Responsive image
博碩士論文 etd-0629115-134240 詳細資訊
Title page for etd-0629115-134240
論文名稱
Title
具有聚集誘導發光性質基團之聚胜肽
Polypeptides containing luminescent units with aggregation-induced emission property
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-01
繳交日期
Date of Submission
2015-07-29
關鍵字
Keywords
聚胜肽、聚集誘導放光、壓致變色、最低臨界聚集濃度、最低臨界溶液溫度、三苯胺
ring opening polymerization (ROP), lower critical solution temperature, aggregation-induced emission (AIE), piezofluorochromic, triphenylamine (TPA), click reaction, water-soluble polypeptide, secondary structure
統計
Statistics
本論文已被瀏覽 5732 次,被下載 35
The thesis/dissertation has been browsed 5732 times, has been downloaded 35 times.
中文摘要
第一章: 2,3,4,5-四苯基噻吩(2,3,4,5-tetraphenylthiophene, TP)為一種具有聚集誘導放光(Aggregation-Induced Emission, AIE) 性質的螢光分子且具有單體和聚集兩種放光波長,而水溶性聚胜肽PPLG-g-MEO2本身具有對熱,鹽和酸鹼有感應的特性。在實驗中以點擊化學反應(Click reaction)結合了尾端TP有聚集誘導放光(AIE)性質以聚谷胺酸(TP-PPLG)為主鏈而側鏈為親水端醚類基(MEO2)的水溶性聚胜肽TP-PPLG-g-MEO2。本研究主要探討聚胜肽TP-PPLG-g-MEO2性質在多種不同環境中對的聚集誘導放光的影響。 在水中,當濃度達到了最低臨界聚濃度後(CAC),TP-PPLG-g-MEO2會自組裝聚集形成為奈米球(120nm)且會增加放光強度,而當溫度大於最低臨界溫度(Lower Critical Solution Temperature, LCST)後, 會破壞TP-PPLG-g-MEO2 側鏈的水溶性醚基(MEO2)和水的氫鍵作用力而導致聚胜肽TP-PPLG-g-MEO2 收縮且聚集使發光強度增加。若在溶液中加入氯化鈉則會和側鏈醚類基作用去破壞聚胜肽和水的氫鍵進而造成聚胜肽溶解度下降且收縮, 而由圓二色光譜也可以得到加入鹽後TP-PPLG-g-MEO2二級結構也會改變為b-摺疊使尾端TP較易聚集,而加入鹽造成的收縮和改變二級結構使得誘導聚集放光效應增強也讓聚胜肽螢光放光變強。在強鹼的環境中TP-PPLG-g-MEO2組成 α-螺旋結構的分子內氫鍵被破壞而主鏈成無序的狀態,此時聚胜肽的氫鍵轉而和水作用而觀察不到最低臨界溫度的現象,尾端疏水端的螢光分子TP和主鏈親水端的聚胜肽開始聚集形成以尾端TP為核而層殼為聚胜肽的微胞結構,以動態光散射(DLS)和掃描式電子顯微鏡(SEM)得到微胞大小約550奈米,微胞中疏水性尾端TP聚集成核讓聚集誘導放光效應變強且此時放光為發光體聚集後的綠光。最後把聚胜肽TP-PPLG-g-MEO2和牛血清蛋白(Bovine serum albumin, BSA)在鹼性下混合,可以發現聚胜肽會進入到大分子量的牛血清蛋白中且使得TP-PPLG-g-MEO2分散開來導致聚集誘導放光效質下降而使得發光也變低。第一部分研究結論,TP-PPLG-g-MEO2的性質可以當作溫度、鹽、鹼和牛血清蛋白的感測器。
第二章: 一般把三苯胺當作傳統型發光分子,最近有研究發現若改質三苯胺後可以轉換成的有聚集誘導放光性質而三苯胺分子具有低電洞性和對陽離子或金屬離子有反應性。本實驗我們改質三苯胺(Triphenylamine,TPA)接上側鏈,合成出具有三乙胺側鏈的聚胜肽PPLG-g-TPA研究其物理和螢光性質。實驗首先合成TPA-N3,然後利用點擊化學(Click reaction)接到聚胜肽PPLG的側鏈上。實驗完成後,首先利用IR和NMR 來確定合成成功.而利用微差熱卡掃描計(DSC)發現當把TPA接枝在側鏈後,聚胜肽的玻璃轉移溫度從原本的16度上升到了97度且在靠近140度發現了TPA熔點產生.再來鑑定click後聚胜肽二級結構的變化,對固態的FTIR作curve fitting可以發現PPLG-g-TPA二級結構中α-螺旋比例增加而β-折板減少,可以推測接上TPA在側鏈會阻礙分子間氫鍵形成導致頃向分子內氫鍵的α-螺旋結構。利用不同濃度和不同溶劑比例確認PPLG-g-TPA具有聚集誘導放光性質(Aggregation induced emission)而根據文獻報導,TPA-CHO 小分子有壓致變色性質(Piezofluorochromic)即不同結晶可能會導致不同放光。我們研究接上TPA的PPLG-g-TPA在結晶態和非結晶態固體的發光可以發現,結晶態放光會比非結晶態的藍移約10奈米。最後我們把PPLG-g-TPA拿來感測陽離子,在酸性或者充滿金屬離子的溶液中TPA上的孤對電子會抓陽離子形成類似錯合物的結構而破壞TPA共軛使PPLG-g-TPA發光下降很多,PPLG-g-TPA可以當作酸和金屬離子的感測器。
Abstract
First chapter: Tetraphenylthiophene (TP) with aggregation-enhanced emission (AEE) property was used as terminal fluorophore of the water-soluble poly(γ-propargyl-L-glutamate) (PPLG)-based polymers of TP-PPLG-g-MEO2. In this study, we research various TP-PPLG-g-MEO2 affect aggregation of luminescence. In water, when concentration of TP-PPLG-g-MEO2 achieve CMC, TP-PPLG-g-MEO2 will aggregation to nanoparticle and suddenly increasing emission, and when heating over LCST, TP-PPLG-g-MEO2 will contract and also enhance emission. We use TP-PPLG-g-MEO2 “salt out effect” property to probe salt in water, salt have interaction with side chain MEO2 and peptide main chain to make TP-PPLG-g-MEO2 contract together and change secondary structure to b-sheet conformation to enhance emission. In the strong alkaline media, TP-PPLG-g-MEO2 backbone change to random coil conformation that break intramolecular hydrogen bonding and loss LCST property, TP-PPLG-g-MEO2 become is a micelle like structure, core was hydrophobic TP and shell was hydrophilic polypeptide and particle size about 500nm measure by DLS. In random coil conformation, chain end hydrophobic TP have strong aggregation than in the a-helical and have strong aggregation emission peak. At last, we use TP-PPLG-g-MEO2 to detect BSA. When TP-PPLG-g-MEO2 mixture with BSA, TP-PPLG-g-MEO2 will fall in to BSA and separate to decrease TP-PPLG-g-MEO2 aggregation and emission.
Second chapter: We synthesis polypeptide contain TPA pendent by click reaction. The resulting PPLG-g-TPA contains the crystalline TPA side groups, Tm about 145 oC and is therefore high Tg materials with the desired AIE activity. Due to side chain TPA, PPLG-g-TPA have piezofluorochromic property that have two color between crystal and amorphous state. The lone pair electrons of nitrogen atom in TPA side groups inherit PPLG-g-TPA the sensitivity toward acid HCl and metal ions. Emission of PPLG-g-TPA was progressively decreased upon increasing the amounts of HCl and metal ions in the solutions that can be acid or metal ions sensor.
目次 Table of Contents
Outline of contents
Verification letter from the Oral Examination Committee.................................................i
Chinese Abstract.................................................…………………………………......….ii
English Abstract........................................................……………………………………iv
Outline of Contents……………………………………………………………....……...vi
List of Figure………………………………………………………………...…...…....viii
List of Scheme.................................................................................................………….xi
List of Table………………………………………………………….…....….....…...…xii

Chapter 1.
Amphiphilic Polypeptides Containing a Hydrophobic Fluorescent Terminal and Hydrophilic Pendant Groups: Probing Critical Aggregation Concentration, Lower Critical Solution Temperature, Salt and pH by Aggregation-Induced Emission
1-1. Introduction..............................................................................................................1
1-2. Experimental….........................................................................................................5
1-2-1. Materials.................................................................................................................5
1-3. Characterization.......................................................................................................6
1-4. Results and discussion..............................................................................................9
1-4-1. Synthesis of water-soluble polymer of TP-PPLG-g-MEO2…................................9
1-4-2. Secondary structure of TP-PPLG and TP-PPLG-g-MEO2...................................14
1-4-3. AIE character of TP-PPLG-g-MEO2.....................................................................17
1-4-4. CAC of the aqueous TP-PPLG-g-MEO2..............................................................20
1-4-5. LCST of TP-PPLG-g-MEO2.................................................................................23
1-4-6. Luminescent response toward salt........................................................................30
1-4-7.Conformational Transformation of TP-PPLG-g-MEO2 in Alkaline Water............38
1-4-8. TP-PPLG-g-MEO2 as Sensor for Bovine Serum Albumin...................................47
1-5. Conclution………..................................................................................................49
1-6. References ….........................................................................................................51
Chapter 2. Aggregation-Induced Emission Properties of Triphenylamine Pendant Polypeptide by Click Reaction
2-1. Introduction............................................................................................................58
2-2. Experimental…………...........................................................................................61
2-2-1. Materials...............................................................................................................63
2-3. Measurements........................................................................................................63
2-4. Results and discussion...........................................................................................64
2-4-1. Synthesis of PPLG-g-TPA...................................................................................64
2-4-2. Secondary structure of PPLG-g-TPA...................................................................69
2-4-3. Thermal analysis..................................................................................................73
2-4-4. Emission behavior of the PPLG-g-TPA...............................................................75
2-4-5. Piezofluorochromic property of PPLG-g-TPA....................................................77
2-4-6. PPLG-g-TPA as pH sensor...................................................................................79
2-4-7. Salt sensitive........................................................................................................81
2-5. Conclusion..............................................................................................................83
2-6. References..............................................................................................................84
Supporting information...................................................................................................87
參考文獻 References
chapter 1
1 J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem. Commun., 2001, 1740–1741.
2 B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu and D. Zhu, J. Mater. Chem., 2001, 11, 2974–2978.
3 Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Commun., 2009, 4332–4353.
4 D. Ding, K. Li, B. Liu and B. Z. Tang, Acc. Chem. Res., 2013, 46, 2441–2453.
5 Z. Zhao, J. W. Y. Lam and B. Z. J. Tang, Mater. Chem., 2012, 22, 23726–23740.
6 M. Wang, G. Zhang, D. Zhang, D. Zhu and B. Z. J. Tang, Mater. Chem., 2010, 20, 1858–1867.
7 Z. Zhao, J. W. Y. Lam and B. Z. Tang, Soft Matter, 2013, 9, 4564–4579.
8 Aggregation-Induced Emission: Fundamentals, ed. A. Qin, and B. Z. Tang, John Wiley & Sons, Ltd, NY, 2013.
9 J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang and B. Z. Tang, Adv. Mater., 2014, 26, 5429–5479.
10 Z. Li, Y. Dong, B. Mi, Y. Tang, M. Häussler, H. Tong, Y. Dong, J. W. Y. Lam, Y. Ren, H. H. Y. Sung, K. S. Wong, P. Gao, I. D. Williams, H. S. Kwok and B. Z. J. Tang, Phys. Chem. B, 2005, 109, 10061–10066.
11 J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu and B. Z. Tang, Chem. Mater., 2003, 15, 1535–1546.
12 Z. Zhao, C. Y. K. Chan, S. Chen, C. Deng, J. W. Y. Lam , C. K. W. Jim, Y. Hong, P. Lu, Z. Chang, X. Chen, P. Lu, H. S. Kwok, H. Qiu, B. Z. Tang, J. Mater. Chem. 2012, 22, 4527–4534.
13 J. Huang, X. Yang, J. Wang, C. Zhong, L. Wang, J. Qin, Z. Li, J. Mater. Chem., 2012, 22, 2478–2484.
14 J. Huang, N. Sun, J. Yang, R. Tang, Q. Li, D. Ma, J. Qin, Z. Li, J. Mater. Chem., 2012 , 22 , 12001–12007 .
15 J. Huang, N. Sun, Y. Dong, R. Tang, P. Lu, P. Cai, Q. Li, D. Ma , D. Qin, Z. Li, Adv. Funct. Mater., 2013, 23, 2329–2337.
16 X. Chen, X. Y. Shen, E. Guan, Y. Liu, A. Qin, J. Z. Sun, B. Z. Tang, Chem. Commun., 2013, 49, 1503–1505.
17 X. Wang, J. Hu, T. Liu, G. Zhang, S. Liu, J. Mater. Chem., 2012, 22, 8622–8628.
18 X. Huang, X. Gu, G. Zhang, D. Zhang, Chem. Commun., 2012, 48, 12195–12197.
19 C. Li, T. Wu, C. Hong, G. Zhang, S. Liu, Angew. Chem. Int. Ed., 2012, 51, 455–459.
20 Y. Yu, A. Qin, C. Feng, P. Lu, K. M. Ng, K. Q. Luo, B. Z. Tang, Analyst, 2012, 137, 5592–5596.
21 D. Schmaljohann, Adv. Drug Delivery Rev., 2006, 58, 1655–1670.
22 C. B. Tsvetanov, I. Dimitrov, B. Trzebicka and A. H. E. Muller, A. Dworak, Prog. Polym. Sci., 2007, 32, 1275–1343.
23 C. D. H. Alarcon, S. Pennadam and C. Alexander, Chem. Soc. Rev., 2005, 34, 276–285.
24 P. Bawa, V. Pillay, Y. E. Choonara and L. C. du Toit, Biomed. Mater., 2009, 4(2), 022001.
25 S. Ohya, H. Sonoda, Y. Nakayama and T. Matsuda, Biomaterials, 2005, 26, 655–659.
26 H. M. Li, M. Li, X. Yu, A. P. Bapat and B. S. Sumerlin, Polym. Chem., 2011, 2, 1531–1535.
27 J. Li, W. D. He, S. C. Han, X. L. Sun, L. Y. Li and B. Y. Zhang, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 786–796.
28 W. S. Cai, L. H. Gan and K. C. Tam, Colloid Polym. Sci., 2001, 279, 793–799.
29 K. Skrabania, J. Kristen, A. Laschewsky, O. Akdemir, A. Hoth and J. F. Lutz, Langmuir, 2007, 23, 84–93.
30 J. S. Park and K. Kataoka, Macromolecules, 2006, 39, 6622–6630.

31 J. X. Ding, C. S. Xiao, Z. H. Tang, X. L. Zhuang and X. S. Chen, Macromol. Biosci., 2011, 11, 192–198.
32 J. X. Ding, C. S. Xiao, L. Zhao, Y. L. Cheng, L. L. Ma, Z. H. Tang, X. L. Zhuang and X. S. Chen, J. Polym. Sci., Part A:Polym. Chem., 2011, 49, 2665–2676.
33 S. Sugihara, S. Kanaoka and S. Aoshima, Macromolecules, 2005, 38, 1919–1927. 34 J. F. Lutz, K. Weichenhan, O. Akdemir and A. Hoth, Macromolecules, 2007, 40, 2503–2508.
35 C. M. Chopko, E. L. Lowden, A. C. Engler, L. G. Griffith, and P. T. Hammond, ACS Macro Lett. 2012, 1, 727–731.
36 Y. Cheng, C. He, C. Xiao, J. Ding, X. Zhuang, and X. Chen, Polym. Chem., 2011, 2, 2627–2634.
37 A. C. Engler, H. L. Lee, P. T. Hammond, Angew. Chem., Int. Ed., 2009, 48, 9334–9338.
38 C. M. Chopko, E. L. Lowden, A. C. Engler, L. G. Griffith, P. T. Hammond, ACS Macro Lett, 2012, 1, 727–731.
39 Y. Cheng, C. He, C. Xiao, J. Ding, X. Zhuang, X. Chen, Polym. Chem., 2011, 2, 2627–2634.
40 C. T. Lai and J. L. Hong, J. Phys. Chem. B., 2010, 114, 10302–10310
41 C. T. Lai, R. H. Chien, S. W. Kuo, and J. L. Hong, Macromolecules, 2011, 44, 6546–6556.
42 R. H. Chien, C. T. Lai, and J. L. Hong, J. Phys. Chem. C., 2011, 115, 12358–12366.
43 R. H. Chien, C. T. Lai, and J. L. Hong, J. Phys. Chem. C., 2011, 115, 5958–5965.
44 S.T. Li, Y. C. Lin, S. W. Kuo, W. T. Chuang and J. L. Hong, Polym. Chem., 2012, 3, 2393–2402.
45 C. M. Yang, Y. W. Lai, S. W. Kuo, and J. L. Hong, Langmuir, 2012, 28, 15725–15735.
46 L. Deng, T.S. Hsiao, K.Y. Shih, J. L. Hong, J. Photochem. Photobiol. B., 2014, 138, 134–140.
47 S. L. Deng, T.L. Chen, W. L. Chien and J. L. Hong, J. Mater. Chem. C, 2014, 2, 651–659.
48 K. Y. Shih, T. S. Hsiao, S. L. Deng, and J. L. Hong, Macromolecules, 2014, 47, 4037–4047.
49 Y. C. Lin, S. W. Kuo, Polym. Chem., 2012, 3, 162–171.
50 Y. C. Lin, S. W. Kuo, Polym. Chem., 2012, 3, 882–891.
51 Zhang, Y.; Lu, H.; Lin, Y.; Cheng, J, Macromolecules, 2011, 44, 6641 − 6644.
52 P. Papadopoulous, G. Floudas, H. A. Klok, I. Schnell, T. Pakula, Biomacromolecules, 2004, 5, 81.
53 J. Hwang and T. J. Deming, Biomacromolecules, 2001, 2, 17–21.
54 J. Y. Su, R. S. Hodges and C. M. Kay, Biochemistry, 1994, 33, 15501–15510.
55 C. L. He, C. W. Zhao, X. H. Guo, Z. J. Guo, X. S. Chen, X. L. Zhuang, S. Y. Liu and X. B. Jing, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 4140–4150.
56 X. L. Zhao, W. G. Liu, D. Y. Chen, X. Z. Lin and W. W. Lu, Macromol. Chem. Phys., 2007, 208, 1773–1781.
57 J. F. Lutz, O. Akdemir and A. Hoth, J. Am. Chem. Soc., 2006, 128, 13046–13047.
58 Y. Xia, X. C. Yin, N. A. D. Burke and H. D. H. Stover, Macromolecules, 2005, 38, 5937–5943.
59 R. H. Chien, C. T. Lai and J. L. Hong, J. Phys. Chem. C, 2011, 115, 20732–20739.
60 J. P. Magnusson, A. Khan, G. Pasparakis, A. O. Saeed, W. X. Wang and C. Alexander, J. Am. Chem. Soc., 2008, 130, 10852–10853.
61 R. Freitag and F. Garret-Flaudy, Langmuir., 2002, 18, 3434–3440
62 H. B. Du, R. N. Wickramasinghe, and X. H. Qian, J. Phys. Chem. B., 2010, 114, 16594–16604
63 F. Hofmeister, Arch. Exp. Pathol. Pharmakol., 1888, 24, 247–260.
64 W. Kunz, , J. Henle and B.W. Ninham, Curr. Opin. Colloid Interface Sci., 2004, 9, 19–37.
65 K. D. Collins and M. W. Washabaugh, Q. Rev. Biophys., 1985, 18, 323–422.
66 M. G. Cacace, E. M. Landau, J. J. Ramsden, Q. Rev. Biophys., 1997, 30, 241–77.
67 W. Kunz, P. Lo Nostro, B. W. Ninham, Curr. Opin. Colloid Interface Sci., 2004, 9, 1–18.
68 P. Jungwirth, D. J. Tobias, J. Phys. Chem. B., 2001, 105, 10468–10472.
69 J. F. Lutz, Özgür Akdemir, and A. Hoth, J. Am. Chem. Soc., 2006, 128 (40), 13046–13047.
70 A. Qin, J. W. Y. Lam, B. Z. Tang, Prog. Polym. Sci., 2012, 37, 182 − 209.
71 S. T. Li, Y. C. Lin, S. W. Kuo, W. T. Chuang, J. L. Hong, Polym. Chem. 2012, 3, 2393 − 2402.
72 R. Zimmermann, T. Kratzmu, D. Erickson, D. Li, H. G. Braun, C. Werner, Langmuir., 2004, 20, 2369 − 2374.
73 Y. C. Lin, P. I. Wang, S. W. Kuo, Soft Matter., 2012, 8, 9676 −9684.
74 T. Torii, T. Yamashita, T. K. Horie, Eur. Polym. J., 1993, 29, 1265 − 1270.
75 P. Doty, J. H. Bradbury, A. M. Holtzer, J. Am. Chem. Soc., 1956, 78, 947 − 954.
76 F. A. Bovey, G. V. D. Tiers, Adv. Polym. Sci. 1963, 3, 139 − 195.
77 Y. Moriyama, D. Ohta, K. Hadiya, Y. Mitsui, K. J. Takeda, Protein Chem., 1996, 15, 265 − 272.
78 X. M. He, D. C. Carter, Nature., 1992, 358, 209 − 215.
79 Y. Z. Zhang, B. Zhou, X. P. Zhang, P. Huang, C. H. Li, Y. Liu, J. Hazard. Mater., 2009, 163, 1345 − 1352.
80 C. Y. Chen, Z. H. Wang, and Z. B. Li, Biomacromolecules., 2011, 12, 2859–2863.

chapter 2
1 J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun., 2001, 1740 − 1741.
2 B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu, D. Zhu, J. Mater. Chem., 2001, 11, 2974 − 2981
3 Aggregation-Induced Emission: Fundamentals; A. Qin, B. Z. Tang, Eds.; John Wiley & Sons, Ltd.: New York, 2013.
4 J. Liu, J. W. Y. Lam, B. Z. Tang, J. Inorg. Organomet. Polym., 2009, 19, 249 − 285.
5 Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Commun., 2009, 4332 − 4353.
6 S. T. Li, Y. C. Lin, S. W. Kuo, W. T. Chuang, J. L. Hong, Polym. Chem., 2012, 3, 2393 − 2402.
7 T. Higashihara, M. Ueda, Macromolecules,. 2009, 42, 8794–8800.
8 Y. Sun, N. Zhou, W. Zhang, Y. Li, Z. Cheng, J. Zhu, Z. Zhang and X. Zhu. J. Polym. Sci., Part A: Polym. Chem., 2012, 50, 3788–3796.
9 M. Zorn, R. Zentel, Macromol Rapid Commun., 2008, 29, 922–927.
10 K. Peter, M. Thelakkat, Macromolecules., 2003, 36, 1779–1785.
11 Y.W. Chuang, J.Y. Hung, J. H. Wu, G.S. Liou, Appl. Mater. Interfaces., 2014, 6, 3594−3599.
12 K.L. Wang, W.T. Liou, D. J. Liaw, S. T. Huang, Polymer., 2008, 49, 1538−1546.
13 M. Yoshida, M. Ayano and N. Kobayashi, J. Polym. Sci., Part B: Polym. Phys., 2000, 38, 362–368.
14 Y. Hong, Jacky W. Y. Lam. B. Z. Tang, Chem. Soc. Rev., 2011, 40, 5361–5388.
15 Z. Ning, Z. Chen, Q. Zhang, Y. Yan, S. Qian, Y. Cao and H. Tian, Adv. Funct. Mater., 2007, 17, 3799–3807.
16 Y, Cao, W. Xi, L. Wang, H. Wang, L. Kong, H. Zhou, J. Wua and Y. Tiana, RSC Adv., 2014, 4, 24649–24652
17 D. Gu, G. Yang, Y. He, B. Qi, G. Wang, Z. Su, Synthetic Metals., 2009, 159, 2497–2501.
18 K. L. Wang, W. T. Liou, D. J. Liaw, W. T. Chen, Dyes and Pigments., 2008, 78, 93 −100.
19 J. McNulty, D. McLeod, Tetrahedron Letters., 2011, 52, 5467–5470.
20 Y. C. Lin, S. W. Kuo, Polym. Chem., 2012, 3, 162 − 171.
21 Y. C. Lin, S. W. Kuo. Polym. Chem., 2012, 3, 882 − 891.
22 J. H. Du, R. Wickramasinghe, ,and X. Qian, Phys. Chem. B., 2010, 114, 16594–16604
23 K. Ananda, P. G. Vasudev, A. Sengupta, K. M. Poopathi, R. N. Shamala, P. Balaram, J. Am. Chem. Soc., 2005, 127, 16668 −16674.
24 C. Toniolo, A. Polese, F. Formaggio, M. Crisma, J. Kamphuis, J. Am. Chem. Soc. 1996, 118, 2744 − 2745.
27 K. Y. Shih, T. S. Hsiao, S. L. Deng, and J. L. Hong, Macromolecules., 2014, 47, 4037 – 4047
28 J. J. Cheng, T. J. Deming, Top. Curr. Chem., 2012, 310, 1–26.
29 Y. Zhang, H. Lu, H. Y. Lin, Y. J. Cheng, Macromolecules, 2011, 44, 6641 − 6644.
30 J. Chun, P. G. Reuvekamp, D. Chen, C. Lin and R. K. Kremer. J. Mater. Chem. C, 2015, 3, 570-581
31 F. Ma, W. Shia, H. Y. Mia, J. M. Luoa, Y. L. Leia, Y. Tiana, Sens Actuators B Chem., 2013, 182, 782–788.
32 K. Watanabe, K. Muto and T. Ishii, Biospectroscopy, 1997, 3, 103-111.
33 R. W. Woody, Biopolymers., 1978, 17, 1451–146.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code