Responsive image
博碩士論文 etd-0630108-123649 詳細資訊
Title page for etd-0630108-123649
論文名稱
Title
結合Fenton及Ferrite Process 處理電鍍廢水之研究
Study on the Treatment of Electroplating Wastewater by Ferrite Process Combined with Fenton’s Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-18
繳交日期
Date of Submission
2008-06-30
關鍵字
Keywords
重金屬、有機物、鐵氧磁體程序、Fenton法、電鍍廢水
heavy metals, organic matters, Fenton method, Ferrite Process, electroplating wastewater
統計
Statistics
本論文已被瀏覽 5662 次,被下載 3499
The thesis/dissertation has been browsed 5662 times, has been downloaded 3499 times.
中文摘要
電鍍工業之電鍍廢液多以化學沉澱法處理之,其缺點污泥結構鬆散,不利於沉澱、過濾等後續運作,污泥化學性質不夠安定,所含之重金屬易再溶出,必須後續的固化處理才能掩埋處置但固化相對於土地資源則造成極大的浪費。
本研究針對電鍍廢水分為有機物與重金屬兩部份討論,且各別對於有機物使用Fenton法,重金屬則使用鐵氧磁體程序,目的使上澄液能符合法規標準,且產生之重金屬污泥可視為一般事業廢棄物。
首先以模擬廢水進行探討其鐵氧磁體程序探討參數為:pH值、反應溫度、Fe/M莫耳比、反應時間與曝氣量。而結果指出其最佳操作為條件(pH=10)、溫度為90℃、Fe/M莫耳比為七倍反應時間80 min及曝氣量1.0 L air / min / L solution。另外Fenton法主要探討參數為:pH值、過氧化氫加藥量、亞鐵加藥量與反應時間等,待確定較佳處理參數後接著與鐵氧磁體程序做結合,研究顯示Fenton法之去除效率較佳操作條件為pH=3、亞鐵加藥量3000 mg/L、過氧化氫加藥量13000 mg/L及反應時間2 hr。
原水測得COD為1162 mg/L、重金屬Cr 70 mg/L、重金屬Zn為400 mg/L而經由串連Fenton法與鐵氧磁體程序後,其處理成效放流水COD為88.5 mg/L、重金屬Cr為1.06 mg/L、重金屬Zn為0.98 mg/L;TCLP後重金屬Cr為3.37 mg/L、重金屬Zn為2.46 mg/L。因此,結合兩處理方法,可使COD值與重金屬含量均低於放流水法規標準,且沉澱之金屬污泥經過TCLP程序經檢驗可獲判為一般事業廢棄物,如此可不需固化處理減少掩埋體積,且其磁性特性後續可回收再利用。
Abstract
The electroplating wastewater is usually treated by chemical precipitation, and the generated sludge has loose structure to cause the difficulties in sedimentation and filtration. Moreover, the sludge is unstable and the contained heavy metals are easily leached. Solidification is one method to deal with this kind of sludge; however it cause another problem, land requirement.
In this study, the contents of electroplating wastewater are divided into two parts organic matters and heavy metals; organic matters are treated by Fenton method and heavy metals are by Ferrite process. The purpose of this study is that through the serial Fenton-Ferrite Process treatment the effluent water and the sludge generated from the procedure could meet the standards in Taiwan.
It was well-know that the primary operation factors of Ferrite Process are pH, reaction temperature, ferrous ion concentration, time and aeration. The results showed that the proper factors of FP were pH=10, temperature= 90℃, Fe/M molar ratio= 7,reaction time=80 min and aeration rate=1.0 L air / min / L solution. However, in Fenton method, the parameters of pH, hydrogen peroxide, ferrous ion concentration, and reaction time were discussed. I had greatest efficiency under the data showed that Fenton method pH = 3, ferrous ion concentration=3000 mg/L, hydrogen peroxide = 13000 mg/L, and reaction time=2 hr.
The wastewater measured COD =1162 mg/L, Cr=70 mg/L, Zn=400 mg/L. The treatment efficiency of the procedure combining Fenton method and Ferrite Process were that COD=88.5 mg/L, Cr=1.06 mg/L, and Zn=0.98 mg/Lin effluent water and the TCLP test results of sludge were Cr=3.37 mg/L, Zn=2.46 mg/L. All the data showed that the combination of the two process can significantly treat wastewater to meet the standards. Furthermore, the sludge can be recycled as magnetic materials or other purposes due to it’s specific properties.
目次 Table of Contents
目 錄
謝誌 Ⅰ
中文摘要 Ⅱ
英文摘要 Ⅳ
目錄 Ⅵ
表目錄 Ⅹ
圖目錄 ⅩⅡ
第一章 緒論 1-1
1-1 研究源起 1-1
1-2 研究目的 1-3
第二章 文獻回顧 2-1
2-1 電鍍業簡介 2-1
2-1-1電鍍業發展及電鍍用途 2-1
2-1-2電鍍流程 2-1
2-1-3重金屬廢水處理方法 2-3
2-1-4高濃度有機廢水處理方法 2-5
2-2鐵氧磁體程序原理與影響因素 2-6
2-2-1鐵氧磁體程序之理論基礎與相關研究 2-6
2-2-2鐵氧磁體化法之原理 2-7
2-2-3鐵氧磁體化法之影響因子 2-13
2-2-4鐵氧磁體化法之相關研究 2-15
2-3 Fenton法原理與影響因素 2-20
2-3-1 Fenton法之氧化原理 2-20
2-3-2 Fenton法去除有機物之影響因子 2-22
2-3-3 Fenton法之相關研究 2-25
第三章 實驗方法與步驟 3-1
3-1 研究架構與實驗流程 3-1
3-2 實驗設備與材料 3-3
3-2-1鐵氧磁體程序設備與材料 3-3
3-2-2 Fenton法設備與材料 3-5
3-2-3 實驗藥品與試劑 3-7
3-3 實驗分析項目及方法 3-8
3-4 實驗步驟及操作條件 3-12
3-4-1 原水水質 3-12
3-4-2鐵氧磁體程序操作條件 3-13
3-4-3 Fenton法操作條件 3-14
3-4-4結合Fenton法與鐵氧磁體程序效果評估 3-15
第四章 結果與討論 4-1
4-1鐵氧磁體程序處理電鍍廢水最佳操作條件 4-1
4-1-1實驗室配製模擬之電鍍廢水 4-1
4-1-2 pH值對鐵氧磁體程序之影響 4-2
4-1-3溫度對鐵氧磁體程序之影響 4-4
4-1-4 Fe/M莫耳比對鐵氧磁體程序之影響 4-7
4-1-5延長時間、增加曝氣量對鐵氧磁體程序之影響 4-9
4-1-6三段式加藥量對鐵氧磁體程序之影響 4-12
4-2 Fenton法處理電鍍廢水有機物最佳操作條件 4-12
4-2-1 pH值對Fenton法之影響 4-13
4-2-2過氧化氫(H2O2)加藥量對Fenton法之影響 4-15
4-2-3亞鐵離子加藥量對Fenton法之影響 4-16
4-2-4反應時間對Fenton法之影響 4-19
4-3 Fenton法與鐵氧磁體程序結合 4-21
4-3-1結合Fenton法與鐵氧磁體程序選用操作參數 4-21
4-3-2實廠電鍍廢水之處理成效 4-22
4-4 SEM及XRD分析結果 4-23
4-4-1掃描式電子顯微鏡分析(SEM) 4-23
4-4-2 X射線繞射(XRD)分析 4-27
4-4-3尖晶石產物磁性量測 4-28
4-5成本評估 4-29
第五章 結論與建議 5-1
5-1 結論 5-1
5-2 建議 5-4
參考文獻 參-1
表 目 錄
表2-1 不同重金屬分離技術之比較表 2-4
表2-2 有機污染廢水處理方法之比較表 2-5
表2-3 尖晶石型鐵氧磁體可包含之金屬種類 2-8
表2-4 鐵氧磁體化法影響因子之相關文獻 (1/4) 2-16
表2-4 鐵氧磁體化法影響因子之相關文獻 (2/4) 2-17
表2-4 鐵氧磁體化法影響因子之相關文獻 (3/4) 2-18
表2-4 鐵氧磁體化法影響因子之相關文獻 (4/4) 2-19
表2-5 以Fenton法處理有機污染物之相關文獻 (1/2) 2-26
表2-5 以Fenton法處理有機污染物之相關文獻 (2/2) 2-27
表3-1 電鍍廢水水質 3-12
表3-2 鐵氧磁體程序操作參數 3-13
表3-3 Fenton法操作參數 3-14
表4-1 僅調整pH值上澄液數據 4-3
表4-2 僅調整溫度上澄液數據 4-5
表4-3 僅調整Fe/M莫耳比上澄液數據 4-8
表4-4 將最佳條件編號比較其差異 4-10
表4-5 不同組別之上澄液數據 4-10
表4-6 法規標準、原水及放流水數據 4-23
表4-7 Fenton-Ferrite Process成本分析表 4-30
圖 目 錄
圖 2-1 鐵氧磁體尖晶石結構 2-9
圖2-2 形成鐵氧磁體之氧化條件 2-12
圖3-1 研究架構及實驗流程 3-2
圖3-2 鐵氧磁體程序設備圖 3-4
圖3-3 Fenton法設備圖 3-6
圖4-1 調整pH值Cr金屬之溶出濃度(TCLP) 4-3
圖4-2 調整pH值Zn金屬之溶出濃度(TCLP) 4-4
圖4-3 調整溫度Cr金屬之溶出濃度(TCLP) 4-6
圖4-4 調整溫度Zn金屬之溶出濃度(TCLP) 4-6
圖4-5 調整Fe/M莫耳比Cr金屬之溶出濃度(TCLP) 4-8
圖4-6 調整Fe/M莫耳比Zn金屬之溶出濃度(TCLP) 4-9
圖4-7 不同組別Cr金屬之溶出濃度(TCLP) 4-11
圖4-8 不同組別Zn金屬之溶出濃度(TCLP) 4-11
圖4-9 改變pH對COD及COD去除率之影響比較圖 4-13
圖4-10 改變過氧化氫加藥量對COD及COD去除率之影響比較圖 4-16
圖4-11 改變亞鐵加藥量對COD及COD去除率之影響比較圖 (7000 mg/L) 4-17
圖4-12 改變亞鐵加藥量對COD及COD去除率之影響比較圖(10000 mg/L) 4-18
圖4-13 改變亞鐵加藥量對COD及COD去除率之影響比較圖(13000 mg/L) 4-18
圖4-14 過氧化氫與亞鐵加藥量對COD去除率之影響 4-19
圖4-15 反應時間對COD及COD去除率之影響 4-20
圗4-16 反應時間對TOC及TOC去除率之影響 4-21
圗4-17 Cr.Zn/Fe之SEM影像圖(1) 4-24
圗4-18 Cr.Zn/Fe之SEM影像圖(2) 4-25
圗4-19 Cr.Zn/Fe之SEM影像圖(3) 4-25
圗4-20 Cr.Zn/Fe之SEM影像圖(4) 4-26
圗4-21 Cr.Zn/Fe之三段式SEM圖 4-26
圗4-22 廢水三段式鐵氧磁體程序後之XRD影像圖 4-27
圗4-23 廢水鐵氧磁體程序後之XRD影像圖 4-28
圗4-24 鐵氧磁體尖晶石污泥磁滯曲線圖 4-29
參考文獻 References
英文文獻
Aldershof B. K., Dennis R. M. and Kunitsky C. J., “Study of Decomposition of Four Commercially Available Hydrogen Peroxide Solutions by Fenton's Reagent”, Wat. Environ. Res., 69(5), pp.1052-1059, 1997
Benite F. J., Acero J. L., Real F. J. and Leal A. I., “ The role of hydroxyl radicals for the decomposition of p-Hydroxy Phenylacetic acid in aqueous solutions ”, Wat. Res., Vol.35, No. 5, pp.1338-1343,2001
Fenton, H. J. H. , “Oxidation of tartaric acid in presence of iron.” Journal of Chemical Society,65,pp.889-910,1894
Gallard H. and Latt J., “Kinetic modeling of Fe(Ⅲ)/H2O oxidation reactions in dilute aqueous solution using atrazine as a model organic compound”, Wat Res., Vol. 34, NO. 12, pp.3107-3116,2000
Kaneko K., Takei K., Tamaura Y., Kanzaki T. and Katsura T. The Formation of the Cd-bearing Ferrite by the Air Oxidation of an Aqueous Suspension, Bulletin of the chemical society of Japan. Vol. 52, No. 4, 1080-1085. 1979.
Kitis M., Adams C. D. and Daigger G. T., “The Effeces of Fenton’s Reagent Pretreatment on the Biodegradability of Nonionic Surfactants”,Wat. Res. 33(11), pp.2561-2568,1999
Lunar L., Sicilia D., Rubio S., Perez-Bendito D. and Nickel U, “Degradation of photographic developers by Fenton reagent: comdition optimization and kinetics for metol oxidation”, Wat. Res., Vol. 34, No. 6, pp.1791-1802,2000
Hamada S and Kuma Kenshi.,“Preparation of γ-FeOOH by Aerial Oxidation of Iron(Ⅱ)Chloride Solution”,Bulletin of the chemical society of Japan., Vol. 49, No. 12, pp.3695-3696,1976
Hsueh C.L., Huamg Y.H., Wang C.C., Chen C.Y., “Degration of azo dyes using low iron concentration of Fenton and Fenton-like system”,Chemosphere, 58, 1409,2005
Huang, C.P. and Dong, C.D., “Advanced Chemical Oxidation: Its Present Role and Potential Feture in Hazardous Waste Treatment”, Waste Management., Vol. 13, pp.361-377,1993
Jaime Rodr, David Contreras, Carolina Parra, Juanita Freer, Jaime Baeza and Nelson Dur., “Pulp mill effluent treatment by Fentontype reactions catalyzed by iron complexes.” Water Sci. Technol. 40, No 11-12 pp 351–355,1999
Kang S. F. and Chang H. M.,“Coagulation of Textile Secondary Effluents with Fenton’s Reagent”, Wat. Sci. Tech., 36(12),pp.215-222,1997
Kim Y. K. and Huh I.. R., “Enhancing Biological Treatability of Landfill Leachate by Chemical Oxidation”, Environ. Engr. Sci., 14(1),pp.73-79,1997
Kiyama M, “Condition for the Formation of Fe3O4 by the Air Oxidation of Fe(OH)2 Suspensions”, Bulletin of the chemical society of Japan., Vol. 47, No. 7, pp.1646-1654,1974
Kuo et al., “Identification of End Products Resulting from Ozonation of Compounds Compounds Commonly Found in water”, in Ozone/Chlorine Dioxide Oxidation Products of Organic Materials, Rice, R. G. and Cotruvo, J. A. Ed.,Inst., Cleveland, Ohio, pp.153-166,1978
Liao C. H., Kang S.F. and Wu F. A., “Hydroxyl radical scavenging role of chloride and Bicarbonate ions in the H2O2/UV process”,Chmosphere., Vol. 14, pp.1193-1200,2001
Lindsey M. E. and Tarr M. A., “Quantiation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide”, Chemosphere., Vol. 41, pp.409-417,2000
M. Drofenik, M. Kristl, D. Makovec, Z. Jaglicˇic’, D. Hanzˇel, “Sonochemically assisted synthesis of zinc-doped maghemite”, Ultrasionics Sonochemistry, pp.791-798,2007
Mandaokar S. S., Dharmadhikari D. M., “Retrieval of heavy metal ions from solution via Ferritisation”, Environmental Pollution., Vo19l. 83, pp.277-282,1994
McCurrie R. A. Ferromagnetic Materials Structure and Properties, Academic Press Inc., San Diego. 1994.
Moon, D.K., T. Mauyama, K. Osakada, and T. Yamamoto, “Chemical Oxidation of Polyamilime by Radical Generating Reagents, O2, H2O2 FeCl3 Catalyst, and Dobenzoyl Peroxide”, Chemistry Letters, pp.1633-1636,1991
Norman N. Li., Sc D. Recent Developments in Separation Science. Vol. 8. 1978.
Park T. J., Lee K. H., Jung E. J. and Kim C. W., “Removal of Refractory Organic and Color in Pigment Wastewater with Fenton Oxidation”, Wat. Sci. Tech., 39(10-11),pp. 189-192,1999
Parsons S., “Advance Oxidation Process for Water and Wastewater Treatment”, IWA Publishing,UK,pp4,2004
Perez O P.,Yoshiaki.,“ORP-monitored magnetite formation from aqueous solutions at low temperayures”, Hydrometallurgy, Vol. 55, pp.35-56,2000
Sheng HL, Chi ML, HORNG G L., “Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation”. Wat. Res., 33(7) ,pp.1735-1741,1999
Shu-Hong Yu, Takahiro Fujino, Masahiro Yoshimura, “Hydrothermal synthesis of ZnFe2O4 ultrafine particles withhigh magnetization”, Journal of Magnetism and Magnetic Materials, pp.420-424,2002
Talinli I. and Anderson G. K., “Interference of Hydrogon Peroxide on the Standard COD Test”, Wat. Res., 26(1), pp.107-110,1992
Tamaura. Y., Katsura T., and Rojarayanont S., Yoshida T and Abe H, “Ferrite process;Heavy metal ions treatment system”, Water.Sci.Tech , Vol. 23,pp.1893-1900,1991
V. Kavitha, K. Palanivelu., “The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol”, Chmosphere Vol. 55, pp.1235-1243,2004
Walling, C., and Goosen, A.,“Mechanism of the. ferric ion catalyzed decompositionof hydrogenperoxide.Ef-.fect of organic substrates.” J. Am. Chem. Soc. 95, pp.2987–2991,1973
Walling C. and Kato S., “The Oxidation of Alcohols by Fenton’s Reagent: the Effect of Copper Ion”, J. Am. Chem. Soc., 93, pp.4275-4281,1971
Yeh, C.K. and J.T. Novak. “The effect of hydrogen peroxide on the degradation of methyl. and ethyl tert-butyl ether in soils”. Water Environment Research, Vol. 67, No.5, pp. 828-834,1995
中文文獻
董正釱、陳秋玟、王玫驊,「利用亞鐵離子催化過氧化氫處理二硝酚水溶液反應行為之研究」,第19 屆廢水處理技術研討會論文集,第185~195 頁,1994。
王月鳳,「重金屬離子之鐵氧磁體化研究」,成功大學碩士論文,1995。
呂慶慧、王壬、楊維鈞,「以碳酸銨浸漬回收電鍍污泥中銅、鎳、鋅之研究」,國際工業減廢技術與策略研討會論文集,pp. 605-617,1995。
經濟部工業局,「電鍍業廢棄物資源化案例彙編」,1996。
李尚章,「Fenton法氧化TCE DNAPL之探討」,屏東科技大學環境工程與科學系,1999。
張健桂,「以鐵氧磁體程序處理含重金屬實驗室廢液之研究」,國立中山大學環境工程研究所,2002。
涂耀仁,「以多段式磁鐵化法處理重金屬系實驗室廢液」,國立中山大學環境工程研究所碩士論文,2002。
張毓寬,「鉻污泥資源化基礎研究」,成功大學碩士論文,2002。
鄧婉妤,「以Fenton法結合Ferrite Process處理含EDTA與重金屬之廢水」,國立中山大學環境工程研究所,2004。
張博荀,「H2O2/Fe2+化學氧化法處理反應性染料-Black B之研究」,國立成功大學化學工程研究所,2004。
蔡宏志,「Photo-Fenton法處理反應性偶氮染料Black B與酚之研究」,國立成功大學化學工程研究所,2005。
經濟部工業局,「金屬表面處理業土壤及地下水污染預防與整治技術手冊」,2005。
陳進揚,「以Fenton法及UV/H2O2結合Ferrite Process 處理印刷電路板廢水之研究」,國立中山大學環境工程研究所,2006。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code