Responsive image
博碩士論文 etd-0629116-135623 詳細資訊
Title page for etd-0629116-135623
論文名稱
Title
石墨烯與有機過氧化物之光化學反應研究
Photochemical Reactivity between Graphene and Organic Peroxides
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-25
繳交日期
Date of Submission
2016-08-01
關鍵字
Keywords
能量轉移、歧化反應、光敏劑、電子交換、超高真空系統、化學氣相沉積石墨烯
electron exchange, photosensitizer, CVD grown graphene, disproportionation, ultrahigh vacuum system, energy transfer
統計
Statistics
本論文已被瀏覽 5897 次,被下載 31
The thesis/dissertation has been browsed 5897 times, has been downloaded 31 times.
中文摘要
石墨烯是由碳原子以六角晶格排列形成的二維材料,石墨烯完整的π共軛系統使其具有極高的化學穩定性,因此,官能化石墨烯在近幾年成為熱門研究之一。文獻指出利用有機過氧化物經由照光後分解成自由基片段可修飾石墨烯,選擇di-tert butyl peroxide (DTBP) 及tert-butyl peroxybenzoate (TBPB) 作為自由基前驅物,以365 nm LED作為光源,分別探討發生在石墨烯表面之熱化學及光化學反應機構。實驗於超高真空系統下進行,程溫脫附質譜 (Temperature-programmed desorption) 及反射吸收式紅外光譜 (Reflection-absorption infrared spectroscopy) 為所使用之表面分析技術。
DTBP在石墨烯表面的研究結果由TPD得知僅在194 K時偵測到分子脫附峰,即使經過照光仍未見任何光產物,判定DTBP與石墨烯既無熱化學反應也無光化學反應發生。TBPB的光化學研究上,在照光一小時後於TPD測量發現相同溫度下已不見分子脫附,利用RAIRS則發現在照光後1765 cm-1(C=O伸縮)及855 cm-1(O-O伸縮)訊號消失且伴隨924 cm-1及1210 cm-1新訊號產生,證實TBPB與石墨烯確實照光發生光解形成自由基中間體,所有紅外光譜上的訊號在300 K即全數消失,說明pheneyl radical及methyl radical並未與石墨烯形成共價化學鍵,而是自由基彼此作用進行歧化反應生成tert-butanol、benzene、isobutylene epoxide,以上產物皆於200 K以下生成且自石墨烯表面脫離。由於TBPB本身是不吸收365 nm的光,應是石墨烯吸收光能後產生熱電子並傳遞至吸附其上的TBPB之LUMO軌域,TBPB分子HOMO軌域之電子亦同步轉移回石墨烯填滿其電洞,這代表是藉電子交換而發生的能量轉移現象而非電子轉移,結果使激發態之TBPB得以發生裂解。
Abstract
Graphene is a two-dimensional material composed of carbon atoms that are arranged in a single-layer hexagonal crystal lattice form. Due to its complete conjugated  system, graphene is chemically stable and thus has high potential in a variety of applications. Therefore, research on graphene has become popular and challenging in recent years. Previous studies have indicated that organic peroxides could undergo photolysis upon irradiation. In this research, we select di-tert butyl peroxide (DTBP) and tert-butyl peroxybenzoate (TBPB) as the radical initiator, respectively, and 365 nm LED as the light source to investigate the thermochemistry and photochemistry between graphene and adsorbed peroxides. Experiments were carried out in our ultrahigh vacuum system and in situ surface analytic techniques, including temperature programmed desorption (TPD) and reflection adsorption infrared spectroscopy (RAIRS), were employed.
The interaction of DTBP with the surface of graphene showed that only the monolayer desorption was observed at 194 K. Neither thermochemistry nor photochemistry reactions happened.The results of reacting TBPB with the surface of graphene showed that TBPB was found to be depleted by 1 hour UV irradiation in the PITPD measurement. RAIR spectra showed that both carbonyl stretching vibration at 1765 cm-1 and peroxyl stretching vibration at 835 cm-1 almost disappeared after 1 hour irradiation, but two new peaks (1210 and 930 cm -1) simultaneously emerged. Hence, we confirmed TBPB underwent photolysis along with the formation of radical intermediates. Since all IR features faded out above 300 K, covalent bond formation between the expected photochemically generated phenyl or methyl radicals and the graphene carbons didn’t occurred. Instead, these radicals underwent disproportionation and thus formed benzene, tert-butanol and isobutylene epoxide as the final products. All products generated desorbed from the graphene surface before 200 K. TBPB itself does not absorb 365 nm wavelength of light but graphene does. Photoexcited graphene serves as a photosensitizer responsible for delivering hot electrons to the LUMO of TBPB. Meanwhile, an electron within the TBPB HOMO transferred to graphene, the energy transfer resulted from the electron-exchange triggered formation of ground state graphene and excited state TBPB. The excited state TBPB was decomposed via homolytic cleavage of O-O bond to render radicals.
目次 Table of Contents
第壹章、 介紹 1
1-1研究背景 1
1-2研究動機 7
第貳章、實驗設備與方法 8
2-1超高真空系統與實驗裝置 8
2-1-1 程溫脫附實驗 (Temperature Programmed Desorption,TPD) 10
2-1-2反射式吸收紅外光譜 (Reflection-Absorption Infrared Spectroscopy,RAIRS) 11
2-2 拉曼光譜 (Raman Spectroscopy) 14
2-3 密度泛涵理論計算 15
2-4 LED-UV點光源 16
2-5 石墨烯、Cu(111)單晶及實驗藥品 17
2-5-1 石墨烯的製備 17
2-5-2 Cu(111)單晶及藥品 19
第參章、實驗結果與詮釋 20
3-1-1 DTBP在石墨烯表面的熱化學研究 20
3-1-2 DTBP在石墨烯表面的光化學研究 25
3-2-1 TBPB在石墨烯表面的熱化學研究 29
3-2-2 TBPB在石墨烯表面的光化學研究 35
3-3-1 TBPB在Cu(111)表面的熱化學研究 50
3-3-2 DTBP在Cu(111)表面的熱化學研究 53
第肆章、討論與結論 57
4-1 DFT計算與實驗結果之比較 57
4-2 未來工作 63
4-3 結論 64
第伍章、參考文獻 65
參考文獻 References
1. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat. mater. 2007, 6 (3), 183-191.
2. Neto, A. C.; Guinea, F.; Peres, N.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Rev. Mod. Phys. 2009, 81 (1), 109.
3. Novoselov, K.; Geim, A. K.; Morozov, S.; Jiang, D.; Katsnelson, M.; Grigorieva, I.; Dubonos, S.; Firsov, A., Two-dimensional gas of massless Dirac fermions in graphene. nature 2005, 438 (7065), 197-200.
4. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N., Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8 (3), 902-907.
5. Novoselov, K. S.; Geim, A. K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S. a.; Grigorieva, I.; Firsov, A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669.
6. Nair, R.; Blake, P.; Grigorenko, A.; Novoselov, K.; Booth, T.; Stauber, T.; Peres, N.; Geim, A., Fine structure constant defines visual transparency of graphene. Science 2008, 320 (5881), 1308-1308.
7. Tang, H.; Hessel, C. M.; Wang, J.; Yang, N.; Yu, R.; Zhao, H.; Wang, D., Two-dimensional carbon leading to new photoconversion processes. Chem. Soc. Rev. 2014, 43 (13), 4281-4299.
8. Schedin, F.; Geim, A.; Morozov, S.; Hill, E.; Blake, P.; Katsnelson, M.; Novoselov, K., Detection of individual gas molecules adsorbed on graphene. Nat. mater 2007, 6 (9), 652-655.
9. Novoselov, K. S.; Fal, V.; Colombo, L.; Gellert, P.; Schwab, M.; Kim, K., A roadmap for graphene. Nature 2012, 490 (7419), 192-200.
10. Hass, J.; De Heer, W.; Conrad, E., The growth and morphology of epitaxial multilayer graphene. J. Phys.: Condens. Matter 2008, 20 (32), 323202.
11. Liao, L.; Peng, H.; Liu, Z., Chemistry makes graphene beyond graphene. J. Am. Chem. Soc. 2014, 136 (35), 12194-12200.
12. Whitener, K. E.; Lee, W. K.; Campbell, P. M.; Robinson, J. T.; Sheehan, P. E., Chemical hydrogenation of single-layer graphene enables completely reversible removal of electrical conductivity. Carbon 2014, 72, 348-353.
13. Robinson, J. T.; Burgess, J. S.; Junkermeier, C. E.; Badescu, S. C.; Reinecke, T. L.; Perkins, F. K.; Zalalutdniov, M. K.; Baldwin, J. W.; Culbertson, J. C.; Sheehan, P. E., Properties of fluorinated graphene films. Nano Lett. 2010, 10 (8), 3001-3005.
14. Liu, H.; Ryu, S.; Chen, Z.; Steigerwald, M. L.; Nuckolls, C.; Brus, L. E., Photochemical reactivity of graphene. J. Am. Chem. Soc. 2009, 131 (47), 17099-17101.
15. Bekyarova, E.; Itkis, M. E.; Ramesh, P.; Berger, C.; Sprinkle, M.; de Heer, W. A.; Haddon, R. C., Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. J. Am. Chem. Soc. 2009, 131 (4), 1336-1337.
16. Sarkar, S.; Bekyarova, E.; Haddon, R. C., Chemistry at the Dirac point: Diels–Alder reactivity of graphene. Acc. Chem. Res. 2012, 45 (4), 673-682.
17. Sarkar, S.; Bekyarova, E.; Niyogi, S.; Haddon, R. C., Diels− Alder chemistry of graphite and graphene: graphene as diene and dienophile. J. Am. Chem. Soc. 2011, 133 (10), 3324-3327.
18. Zhang, L.; Zhou, L.; Yang, M.; Liu, Z.; Xie, Q.; Peng, H.; Liu, Z., Photo‐induced free radical modification of graphene. Small 2013, 9 (8), 1134-1143.
19. Liao, L.; Song, Z.; Zhou, Y.; Wang, H.; Xie, Q.; Peng, H.; Liu, Z., Photoinduced methylation of graphene. Small 2013, 9 (8), 1348-1352.
20. Ferrari, A.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.; Roth, S., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97 (18), 187401.
21. Ferrari, A. C.; Basko, D. M., Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. nanotech. 2013, 8 (4), 235-246.
22. Wu, W.; Yu, Q.; Peng, P.; Liu, Z.; Bao, J.; Pei, S.-S., Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Nanotechnology 2011, 23 (3), 035603.
23. Schniepp, H. C.; Li, J.-L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A., Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110 (17), 8535-8539.
24. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324 (5932), 1312-1314.
25. McKean, D.; Duncan, J.; Hay, R., Vibrational spectra and assignments in di-t-butyl peroxide. Spectrochimica Acta Part A: Molecular Spectroscopy 1967, 23 (3), 605-609.
26. Davison, W., 542. Infra-red absorption of the carbonyl group. Part I. Diacyl peroxides, per-esters, and per-acids. J. Chem. Soc. 1951, 2456-2461.
27. Perry, C.; Haq, S.; Frederick, B.; Richardson, N., Face specificity and the role of metal adatoms in molecular reorientation at surfaces. Surf Sci. 1998, 409 (3), 512-520.
28. Abel, B.; Assmann, J.; Botschwina, P.; Buback, M.; Kling, M.; Oswald, R.; Schmatz, S.; Schroeder, J.; Witte, T., Experimental and theoretical investigations of the ultrafast photoinduced decomposition of organic peroxides in solution: Formation and decarboxylation of benzoyloxy radicals. J. Phys. Chem. A 2003, 107 (26), 5157-5167.
29. Kavarnos, G. J.; Turro, N. J., Photosensitization by reversible electron transfer: theories, experimental evidence, and examples. Chem. Rev. 1986, 86 (2), 401-449.
30. Yang, M.-Q.; Xu, Y.-J., Basic principles for observing the photosensitizer role of graphene in the graphene–semiconductor composite photocatalyst from a case study on graphene–ZnO. J. Phys. Chem. C 2013, 117 (42), 21724-21734.
31. Buback, M.; Kling, M.; Schmatz, S.; Schroeder, J., Photo-induced decomposition of organic peroxides: Ultrafast formation and decarboxylation of carbonyloxy radicals. Phys. Chem. Chem. Phys. 2004, 6 (24), 5441-5455.
32. Lee, J.; Dougherty, D. B.; Yates, J. T., Chemisorbed benzoate-to-benzene conversion via phenyl radicals on Cu (110): Kinetic observation of conformational effects. J. Am. Chem. Soc. 2006, 128 (18), 6008-6009.
33. Volman, D. H.; Graven, W. M., Photochemical Reactions in the Gas Phase Systems: Di-t-butyl Peroxide, Peroxide—Butadiene and Acetone—Butadiene. J. Am. Chem. Soc. 1953, 75 (13), 3111-3116.
34. Bent, H. A.; Crawford Jr, B., Infrared Investigation of the Thermal Decomposition of Di-t-butyl Peroxide and Nitrate Esters in Potassium Halide Pressed Disks, and the Spectrum of Carbon Dioxide at High Pressures1. J. Am. Chem. Soc. 1957, 79 (8), 1793-1797.
35. Wu, H.-J.; Hsu, H.-K.; Chiang, C.-M., Surface reactions of CH3I and CF3I with coadsorbed CH2I2 on Ag (111) as mechanistic probes for carbon-carbon bond formation via methylene insertion. J. Am. Chem. Soc. 1999, 121 (18), 4433-4442.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code