Responsive image
博碩士論文 etd-0629118-145231 詳細資訊
Title page for etd-0629118-145231
論文名稱
Title
製備新型二維共價有機骨架材料及其氣體吸脫附性質
Synthesis of Novel Two Dimensional Covalent Organic Frameworks and Their Gas Adsorption/Desorption Properties
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-06
繳交日期
Date of Submission
2018-07-29
關鍵字
Keywords
共價有機骨架、比表面積、二氧化碳捕捉、氣體分離、席夫鹼反應
Surface area, Schiff base reaction, Carbon dioxide capture, Covalent organic frameworks, Gas separation
統計
Statistics
本論文已被瀏覽 5666 次,被下載 4
The thesis/dissertation has been browsed 5666 times, has been downloaded 4 times.
中文摘要
本實驗將分為兩大部分,第一部分為單體合成:分別合成出三邊末端官能基為一級胺(TPA-3NH2與TPT-3NH2)以及三邊末端官能基為醛基(TPA-3CHO、TPP-3CHO與TPT-3CHO)等不同中心結構之單體,並利用傅立葉紅外線光譜儀(FTIR)、核磁共振光譜儀(NMR)進行結構鑑定。第二部分為利用縮合聚合法製備共價有機骨架(COFs):TPA-TPA-COF (COF-1)、TPA-TPP-COF (COF-2)、TPA-TPT-COF (COF-3)、TPT-TPA-COF (COF-4)、TPT-TPP-COF (COF-5)與TPT-TPT-COF (COF-6),通過席夫鹼(Schiff base)反應形成以共價鍵連結之二維網狀結構,並由傅立葉紅外線光譜儀(FT-IR)、熱重分析儀(TGA)、固態核磁共振儀(solid state NMR)、元素分析儀(EA)、X光粉末繞射儀(PXRD)以及比表面積分析儀(BET)進行結構與各項性質分析。我們可以從FT-IR與solid state NMR確認成功製備出COFs。熱性質由TGA分析結果顯示所有COF之裂解溫度均高於480 oC,說明COF中心結構為平面官能基有助於結構更穩定以及良好的熱穩定性。透過PXRD分析圖譜可以看出所有COF的晶體結構皆屬於六角堆積排列的形式。最後,我們利用比表面積分析與孔徑分佈來進一步分析不同中心官能基對於N2(g)以及CO2(g)的吸附與捕捉效果,可以觀察到結構中的高平面性與氮含量的增加有助於CO2(g)的捕捉。
Abstract
In this study, we synthesized a series of related monomers and polymers based on covalent organic frameworks (COFs) materials. In the first place, we prepared different five monomer derivatives, including TPA-3NH2, TPT-3NH2, TPA-3CHO, TPP-3CHO, and TPT-3CHO, which were characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies. Secondly, we used the condensation polymerization to synthesize six different COFs via the Schiff base reaction to possess various two-dimensional crosslink structures, named TPA-TPA-COF (COF-1), TPA-TPP-COF (COF-2), TPA-TPT-COF (COF-3), TPT-TPA-COF (COF-4), TPT-TPP-COF (COF-5) and TPT-TPT-COF (COF-6), based on FTIR, TGA, solid state nuclear magnetic resonance (solid state NMR), elemental analysis (EA), powder X-ray diffractometer (PXRD), and BET analyses. The successfully synthesized of these COFs could be confirmed by using FTIR and solid state NMR analyses. All degradation temperatures of COFs are higher than 480 oC based on TGA analyses, indicating that the planar molecular for center group in the COFs make the structure having more stable and better thermal stability. The well-defined crystalline structures were observed of these COFs with hexagonal packed cylinder based on PXRD analyses. Finally, we utilized the surface area and pore size distribution to make further analyses about the relative N2(g) and CO2(g) sorption of different functional groups for center structures. We can observe that the capacity of carbon dioxide (CO2) capture was improved upon increasing the nitrogen content and planarity in COFs.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iv
Abstract v
目錄 vi
圖目錄 x
表目錄 xiv
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 文獻回顧 3
1-3-1共價有機骨架(Covalent Organic Frameworks, COFs) 3
1-3-2 氣體吸附理論(Gas Adsorption Theory) 4
1-3-3 二氧化碳捕捉(Carbon Dioxide Capture) 6
1-3-4 π-π作用力(π-π interactions) 7
第二章 實驗方法與步驟 8
2-1 實驗內容及流程 8
2-2 實驗藥品 9
2-3實驗步驟 10
2-3-1合成Tris(4-nitrophenyl)amine (TPA-3NO2) 10
2-3-2合成Tris(4-aminophenyl)amine(TPA-3NH2) 10
2-3-3合成2,4,6-tris(4-aminophenyl)triazine (TPT-3NH2) 10
2-3-4合成Tris(4-formylphenyl)amine (TPA-3CHO) 11
2-3-5合成2,4,6-tris(4-bromophenyl)pyridine (TPP-3Br) 11
2-3-6合成2,4,6-tris(4-formylphenyl)pyridine (TPP-3CHO) 12
2-3-7合成2,4,6-tris(4-bromophenyl)-1,3,5-triazine (TPT-3Br) 12
2-3-8合成2,4,6-tris(4-formylphenyl)triazine (TPT-3CHO) 13
2-3-9 TPA-TPA-COF (COF-1) 14
2-3-10 TPA-TPP-COF (COF-2) 14
2-3-11 TPA-TPT-COF (COF-3) 14
2-3-12 TPT-TPA-COF (COF-4) 15
2-3-13 TPT-TPP-COF (COF-5) 15
2-3-14 TPT-TPT-COF (COF-6) 15
2-4儀器介紹 19
2-4-1 核磁共振光譜儀(Nuclear Magnetic Resonance, NMR) 19
型號:Varian Unity Inova-500 19
2-4-2 傅立葉轉紅外線光譜儀(Fourier Transform Infrared Spectrometer, FT-IR) 型號:Bruker Tensor-27 20
2-4-3 熱重分析儀(Thermogravimetry Analysis, TGA) 型號:TA Q-50 20
2-4-4 固態核磁共振儀(Solid State Nuclear Magnetic Resonance Spectrometer, SSNMR) 型號:Bruker Avance 400 21
2-4-5 傅立葉轉換式質譜儀(Fourier-Transfer Mass Spectrometry, FT-MS) 型號:Bruker Solarix 21
2-4-6 比表面積分析儀(Surface Area and Porosimetry Analyser, BET) 型號:ASAP2020 22
2-4-7 X光粉末繞射儀(Powder X-ray Diffractometer, PXRD) 23
型號:Siemens D5000 23
2-4-8 元素分析儀(Elemental Analysis, EA) 23
型號:Elementar vario EL Ⅲ 23
2-4-9 掃瞄式電子顯微鏡(Scanning Electron Microscope, SEM) 24
型號:JEOL JSM-6380 24
第三章 結果與討論 25
3-1 三官能基單體之結構鑑定與分析研究 25
3-1-1 Tris(4-aminophenyl)amine (TPA-3NH2) 之鑑定分析 25
3-1-2 2,4,6-tris(4-aminophenyl)triazine (TPT-3NH2)之鑑定分析 25
3-1-3 Tris(4-formylphenyl)amine (TPA-3CHO) 之鑑定分析 26
3-1-4 2,4,6-tris(4-formylphenyl)pyridine (TPP-3CHO)之鑑定分析 26
3-1-5 2,4,6-tris(4-formylphenyl)triazine (TPT-3CHO)之鑑定分析 27
3-2 共價有機骨架之結構鑑定與分析研究 40
3-2-1 TPA-TPA-COF (COF-1)之鑑定分析 40
3-2-2 TPA-TPP-COF (COF-2)之鑑定分析 40
3-2-3 TPA-TPT-COF (COF-3)之鑑定分析 41
3-2-4 TPT-TPA-COF (COF-4)之鑑定分析 41
3-2-5 TPT-TPP-COF (COF-5)之鑑定分析 42
3-2-6 TPT-TPT-COF (COF-6)之鑑定分析 42
3-3 共價有機骨架之形態研究 49
3-4 共價有機骨架之性質探討 50
3-4-1 共價有機骨架之粉末繞射(PXRD)分析 50
3-4-2 共價有機骨架之比表面積(BET)分析 62
3-4-3 共價有機骨架之熱性質(TGA)分析 70
第四章 結論 71
第五章 參考文獻 72
參考文獻 References
1. Ding, S. Y. and Wang, W. Chem. Soc. Rev., 2013, 42, 548.
2. Feng, X.; Ding, X. S. and Jiang, D. Chem. Soc. Rev., 2012, 41, 6010.
3. Das, G.; Biswal, B. P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.; Addicoat, M.; Heine, T.; Verma, S. and Banerjee, R. Chem. Sci., 2015, 6, 3931.
4. Dalapati, S.; Jin, S.; Gao, J.; Xu, Y.; Nagai, A. and Jiang, D. J. Am. Chem. Soc., 2013, 135, 17310.
5. Ding, S. Y.; Dong, M.; Wang, Y. W.; Chen, Y. T.; Wang, H. Z.; Su, C. Y. and Wang, W. J. Am. Chem. Soc., 2016, 138, 3031.
6. Wan, S.; Guo, J.; Kim, J.; Ihee, H. and Jiang, D. Angew. Chem. Int. Ed., 2009, 48, 5439.
7. Kandambeth, S.; Biswal, B. P.; Chaudhari, H. D.; Rout, K. C.; Shebeeb, K. H.; Mitra, S.; Karak, S.; Das, A.; Mukherjee, R.; Kharul, U. K. and Banerjee, R. Adv. Mater., 2017, 29, 1.
8. Sun, Q.; Aguila, B.; Perman, J.; Earl, L. D.; Abney, C. W.; Cheng, Y.; Wei, H.; Nguyen, N.; Wojtas, L. and Ma, S. J. Am. Chem. Soc., 2017, 139, 2786.
9. Rochelle, G. T. Science, 2009, 325, 1652.
10. Rao, A. B. and Rubin, E. S. Environ. Sci. Technol., 2002, 36, 4467.
11. Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Angew. Chem. Int. Ed., 1999, 38, 56.
12. Gavrishova, T. N.; Li, V. M. and Budyka, M. F. Russ. J. Appl. Chem., 2010, 83, 873.
13. El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O’Keeffe, M. and Yaghi, O. M. Science, 2007, 316, 268.
14. Yu, J. T.; Chen, Z.; Sun, J.; Huang, Z. T. and Zheng, Q. Y. J. Mater. Chem., 2012, 22, 5369.
15. Zhao, Y. Chem. Mater., 2016, 28, 8079.
16. Xu, F.; Jin, S.; Zhong, H.; Wu, D.; Yang, X.; Chen, X.; Wei, H.; Fu, R. and Jiang, D. Sci. Rep., 2015, 5, 8225.
17. DeBlase, C. R.; Silberstein, E.; Truong, T. T.; Abruña, H. D. and Dichtel, W. R. J. Am. Chem. Soc., 2013, 135, 16821.
18. Bai, L., Gao, Q. and Zhao, Y. J. Mater. Chem. A, 2016, 4, 14106.
19. Wu, Y.; Xu, H.; Chen, X.; Gao, J.; Jiang, D. Chem. Commun., 2015, 51, 10096.
20. Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y. and Wang, W. J. Am. Chem. Soc., 2011, 133, 19816.
21. Xu, H. S.; Ding, S. Y.; An, W. K.; Wu, H. and Wang, W. J. Am. Chem. Soc., 2016, 138, 11489.
22. Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M. and Chang, C. J. Science, 2015, 349, 1208.
23. Xu, H., Gao, J. and Jiang, D. Nat. Chem., 2015, 7, 905.
24. Cooper, A. I. Adv. Mater., 2009, 21, 1291.
25. Fang, Q.; Zhung, Z.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J.; Qiu, S. and Yan, Y. Nat. Commun., 2014, 5, 4503.
26. Furukawa, H. and Yaghi, O. M. J. Am. Chem. Soc., 2009, 131, 8875.
27. Segura, J. L., Mancheño, M. J. and Zamora, F. Chem. Soc. Rev., 2016, 45, 5635.
28. Peng, Y.; Wong, W. K.; Hu, Z.; Cheng, Y.; Yuan, D.; Khan, S. A. and Zhao, D. Chem. Mater., 2016, 28, 5095.
29. Liu, C.; Xing, W.; Zhou, J. and Zhuo, S. Int. J. Smart. Nano. Mater., 2013, 4, 55.
30. Li, L. L.; Liu, S.; Zhang, Q.; Hu, N. T.; Wei, L. M.; Yang, Z. and Wei, H. Acta. Phys. Chim. Sin., 2017, 33, 1.
31. Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J. and Yaghi, O. M. Science, 2005, 310, 1166.
32. Xiang, Z.; Cao, D. and Dai, L. Polym. Chem., 2015, 6, 1896.
33. Fang, Q.; Wang, J.; Gu, S.; Kaspar, R. B.; Zhuang, Z.; Zheng, J.; Guo, H.; Qiu, S. and Yan, Y. J. Am. Chem. Soc., 2015, 137, 8352.
34. Ding, X.; Guo, J.; Feng, X.; Honsho, Y.; Guo, J.; Seki, S.; Maitarad, P.; Saeki, A.; Nagase, S. and Jiang, D. Angew. Chem. Int. Ed., 2011, 50, 1289.
35. Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klock, C.; O’Keeffe, M. and Yaghi, O. M. J. Am. Chem. Soc., 2009, 131, 4570.
36. Das, G.; Shinde, D. B.; Kandambeth, S.; Biswal, B. P. and Banerjee, R. Chem. Commun., 2014, 50, 12615.
37. Chen, X.; Addicoat, M.; Irle, S.; Nagai, A. and Jiang, D. J. Am. Chem. Soc., 2013, 135, 546.
38. Kuhn, P., Antonietti, M. and Thomas, A. Angew. Chem. Int. Ed., 2008, 47, 3450.
39. Hug, S.; Mesch, M. B.; Oh, H.; Popp, N.; Hirscher, M.; Senker, J. and Lotsch, B. V. J. Mater. Chem. A, 2014, 2, 5928.
40. Li, Y. and Yang, T. AIChE. J., 2008, 54, 1.
41. Lanni, L. M.; Tilford, R. W.; Bharathy, M. and Lavigen. J. J. J. Am. Chem. Soc., 2011, 133, 13975.
42. Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J. and Sing, K. S. W. Pure Appl. Chem., 2015, 87, 1051.
43. Wang, Q.; Luo, J.; Zhong, Z. and Borgna, A. Energy Environ. Sci., 2011, 4, 42.
44. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J. and Siemieniewska, T. Pure Appl. Chem., 1985, 57, 603.
45. Dawson, R.; Stockel, E.; Holst, J. R.; Adams, D. J. and Cooper, A. I. Energy Environ. Sci., 2011, 4, 4239.
46. Saleh, M.; Chandra, V.; Kemp, K. C. and Kim, K. S. Nanotechnology, 2013, 24, 255702.
47. Cheng, A. B.; Yu, Y. F.; Zang, W. W.; Qi, G. L.; Yu, Y. H. and Li, Y. T. J. Inorg. Mater., 2015, 30, 9.
48. Janiak, C. J. Chem. Soc., Dalton Trans., 2000, 3885.
49. Wang, Y. Z. and Wu, A. X. Chin. J. Org. Chem., 2008, 28, 997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code