Responsive image
博碩士論文 etd-0629118-213302 詳細資訊
Title page for etd-0629118-213302
論文名稱
Title
可攜式高靈敏度快速大麻檢測微系統與具有偏移電壓消除之峰值偵測器
A Highly Sensitive Portable Microsystem for Rapid Marijuana Detection and A Peak Detector with Offset Cancellation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-25
繳交日期
Date of Submission
2018-08-02
關鍵字
Keywords
峰值偵測器、便攜式醫療裝置、共振頻率偏移、彎曲平板波微型聲波感測晶片、動態偏移電壓消除技術
peak detector, portable medical device, flexural plate wave microsonic sensor, resonant frequency shift, dynamic offset voltage cancellation
統計
Statistics
本論文已被瀏覽 5690 次,被下載 1
The thesis/dissertation has been browsed 5690 times, has been downloaded 1 times.
中文摘要
早在1960 年代,毒品以及藥物氾濫早已成為世界所面臨的共同問題,而其中吸食毒品總人口數以大麻的1.6 億人(佔79.4 %) 最多。其影響包括精神上以及身體上的影響,加快心律、降低血壓、短期和工作記憶障礙、運動協調以及集中力衰退,將導致工作上、駕駛中或是日常生活上的危險。基於以上原因,大麻檢測變得非常重要,與酒測必要性將是不相上下。

本論文第一個主題提出一可攜式高靈敏度快速大麻檢測微系統,結合彎曲平板波微型聲波感測晶片(flexural plate wave sensor,FPW sensor)。該系統使用一電池充放電電路提供系統電源,並利用直接數位頻率合成器提供一頻率掃描訊號,結合振幅電壓轉換器、訊號放大電路以及峰值偵測器等電路,觀察彎曲平板波微型聲波感測晶片感測大麻蛋白質因濃度不同所造成之共振頻率偏移的現象,並將儲存之頻率回傳給控制電路,顯示於微控板上。實驗結果線性度可達0.9992,最大誤差為12.378 KHz。全系統之特點為無需使用額外電源、體積小、檢測快速、操作簡單,符合現代便攜式醫療裝置之需求。

第二個主題針對第一個主題內之峰值偵測器電路做改良,峰值偵測器係利用一運算放大器(operational amplifier),搭配回授電路做自我比較擷取峰值。因放大器本身之輸入級不匹配,會產生一輸入偏移電壓,影響擷取值之準確性。於是在此論文中加入動態偏移電壓消除技術,將偏移電壓調變至高頻,再利用低通濾波器消除偏移電壓,增加擷取峰值的準確度。在改良後之模擬結果上輸入範圍為0 V ~ 2.802 V,精準度可達0.558 mV,偏移電壓可降低至0.3 mV。在先前之量測結果上輸入範圍為0 V ~ 1.985 V,精準度可達36.8 mV。
Abstract
As early as in the 1960s, drugs abuse has long been a serious problem in the world.The most popular one is marijuana, where 160 million people (79.4%) were reported to have addiction issues. The side effect is posed upon both mental and physical aspects.For instance, high heart beat rate, low blood pressure, short-term and working memory breakdown, coordination and concentration loss. It will lead to dangers during work, driving, and daily life. Thus, marijuana testing has become as urgent as that for alcohol.

The first topic of this thesis proposes a highly sensitive portable microsystem for rapid marijuana detection, which is integrated with flexural plate wave microsonic sensor (FPW sensor). The system uses a single battery cell as the system power, and utilizes a direct digital frequency synthesizer (DDFS) to generate a frequency scanning signal, amplitude voltage converters, signal amplification circuits, and peak detectors, etc. The FPW sensor senses the resonance frequency shift caused by different concentrations of cannabinoid protein. It acquires the frequency, which is read by the control circuit and displayed on
the MCU. The linearity by physical experiments is up to 0.9992, and the maximum error is 12.378 KHz. The system is featured with no need for extra power supply, small size, fast detection, simple operation, which meets the demand of modern portable medical devices.

The second topic is to improve the accuracy of the peak detector circuit in the first topic. The peak detector uses an operational amplifier and a feedback circuit to compare the captured peak voltage automatically. Due to the mismatch of amplifier’s input stage, an input offset voltage will be generated to deteriorate the accuracy of the peak voltage acquisition. Therefore, the dynamic offset voltage cancellation technology is adopted,where the offset voltage is modulated to a higher frequency. Thus, the offset voltage is eliminated by using a low pass filter to increase the accuracy of the captured peak voltage. The input range is 0 V ~ 2.802 V and the precision can be as low as 0.558 mV as well as the offset voltage can be reduced to 0.3 mV by the simulations. The input range of previous work is 0 V ~ 1.985 V and the precision can be as low as 36.8 mV by measurement results.
目次 Table of Contents
論文審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
論文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
1 概論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 相關文獻與研究探討. . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 常見檢體檢測方式. . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 微型聲波感測元件分析. . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 頻移讀取電路. . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.4 雜訊分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.5 動態偏移電壓消除技術. . . . . . . . . . . . . . . . . . . . . . 7
1.3 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 可攜式高靈敏度快速大麻檢測微系統. . . . . . . . . . . . . . 11
1.3.2 具有偏移電壓消除之峰值偵測器. . . . . . . . . . . . . . . . 11
1.4 論文大綱. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 可攜式高靈敏度快速大麻檢測微系統. . . . . . . . . . . . . . . . . . . . . 14
2.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 頻移讀取電路系統架構. . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 電源供應電路設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 頻移讀取電路設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 控制電路. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 頻率掃描訊號產生電路. . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 振幅電壓轉換器. . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.4 放大級電路. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.5 峰值偵測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 功率偵測器運作說明. . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 系統量測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 具有偏移電壓消除之峰值偵測器. . . . . . . . . . . . . . . . . . . . . . . . 28
3.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 系統架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 子運算放大器介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 轉導放大器(Gm1) 設計. . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 積分器(Gm2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3 運算放大器(Gm3) . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 電路頻率補償設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 晶片佈局. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 電路模擬結果與預計規格比較. . . . . . . . . . . . . . . . . . . . . . 34
3.6.1 峰值偵測器規格模擬. . . . . . . . . . . . . . . . . . . . . . . 34
3.6.2 開關截波器之偏移電壓分析模擬. . . . . . . . . . . . . . . . 35
3.6.3 預計規格與佈局後模擬結果比較. . . . . . . . . . . . . . . . 36
3.7 晶片量測結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7.1 量測環境. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7.2 量測結果與分析. . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7.3 量測結果與模擬結果比較. . . . . . . . . . . . . . . . . . . . 39
3.8 量測結果討論與欲改善之處. . . . . . . . . . . . . . . . . . . . . . . 40
3.9 電路改良設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9.1 放大器Gm1 改善. . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9.2 截波器開關改善. . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.10 改善後晶片佈局. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.11 改善後之模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.11.1 放大器Gm1 改善後模擬結果. . . . . . . . . . . . . . . . . . 45
3.11.2 截波器開關改善後模擬結果. . . . . . . . . . . . . . . . . . . 45
3.11.3 改善後峰值偵測器規格模擬. . . . . . . . . . . . . . . . . . . 46
3.11.4 蒙地卡羅模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.11.5 偏移電壓消除規格模擬. . . . . . . . . . . . . . . . . . . . . . 48
3.11.6 改善前後佈局模擬結果比較. . . . . . . . . . . . . . . . . . . 48
3.12 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4 結論與未來研究方向. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1 研究成果與結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 未來研究規劃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
參考文獻 References
[1] United Nations Office on Drugs And Crime, 2017 World Drug Report. [Online]. Available: https://www.unodc.org/wdr2017/field/Booklet_1_EXSUM.pdf.
[2] United Nations Office on Drugs And Crime, 2014 World Drug Report. [Online]. Available: https://www.unodc.org/documents/wdr2014/World_Drug_Report_2014_web.pdf.
[3] 大紀元, 密西根大學:青少年吸毒平穩但大麻使用率增加. [Online]. Available: http://www.epochtimes.com/b5/17/12/15/n9960416.htm.
[4] 台灣大學寫作教學中心, 大麻與菸酒對於人體之危害性比較. [Online]. Available: http://www.awec.ntu.edu.tw/enews/download/017_SampleScript_大麻的合法性-1.pdf.
[5] 泛科學, 大麻究竟有多可怕?. [Online]. Available: http://pansci.asia/archives/62374.
[6] 日經Tech, The photo of a portable urine meter. [Online]. Available: http://www.batteryspace.com/prod-specs/6610.pdf.
[7] 中山醫學大學醫學分子毒理學研究所, 濫用藥物之毛髮檢驗. [Online]. Available: http://chem.kshs.kh.edu.tw/epaper/c_epaper_no12/teach01.pdf.
[8] M. A. Huestis and E. J. Cone, Drug Abuse Handbook. CRC Press., 1997.
[9] C.-C. Wang, C.-H. Hsu, Y.-D. Tsai, Y.-C. Chen, M.-C. Lee, and I.-Y. Huang, “A fast FPW-based protein concentration measurement system,” in Proc. 2012 IEEE International Symposium on Circuits and Systems, pp. 2389–2392, May 2012.
[10] J.-W. Lan, C.-H. Hsieh, I.-Y. Huang, Y.-C. Lin, T.-Y. Tsai, and C.-C. Wang, “Highly sensitive FPW-based microsystem for rapid detection of tetrahydrocannabinol in human urine,” Sensors, vol. 17, no. 12, pp. 2760–2771, Nov. 2017.
[11] C.-C. Wang, T.-C. Sung, C.-H. Liao, C.-M. Chang, J.-W. Lan, and I.-Y. Huang, “A CEA concentration measurement system using FPW biosensors and frequency-shift readout IC,” in Proc. 2013 International SoC Design Conference (ISOCC), pp. 27–30, Nov. 2013.
[12] 楊澤勝, “0.5-V low voltage analog Front-End IC for biomedical signal recording,”國立交通大學電控工程研究所碩士論文, July 2012.
[13] R. Wu, J. H. Huijsing, and K. K. A. Makinwa, Precision Instrumental Amplifiers and Read-Out Integrated Circuits. Springer, 2013.
[14] Marotronics, XD-58A Datasheet. [Online]. Available: http://shop.cpu.com.tw/product/47134/pdf2/.
[15] Texas Instruments, LM-317 Datasheet. [Online]. Available: http://www.ti.com/lit/ds/symlink/lm317.pdf.
[16] Terasic, ALTERA DE0 Datasheet. [Online]. Available: http://esca.korea.ac.kr/teaching/FPGA_boards/DE0/DE0_User_Manual.pdf.
[17] Y. Zhou and M. Y. W. Chia, “A low-power ultra-wideband CMOS true RMS power detector,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 5, pp. 1052–1058, May 2008.
[18] C.-C. Wang, T.-C. Sung, C.-H. Liao, C.-M. Chang, J.-W. Lan, and I.-Y. Huang, “A CEA concentration measurement system using FPW biosensors and frequency-shift readout IC,” in Proc. IEEE Inter. Conf. on Electronics, Circuits and Systems (ICECS), pp. 27–30, Nov. 2013.
[19] C.-C. Wang, C.-H. Liao, C.-M. Chang, J.-W. Lan, and I.-Y. Huang, “A fast CEA analyzer prototype for point of care testing,” in Proc. 2014 IEEE International Conference on Electron Devices and Solid-State Circuits, pp. 1–2, June 2014.
[20] J. F. Witte, J. H. Huijsing, and K. A. A. Makinwa, “A current-feedback instrumentation amplifier with 5 μV offset for bidirectional high-side current-sensing,” IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2769–2775, Dec. 2008.
[21] Z. Liu, C. Bian, Z. Wang, and C. Zhang, “Full custom design of a two-stage fully differential CMOS amplifier with high unity-gain bandwidth and large dynamic rangeat output,” in Proc. 2005 48th Midwest Symposium on Circuits and Systems, pp. 984–987, vol. 2, Aug. 2005.
[22] R. J. Baker, CMOS: Circuit Design, Layout, and Simulation. John Wiley and Sons, Inc., 2011.
[23] Y. Kusuda, “A 5.6 nV/Hz chopper operational amplifier achieving a 0.5 μV maximum offset over rail-to-rail input range with adaptive clock boosting technique,” IEEE Journal of Solid-State Circuits, vol. 51, no. 9, pp. 2119–2128, Sept. 2016.
[24] T.-K. Nguyen and S.-G. Lee, “Low-voltage, low-power CMOS operation transconductance amplifier with rail-to-rail differential input range,” in Proc. 2006 IEEE International Symposium on Circuits and Systems, pp. 1639–1642, May 2006.
[25] T. S. Arora, M. Gupta, and S. Gupta, “Current mode universal filter employing operational transconductance amplifier and third generation current conveyor,” in Proc. 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), pp. 1–4, July 2016.
[26] 蔡岳達, “Voltage peak detector design for FPW-based IgE measurement systems,” 國立中山大學電機工程學系碩士論文, June 2012.
[27] T.-J. Lee, W.-C. Hsiao, and C.-C. Wang, “20 MHz accurate peak detector for FPW allergy biosensor with digital calibration,” in Proc. 2011 International Symposium on Integrated Circuits, pp. 476–479, Dec. 2011.
[28] C.-C. Wang, D.-S. Wang, and H.-C. Huang, “A frequency-shift readout system with offset cancellation opa for portable devices of marijuana detection,” in Proc. 2018 International Conference on Consumer Electronics (ICCE2018), pp. 977–978, Jan. 2018.
[29] R. Wu, K. A. A. Makinwa, and J. H. Huijsing, “A chopper current-feedback instrumentation amplifier with a 1 MHz 1/f noise corner and an AC-coupled ripple reduction loop,” IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3232–3243, Dec. 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code