Responsive image
博碩士論文 etd-0630100-142042 詳細資訊
Title page for etd-0630100-142042
論文名稱
Title
單光束二維電場電光量測技術
On-wafer 2-D electric-field-vector measurement using single-beam electro-optic probing technique
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-19
繳交日期
Date of Submission
2000-06-30
關鍵字
Keywords
電光量測技術、電場向量、二維電場
electric-field vector, 2-D electric field, electro-optic probing technique
統計
Statistics
本論文已被瀏覽 5712 次,被下載 1776
The thesis/dissertation has been browsed 5712 times, has been downloaded 1776 times.
中文摘要
近年來電光探測技術發展得十分迅速,主要歸功於電光探測技術對於半導體元件和電路的特性量測表現優秀。傳統的電光量測技術只能量測出半導體元件和電路上的電場強度分佈。目前較先進的電光探測技術除了量測出電場強度外,更能夠進一步量測出電場向量。由於電場向量對於射頻電路之傳輸線、片型天線及無線通訊等元件均能提供極有價值的資訊,電場向量之電光量測法因此成為射頻電路特性量測的重要技術。傳統上電光量測技術只利用電光晶體折射率橢圓球的伸縮形變來進行調變,因此需要兩種電光晶體或兩束雷射光才能量測電場向量,不但造成量測誤差而且使量測系統變得十分複雜。因為使用兩種電光晶體,不但更換晶體的步驟複雜,更換的步驟還會造成校準誤差。使用兩束光量測除了光路變複雜外,還會因為兩束光路徑不同造成誤差。我們發展出利用電光晶體的折射率橢圓球旋轉形變來進行調變的新電光調變技術,稱為旋轉形變調變。將這種新的調變技術應用在二維電場電光量測上,不但可以大幅簡化量測系統和量測的步驟,而且只需要使用一種電光晶體和一束雷射光就能量測出二維電場向量,使得二維電場向量電光探測技術更加簡單、正確和符合經濟效益。
我們不但從理論和實驗上來討論及證明旋轉形變調變對於二維電場調變的可行性,也利用此單光束二維電場電光量測技術進行實際電路的電場向量量測。其量測結果和電腦模擬結果十分吻合。
我們也進行高頻即時電光量測技術的研究。隨著無線通訊低工作電壓之發展趨勢,高頻即時電光量測技術最大的瓶頸在於訊雜比過低。我們嘗試提升雷射光的穩定性、控制入射光極化方向以及法彼珀羅共振腔濾光作以提升訊雜比,實現高頻即時量測技術,並成功地研製出全世界最快的900 MHz即時電光量測系統,將能應用到無線通訊元件的檢測上。
Abstract
Electro-Optic(EO) probing techniques are advancing rapidly in recent years due to their superior performance in characterization of semiconductor devices and circuits. Although the conventional systems can only monitor the amplitude distribution of electric field, some advanced EO probing techniques are able to measure not only the electric-field amplitude, but also direction of the electric field. Because valuable information can be released in such as chamfered bending transmission lines, patch antennas and wireless devices, etc., EO probing technique becomes an important tool to the characterization of radio frequency devices. These systems often require two beams or two different EO crystals to differentiate the directions of the electric field under test because only one type of EO modulation, compressed/stretched deformation modulation, is utilized in the measurement. Therefore, the measurements are inaccurate and complicated due to the fact that the path length and EO interaction strength of the two probing beams are different. In this research, we demonstrate the EO probing technique with one beam and one EO crystal to extract 2-D electric-field vector using an additional modulation effect, i.e. rotational deformation modulation. This electric field vector measurement technique is compact, accurate and low cost.
We not only prove that on-wafer 2-D electric-field-vector measurement using single-beam electro-optic probing technique is feasible theoretically and experimentally, but also combine rotational deformation modulation and compressed/stretched deformation modulation to a practical circuit measurement. Commercial software, Ansoft Maxwell 3-D Field Simulator, is employed to verify our measurements. Good agreement is obtained between experiment and simulation results.
In addition to 2-D electric-field-vector measurement, we made an attempt to high-frequency real-time measurement. With the trend of low voltage operation in wireless communication, the most serious issue of high-frequency real-time EO probing technique is the improvement of signal to noise ratio. We tried to improve the stability of laser source, control the polarization of incident beam, and utilize Fabry-Perot filter in order to implement high-frequency real-time measurement. A bandwidth of 900 MHz was achieved, which is record-high to our knowledge.
目次 Table of Contents
中文摘要 I
英文摘要 II
目錄 III
圖表目錄 IV
第一章 導論 1
第二章 傳統電光電場向量探測技術 5
2.1 電場強度探測 6
2.2 電場向量探測 12
第三章 訊雜比提升 13
3.1 雷射光源穩定性 15
3.2 入射光極化方向 20
3.3 法彼珀羅濾波器 22
第四章 單光束二維電場電光量測技術旋轉形變晶體 29
4.1 旋轉形變晶體 30
4.2 旋轉調變技術 32
4.3 適合單光束二維電場向量量測之晶體 34
4.4 單光束二維電場電光量測技術 43
4.5 實驗結果 52
第五章 即時量測 58
5.1 實驗簡介 60
5.2 實驗結果 63
第六章 結論 67
參考文獻 68
附錄 71
中英文對照表 83
參考文獻 References
[1]J. A. Valdmanis and G. Mourou, “Subpicosecond electrooptic sampling: principles and applications,” IEEE Journal of Quantum Electronics, Vol. QE-22, pp. 69-78, 1986.
[2]D. M. Mechtel, H. K. Charles, and A. S. Francomacaro, “Electro-optic probing: a laser-based solution for noninvasive high speed testing of multichip modules,” International Journal of Microcircuits and Electronic Packaging, Vol 21, pp. 34-39, 1998.
[3]D. M. Mechtel, H. K. Charles Jr, and A. S. Francomacaro, “Laser-based electro-optic testing of multichip module structures,” Microelectronics reliability, Vol. 38, pp. 1847-1854, 1998.
[4]G. David, T. Y. Yun, M. H. Crites, J. F. Whitaker, T. R. Weatherford, K. Jobe, S. Meyer, M. J. Bustamante, B. Goyette, S. Thomas III, and K. R. Elliott, “Absolute potential measurements inside microwave digital IC’s using a micromachined photoconductive sampling probe,” IEEE Transactions on Microwave Theory and Techniques, Vol. 46, pp. 2330-2337, 1995.
[5]W. Mertin, “New aspects in electro-optic sampling,” Microelectronic Engineering, Vol. 30 , pp. 365-376, 1996.
[6]W. K. Kuo, S. L. Huang, and L. C. Chang, “On-wafer dual-beam electro-optic probing of electric-field vector,” Technical Digest of CLEO’ 97, pp.142-143,1997.
[7]W. H. Chen, W. K. Kuo, S. L. Huang, Y. T. Huang, and H. Z. Cheng, “On-wafer 2D electric-field-vector mapping using one-beam electro-optic probing technique,” Technical Digest of CLEO’2000, pp. 568, 2000.
[8]W. H. Chen, W. K. Kuo, S. L. Huang, and Y. T. Huang, “On-wafer electro-optic probing using rotational deformation modulation,” submitted to IEEE Photonics Letters.
[9]M. Shinagawa, and T. Nagatsuma, “ A novel high-impedence probe for multi-gigahertz signal measurement,” IEEE Transactions on Instrumentation and Measurement, Vol. 45, pp. 575-579,1996.
[10]D. L. Quang, D. Erasme, and B. Huyart, “MMIC-calibrated probing by CW electrooptic modulation,” IEEE Transactions on Microwave Theory and Techniques, Vol. 43, pp. 1031-1036, 1995.
[11]B. H. Kolner, and D. M. Bloom, “Electrooptic sampling in GaAs integrated circuit,” IEEE Journal of Quantum Electronics, VOL. QE-22, pp. 79-93, 1986.
[12]P. O. Muller, S. B. Alleston, A. J. Vickers, and D. Erasme, “An external electrooptic sampling technique based on the Fabry-Perot effect,” IEEE Journal of Quantum Electronics, Vol 35, pp. 7-11, 1999.
[13]K. Kamoga, I. Toyada, K. Nishikawa, and T. Tokumitsu, “Characterization of a monolithic slot antenna using an electro-optic sampling technique,” IEEE Microwave and Guide Wave Letters, Vol. 4, pp. 414-416, 1994.
[14]S. L. Huang, C. H. Lee, and H-L. A. Hung, “ Real-time linear time-domain network analysis using picosecond photoconductive mixer and sampler,” IEEE Transactions on microwave theory and techniques, Vol. 43, pp. 1281-1289, 1995.
[15]W. K. Kuo, Y. T. Huang, and S. L. Huang, “Three-dimensional electric-field vector measurement with an electro-optic sensing technique,” Optic Letters, Vol. 24, pp. 1546-1548, 1999.
[16]W. Mertin, C. Roths, F. Taenzler, and E. Kubalek, “Probe tip invasiveness at indirect electro-optic sampling of MMIC,” IEEE MTT-S Digest, pp. 1351-1354, 1993.
[17]S-G. Park, M. R. Melloch, and A. M. Weiner, “ Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE Journal of Quantum Electronics, Vol. 35, pp. 810-819, 1999.
[18]S-G. Park, M. R. Melloch, and A. M. Weiner, “Comparison of Terahertz waveforms measured by electro-optic and photoconductive sampling,” Applied Physics Letters, Vol. 73, pp. 3184-3186, 1998.
[19]A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, ” Detectors and sources foe ultrabroadband electro-optic sampling: experiment and theory,” Applied Physics Letters, Vol. 74, pp. 1516-1518, 1999.
[20]M. S. Heutmaker, T. B. Cook, B. Bosacchi, J. M. Weisenfeld, and R. S. Tucker, “Electro-optic sampling of a packaged high-speed Ga As integrated circuit,” IEEE Journal of Quantum Electronics, Vol. 24, pp. 226-233, 1988.
[21]J. M. Wiesenfeld, R. S. Tucker, A. Antrcasyan, C. A. Burrus, A. J. Taylor, V. D. Mattera, Jr., and P. A. Garbinski, “Electro-optic sampling measurements of high-speed InP integrated circuits,” Applied Physics Letters, Vol. 50, pp. 1310-1312, 1987.
[22]J. Nees, and G. A. Mourou, “Noncontact electro-optic sampling with a GaAs injection laser,” Electronics letters, Vol. 22, pp. 918-919, 1986.
[23]W. K. Kuo, S. L. Huang, and T. S. Horng, L. C. Chang, “Two-dimensional mapping of electric-field vector by electro-optic prober,” Optics Communications, Vol. 149, pp. 55-60, 1998.
[24]D. Le Quang, D. Erasme and B. Huyart, “Fabry-Perot enhanced real-time electro-optic probing of MMICs,” Electronics Letters, Vol. 29, pp. 498-499, 1993.
[25]H. Takahashi, S-I. Aoshima, and Y. Tsuchiya, “Sampling and real-time methods in electro-optic probing system,” IEEE Transactions on Instrument and Measurement, Vol. 44, NO. 5, pp.965-971, 1995.
[26]T. K. Ishii, Microwave engineering, Harcourt Brace Jovanovich, 1989.
[27]T. Pfeifer, T.Loffler, H. G. Roskos, H. Kurz, M. Singer, and E. M. Biebl “Electro-optic near-field mapping of planar resonators,” IEEE Transactions on Antenna and Propagation, Vol. 46 No. 2, pp.284-291, 1998.
[28]K. Yang, G. David, J. G. Yook, I. Papapolymerou, L. P. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Transactions on Microwave Theory and Techniques, Vol. 48, pp.288-294, 2000.
[29]P. Asbeck, J. Mink, T. Itoh, and G. Haddad, “Device and circuit approaches for next-generation wireless communications,” Microwave Journal, February, 1999.
[30]A. Yariv, Optical Electronics in Modern Communications, Oxford, 1997.
[31]P. O. Muller, D. Erasme and B. Huyart, “Wavelength Electro-Optic Scanning of MMICs with Fabry-Perot Enhancement,” IEEE MTT-S Digest, pp. 1329-1332, 1997.
[32]M. G. Li, E. A. Chauchard, and C. H. Lee, “2D field mapping of GaAs microstrip circuit by electro-optic sensing,” in OSA Picosecond Electronics and Optoelectronics, pp. 54-58, 1991.
[33]P. O. Muller, D. Erasme and B. Huyart, “New Calibration Method in Electrooptic Probing Due to Wavelength Control and Fabry-Perot ResonanceW,” IEEE Transactions on Microwave Theory and Techniques, Vol. 47, NO.3 pp. 308-314, 1999.
[34]B. E. A. Saleh and M. Carl Teich, Fundamentals of Photonics, John Wiley & Sons, 1991.
[35]A. Yariv and P. Yeh, Optical Waves in Crystals, John Wiley & Sons, 1983.
[36]W. K. Kuo, W. H. Chen, Y. T. Huang, S. L. Huang, “Two-dimensional electric field vector measurement by a LiTaO3 electro-optic prober,” submitted to Applied Optics.
[37]M. Shinagawa, and T. Nagatsuma, “A Laser-Diode-Based Picosecond Electrooptic Prober for High-Speed LSI’s,” IEEE Transactions on Instrument and Measurement, Vol. 41, No. 3, pp. 375-380, 1992

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code