotoxic and Anti-inflammatory Marine Withanolides from the Soft Coral Paraminabea acronocephala. J. Nat. Prod. 2011, 74 (5), 1132–1141.
160. Bernstei.J; Shmeuli, U.; Zadock, E.; Kashman, Y.; Neeman, I. Sarcophine, a New Epoxy Cembranolide from Marine Origin. Tetrahedron 1974, 30 (16), 2817–2824.
161. Iwagawa, T.; Hashimoto, K.; Okamura, H.; Kurawaki, J.; Nakatani, M.; Hou, D. X.; Fujii, M.; Doe, M.; Morimoto, Y.; Takemura, K. Biscembranes from the soft coral Sarcophyton glaucum. J. Nat. Prod. 2006, 69 (8), 1130–1133.
162. Duh, C. Y.; Hou, R. S. Cytotoxic Cembranoids from the Soft Corals Sinularia gibberosa and Sarcophyton trocheliophorum. J. Nat. Prod. 1996, 59 (6), 595–598.
163. Dong, H.; Gou, Y. L.; Kini, R. M.; Xu, H. X.; Chen, S. X.; Teo, S. L. M.; But, P. P. H. A New Cytotoxic Polyhydroxysterol from Soft Coral Sarcophyton trocheliophorum. Chem. Pharm. Bull. 2000, 48 (7), 1087–1089.
164. Bowden, B. F.; Coll, J. C.; Mitchell, S. J. Studies of Australian Soft Corals. XVIII. Further Cembranoid Diterpenes from Soft Corals of the Genus Sarcophyton. Aust. J. Chem. 1980, 33 (4), 879–884.
165. Gross, H.; Wright, A. D.; Beil, W.; Konig, G. M. Two New Bicyclic Cembranolides from a New Sarcophyton species and Determination of the Absolute Configuration of Sarcoglaucol-16-one. Org. Biomol. Chem. 2004, 2 (8), 1133–1138.
166. Kashman, Y.; Zadock, E.; Neeman, I. Some New Cembrane Derivatives of Marine Origin. Tetrahedron 1974, 30 (19), 3615–3620.
167. Tursch, B. Chemical Studies of Marine-invertebrates. XV. Some Recent Developments in Chemistry of Alcyonaceans. Pure Appl. Chem. 1976, 48 (1), 1–6.
168. Kobayashi, M.; Hirase, T. Marine Terpenes and Terpenoids. XI. Structures of New Dihydrofuranocembranoids Isolated from a Sarcophyton sp. Soft Coral of Okinawa. Chem. Pharm. Bull. 1990, 38 (9), 2442–2445.
169. Kobayashi, M.; Nakagawa, T.; Mitsuhashi, H. Marine Terpenes and Terpenoids. I. Structures of Four Cembrane-type Diterpenes; Sarcophytol-A, Sarcophytol-A Acetate Sarcophytol-B, and Sarcophytonin-A, from the Soft Coral, Sarcophyton glaucum. Chem. Pharm. Bull. 1979, 27 (10), 2382–2387.
170. Kobayashi, M.; Osabe, K. Marine Terpenes and Terpenoids. VII. Minor Cembranoid Derivatives, Structurally Related to the Potent Anti-tumor-promoter Sarcophytol-A, from the Soft Coral Sarcophyton glaucum. Chem. Pharm. Bull. 1989, 37 (3), 631–636.
171. Toth, J. A.; Burreson, B. J.; Scheuer, P. J.; Finermoore, J.; Clardy, J. Emblide, a New Polyfunctional Cembranolide from the Soft Coral Sarcophyton glaucum. Tetrahedron 1980, 36 (10), 1307–1309.
172. Uchio, Y.; Nitta, M.; Nakayama, M.; Iwagawa, T.; Hase, T. Ketoemblide and Sarcophytolide, Two New Cembranolides with Epsilon-Lactone Function from the Soft Coral Sarcophyta elegans. Chem. Lett. 1983, (4), 613–616.
173. Nakagawa, T.; Kobayashi, M.; Hayashi, K.; Mitsuhashi, H. Marine Terpenes and Terpenoids. II. Structures of Three Cembrane-type Diterpenes, Sarcophytol-C, Sarcophytol-D, and Sarcophytol-E, from the Soft Coral, Sarcophyton glaucun Q. et. G. Chem. Pharm. Bull. 1981, 29 (1), 82–87.
174. Bowden, B. F.; Coll, J. C.; Willis, R. H. Studies of Australian Soft Corals. XXVII. Two Novel Diterpenes from Sarcophyton glaucum. Aust. J. Chem. 1982, 35 (3), 621–627.
175. Kobayashi, M.; Osabe, K. Marine Terpenes and Terpenoids. VIII. Trans-annular Cyclization of 3,4-Epoxy-1,7,11-cembratriene Systems. Chem. Pharm. Bull. 1989, 37 (5), 1192–1196.
176. Kobayashi, M.; Iesaka, T.; Nakano, E. Marine Terpenes and Terpenoids. IX. Structures of Six New Cembranoids, Sarcophytols F, K, P, Q, R and S, from the Soft Coral Sarcophyton glaucum. Chem. Pharm. Bull. 1989, 37 (8), 2053–2057.
177. Kobayashi, M.; Nakano, E. Stereochemical Course of the Transannular Cyclization, in Chloroform, of Epoxycembranoids Derived from the Geometrical Isomers of (14S)-14-Hydroxy-1,3,7,11-cembratetraenes. J. Org. Chem. 1990, 55 (6), 1947–1951.
178. Kusumi, T.; Igari, M.; Ishitsuka, M. O.; Ichikawa, A.; Itezono, Y.; Nakayama, N.; Kakisawa, H. A Novel Chlorinated Biscembranoid from the Marine Soft Coral Sarcophyton glaucum. J. Org. Chem. 1990, 55 (26), 6286–6289.
179. Ishitsuka, M. O.; Kusumi, T.; Kakisawa, H. Isolation of a Monomeric Counterpart of the Marine Biscembranoids, a Biogenetic Diels-Alder Precursor. Tetrahedron Lett. 1991, 32 (25), 2917–2918.
180. Leone, P. A.; Bowden, B. F.; Carroll, A. R.; Coll, J. C.; Meehan, G. V. Studies of Australian Soft Corals, XLIX. A New Biscembranoid and Its Probable Biosynthetic Precursors from the Soft Coral Sarcophyton tortuosum. J. Nat. Prod. 1993, 56 (4), 521–526.
181. Badria, F. A.; Guirguis, A. N.; Perovic, S.; Steffen, R.; Muller, W. E. G.; Schroder, H. C. Sarcophytolide: A New Neuroprotective Compound from the Soft Coral Sarcophyton glaucum. Toxicology 1998, 131 (2–3), 133–143.
182. Iwagawa, T.; Nakashima, R.; Takayama, K.; Okamura, H.; Nakatani, M.; Doe, M.; Shibata, K. New Cembranes from the Soft Coral Sarcophyton species. J. Nat. Prod. 1999, 62 (7), 1046–1049.
183. Feller, M.; Rudi, A.; Berer, N.; Goldberg, I.; Stein, Z.; Benayahu, Y.; Schleyer, M.; Kashman, Y. Isoprenoids of the Soft Coral Sarcophyton glaucum: Nyalolide, A New Biscembranoid, and Other Terpenoids. J. Nat. Prod. 2004, 67 (8), 1303–1308.
184. Bishara, A.; Rudi, A.; Benayahu, Y.; Kashman, Y. Three Biscembranoids and Their Monomeric Counterpart Cembranoid, a Biogenetic Diels-Alder Precursor, from the Soft Coral Sarcophyton elegans. J. Nat. Prod. 2007, 70 (12), 1951–1954.
185. Iwagawa, T.; Hashimoto, K.; Okamura, H.; Kurawaki, J.; Nakatani, M.; Hou, D. X.; Fujii, M.; Doe, M.; Morimoto, Y.; Takemura, K. Biscembranes from the Soft Coral Sarcophyton glaucum. J. Nat. Prod. 2006, 69 (8), 1130–1133.
186. Yan, X. H.; Gavagnin, M.; Cimino, G.; Guo, Y. W. Two New Biscembranes with Unprecedented Carbon Skeleton and Their Probable Biogenetic Precursor from the Hainan Soft Coral Sarcophyton latum. Tetrahedron Lett. 2007, 48 (30), 5313–5316.
187. Yao, L. G.; Liu, H. L.; Guo, Y. W.; Mollo, E. New Cembranoids from the Hainan Soft Coral Sarcophyton glaucum. Helv. Chim. Acta 2009, 92 (6), 1085–1091.
188. Iwagawa, T.; Hashimoto, K.; Yokogawa, Y.; Okamura, H.; Nakatani, M.; Doe, M.; Morimoto, Y.; Takemura, K. Cytotoxic Biscembranes from the Soft Coral Sarcophyton glaucum. J. Nat. Prod. 2009, 72 (5), 946–949.
189. Hegazy, M. E. F.; Eldeen, A. M. G.; Shahat, A. A.; Abdel-Latif, F. F.; Mohamed, T. A.; Whittlesey, B. R.; Pare, P. W. Bioactive Hydroperoxyl Cembranoids from the Red Sea Soft Coral Sarcophyton glaucum. Mar. Drugs 2012, 10 (1), 209–222.
190. Zhang, C. X.; He, X. X.; Zhang, J.; Guo, Q.; Lei, L. F.; Su, J. Y.; Zeng, L. M. New Precursor of Tetraterpenoids from the Soft Coral Sarcophyton glaucum. Nat. Prod. Res. 2013, 27 (9), 782–786.
191. Abou El-Ezz, R. F.; Ahmed, S. A.; Radwan, M. M.; Ayoub, N. A.; Afifi, M. S.; Ross, S. A.; Szymanski, P. T.; Fahmy, H.; Khalifa, S. I. Bioactive Cembranoids from the Red Sea Soft Coral Sarcophyton glaucum. Tetrahedron Lett. 2013, 54 (8), 989–992.
192. Al-Lihaibi, S. S.; Alarif, W. M.; Abdel-Lateff, A.; Ayyad, S. E. N.; Abdel-Naim, A. B.; El-Senduny, F. F.; Badria, F. A. Three New Cembranoid-type Diterpenes from Red Sea Soft Coral Sarcophyton glaucum: Isolation and Antiproliferative Activity Against HepG2 Cells. Eur. J. Med. Chem. 2014, 81, 314–322.
193. Abdel-Lateff, A.; Alarif, W. M.; Ayyad, S. E. N.; Al-Lihaibi, S. S.; Basaif, S. A. New Cytotoxic Isoprenoid Derivatives from the Red Sea Soft Coral Sarcophyton glaucum. Nat. Prod. Res. 2015, 29 (1), 24–30.
194. Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. High-Field FT NMR Application of Mosher's Method. The Absolute Configurations of Marine Terpenoids. J. Am. Chem. Soc. 1991, 113 (11), 4092–4096.
195. Nakayama, G. R.; Caton, M. C.; Nova, M. P.; Parandoosh, Z. Assessment of the Alamar Blue Assay for Cellular Growth and Viability in vitro. J. Immunol. Methods 1997, 204 (2), 205–208.
196. O'Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) Fluorescent Dye for the Assessment of Mammalian Cell Cytotoxicity. Eur. J. Biochem. 2000, 267 (17), 5421–5426.
197. Lee, K. Y.; Sung, S. H.; Kim, Y. C. Neuroprotective Bibenzyl Glycosides of Stemona tuberosa Roots. J. Nat. Prod. 2006, 69 (4), 679–681.
198. Boyum, A. Isolation of Mononuclear Cells and Granulocytes from Human Blood. Isolation of Mononuclear Cells by One Centrifugation and of Granulocytes by Combining Centrifugation and Sedimentation at 1 G. Scand. J. Clin. Lab. Invest. 1968, 97, 77–89.
199. Jauregui, H. O.; Hayner, N. T.; Driscoll, J. L.; Williamsholland, R.; Lipsky, M. H.; Galletti, P. M. Trypan Blue Dye Uptake and Lactate-dehydrogenase in Adult-rat Hepatocytes−Freshly Isolated Cells, Cell-suspensions, and Primary Monolayer-cultures. In Vitro 1981, 17 (12), 1100–1110.
200. Babior, B. M.; Kipnes, R. S.; Curnutte, J. T. Biological Defense Mechanisms–Production by Leukocytes of Superoxide a Potential Bactericidal Agent. J. Clin. Invest. 1973, 52 (3), 741–744.
201. Hwang, T. L.; Leu, Y. L.; Kao, S. H.; Tang, M. C.; Chang, H. L. Viscolin, a New Chalcone from Viscum coloratum Inhibits Human Neutrophil Superoxide Anion and Elastase Release via a cAMP-dependent Pathway. Free Radic. Biol. Med. 2006, 41 (9), 1433–1441.
202. Yang, S. C.; Chung, P. J.; Ho, C. M.; Kuo, C. Y.; Hung, M. F.; Huang, Y. T.; Chang, W. Y.; Chang, Y. W.; Chan, K. H.; Hwang, T. L. Propofol Inhibits Superoxide Production, Elastase Release, and Chemotaxis in Formyl Peptide-activated Human Neutrophils by Blocking Formyl Peptide Receptor 1. J. Immunol. 2013, 190 (12), 6511–6519.
203. Ho, F. M.; Lai, C. C.; Huang, L. J.; Kuo, T. C.; Chao, C. M.; Lin, W. W. The Anti-inflammatory Carbazole, LCY-2-CHO, Inhibits Lipopolysaccharide-induced Inflammatory Mediator Expression Through Inhibition of the p38 Mitogen-activated Protein Kinase Signaling Pathway in Macrophages. Br. J. Pharmacol. 2004, 141 (6), 1037–1047.
204. Park, E. K.; Shin, Y. W.; Lee, H. U.; Kim, S. S.; Lee, Y. C.; Lee, B. Y.; Kim, D. H. Inhibitory Effect of Ginsenoside Rb1 and Compound K on NO and Prostaglandin E2 Biosyntheses of RAW264.7 cells Induced by Lipopolysaccharide. Biol. Pharm. Bull. 2005, 28 (4), 652–656.
205. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275.
206. Bowden, B. F.; Coll, J. C.; Mitchell, S. J. Studies of Australian soft corals. XXIII. The co-occurrence of Bicyclogermacrene and Lemnacarnol Derivatives in Parerythropodium fulvum. Tetrahedron Lett.1980, 21 (32), 3105–3108.
207. Bowden, B. F.; Coll, J. C.; Mitchell, S. J. Studies of Australian Soft Corals. XIX. Two New Sesquiterpenes with the Nardosinane Skeleton from a Paralemnalia species. Aust. J. Chem. 1980, 33, 885–890.
208. Kapojos, M. M.; Mangindaan, R. E.; Nakazawa, T.; Oda, T.; Ukai, K.; Namikoshi, M. Three New Nardosinane Type Sesquiterpenes from an Indonesian Soft Coral Nephthea sp. Chem. Pharm. Bull. 2008, 56, 332–334.
209. Cheng, S. Y.; Chuang, C. T.; Wen, Z. H.; Wang, S. K.; Chiou, S. F.; Hsu, C. H.; Dai, C. F.; Duh, C. Y. Bioactive Norditerpenoids from the Soft Coral Sinularia gyrosa. Bioorg. Med. Chem. 2010, 18 (10), 3379–3386.
210. Rudi, A.; Shmul, G.; Benayahu, Y.; Kashman, Y. Sinularectin, a New Diterpenoid from the Soft Coral Sinularia erecta. Tetrahedron Lett. 2006, 47 (17), 2937–2939.
211. Duh, C. Y.; Wang, S. K.; Chia, M. C.; Chiang, M. Y. A Novel Cytotoxic Norditerpenoid from the Formosan Soft Coral Sinularia inelegans. Tetrahedron Lett. 1999, 40 (33), 6033–6035.
212. Kazlauskas, R.; Marwood, J. F.; Wells, R. J. 2-Phenylethylamides of a Novel Lipid Acid; Atrial Stimulants from the Soft Coral Sinularia flexibilis. Aust. J. Chem. 1980, 33, 1799–1803.
213. Flack, H. D. On Enantiomorph-Polarity Estimation. Acta Crystallogr. Sect. A 1983, 39 (11), 876–881.
214. Tanaka, J.; Trianto, A.; Musman, M.; Issa, H. H.; Ohtani, I. I.; Ichiba, T.; Higa, T.; Yoshida, W. Y.; Scheuer, P. J. New Polyoxygenated Steroids Exhibiting Reversal of Multidrug Resistance from the Gorgonian Isis hippuris. Tetrahedron 2002, 58 (32), 6259–6266.
215. Jia, R.; Kurtán, T.; Mándi, A.; Yan, X.-H.; Zhang, W.; Guo, Y.-W. Biscembranoids Formed from an α,β-Unsaturated γ-Lactone Ring as a Dienophile: Structure Revision and Establishment of Their Absolute Configurations Using Theoretical Calculations of Electronic Circular Dichroism Spectra. J. Org. Chem. 2013, 78, 3113−3119.
216. Liang, L.-F.; Lan, L.-F.; Taglialatela-Scafati, O.; Guo, Y.-W. Sartrolides A–G and Bissartrolide, New Cembranolides from the South China Sea Soft Coral Sarcophyton trocheliophorum Marenzeller. Tetrahedron 2013, 69, 7381−7386.
217. Jia, R.; Guo, Y.-W.; Mollo, E.; Cimino, G. Sarcophytonolides A–D, Four New Cembranolides from the Hainan Soft Coral Sarcophyton sp.. Helv. Chim. Acta 2005, 88, 1028−1033.
218. Jia, R.; Guo, Y. -W.; Chen, P.; Yang, Y. M.; Mollo, E.; Gavagnin, M.; Cimino, G. Biscembranoids and Their Probable Biogenetic Precursor from the Hainan Soft Coral Sarcophyton tortuosum. J. Nat. Prod. 2007, 70 (7), 1158−1166.
219. Li, Y. F.; He, L. L.; Liu, H. L.; Liang, L. F.; Zhang, H. B.; Guo, Y. W. Structural Revision of Methyl Tortuoate D, a Bis-cembranoid from Hainan Sarcophyton tortuosum and Its Absolute Stereochemistry. J Asian Nat. Prod. Res. 2013, 15 (5), 566−573.
220. Kitamura, Y.; Kosaka, T.; Kakimura, J.I.; Matsuoka, Y.; Kohno, I.; Nomura, Y.; Taniguchi, T. Protective Effects of the Antiparkinsonian Drugs Talipexole and Pramipexole Against 1-Methyl-4-phenylpyridinium-Induced Apoptotic Death in Human Neuroblastoma SH-SY5Y Cells. Mol. Pharmacol. 1998, 54, 1046–1054.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.221.129.19
論文開放下載的時間是 校外不公開

Your IP address is 18.221.129.19
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code