Responsive image
博碩士論文 etd-0630109-145957 詳細資訊
Title page for etd-0630109-145957
論文名稱
Title
金屬氧化物薄膜電晶體於不同環境下之電性表現與物理機制之研究
Investigate on the electric characteristics and physical mechanism of the metal oxide thin film transistor under different environment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
49
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-13
繳交日期
Date of Submission
2009-06-30
關鍵字
Keywords
金屬氧化物半導體
ZTO
統計
Statistics
本論文已被瀏覽 5681 次,被下載 0
The thesis/dissertation has been browsed 5681 times, has been downloaded 0 times.
中文摘要
金屬氧化物半導體由於可廣泛的應用,所以近年來成為熱門的研究領域。金屬氧化物半導體能在低溫下沈積且擁有高載子遷移率,所以金屬氧化物將於下一新時代光電元件的應用上扮演重要的角色。
氧化鋅(ZnO)是一種II-VI族結合的金屬氧化物半導體,擁有3.37 eV寬的直接能隙。氧化鋅薄膜可藉由多種方法製作同時擁有高均勻度的載子濃度。在本論文中,元件的主動層為錫摻雜氧化鋅薄膜,使用溶膠凝膠(sol-gel)以旋轉塗佈(spin-coating)的方式製作,其元件結構為底閘極底接觸(bottom-gate bottom-contact)式的。
實驗結果得知錫摻雜氧化鋅薄膜電晶體(ZTO TFTs)的電性容易受到環境氧氣氛的影響。另外,關於改變環境氣氛的可靠度對錫摻雜氧化鋅薄膜電晶體影響也有所探討。最後,以溶膠凝膠方式製作的錫摻雜氧化鋅薄膜電晶體除了應用在開關元件上,也嘗試作為一個氧氣偵測器。
Abstract
In recent years, ionic amorphous oxide semiconductors have become one of the hottest research fields due to their wide application. Ionic amorphous oxide semiconductors have high mobility even deposited at low temperature, therefore ionic amorphous oxide semiconductors will play the important roles for the next optoelectronic devices generation.
Zinc oxide (ZnO) is a II-VI compound semiconductor with a wide direct bandgap of 3.37 eV. Therefore, ZnO have uniform carrier concentration in different deposited process. In this study, the active channel layers of zinc tin oxide (ZTO) thin film transistors were fabricated by the sol-gel spin-coating method. These zinc tin oxide TFTs were fabricated by bottom-gate bottom-contact-type TFTs.
The Experimental results have shown that the electrical properties of the zinc tin oxide TFTs are strongly dependent on ambient oxygen. However, in this study, the dynamic gate bias stability on the electrical properties of zinc tin oxide TFTs have been investigated. In particular, the possibility of sol-gel Zinc tin oxide thin film transistors as a gas sensor is also discussed at last.
目次 Table of Contents
Chapter 1 3
Introduction 3
1.1 Overview 3
1.2 Motivation 5
Chapter 2 6
Background of Zinc oxide 6
2.1 Zinc oxide 6
2.2 Surface conductivity and Photoconductivity 7
2.3 Physisorption and Chemisorption 9
2.4 Scattering mechanism 11
Chapter 3 14
Fabrication and Instruments 14
3.1 Device Fabrication 14
3.1.1 TFT Fabrication 14
3.1.2 Deposition of Active channel layer by spin-coating 14
3.1.3 Baking 15
3.1.4 Patterning 15
3.1.5 Annealing 15
3.1.6 Film Thickness 16
3.2 Instruments and measurement setup 17
Chapter 1 3
Introduction 3
1.1 Overview 3
1.2 Motivation 5
Chapter 2 6
Background of Zinc oxide 6
2.1 Zinc oxide 6
2.2 Surface conductivity and Photoconductivity 7
2.3 Physisorption and Chemisorption 9
2.4 Scattering mechanism 11
Chapter 3 14
Fabrication and Instruments 14
3.1 Device Fabrication 14
3.1.1 TFT Fabrication 14
3.1.2 Deposition of Active channel layer by spin-coating 14
3.1.3 Baking 15
3.1.4 Patterning 15
3.1.5 Annealing 15
3.1.6 Film Thickness 16
3.2 Instruments and measurement setup 17
3.2.1 Instruments 17
3.1.2 Set up instruments for I-V 18
Chapter 4 19
Results and Discussion 19
4.1 The hysteresis phenomenon of ZTO TFT 19
4.1.1 Experiment 19
4.1.2 The hysteresis phenomenon 20
4.2 The stability under dynamic stress 21
4.2.1 Experiment 21
4.2.2 The dynamic stress in vacuum 22
4.2.3 The dynamic stress under different oxygen pressure 23
Chapter 5 24
Conclusion 24
Reference 25
Tables 30
Figures 32
參考文獻 References
[1.1] H. L. Hartnagel, A. L. Dawar, A. K. Jain, C. Jagadish, “Semiconducting Transparent Thin Films”, pp. 3.
[1.2] R. Navamathavan, J. H. Lim, D. K. Hwang, B. H. Kim, J. Y. Oh, J.H. Yang, H. S. Kim, S. J. Park, “Thin-Film Transistors Based on ZnO Fabricated by Using Radio-Frequency Magnetron Sputtering,” Journal of the Korean Physical Society, vol. 48, no. 2, pp. 271-274, February 2006.
[1.3] P. F. Carcia, R. S. McLean, M. H. Reilly, G. Nunes, Jr, “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,” Appl. Phys. Lett, vol.82, no. 7,pp. 1117-1119, February 2003
[1.4] K. Kaiya, K. Omichi, N. Takahashi, T. Nakamura, S. Okamoto, H. Yamamoto, Thin Solid Films, vol.409 , pp.116, 2002.
[1.5] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell, Appl. Phys. Lett, vol.81,no. 10,pp. 1830-1832, 2002.
[1.6] J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, J. Narayan, J. Appl. Phys, vol. 85, no. 11, pp. 7884-7887, 1999.
[2.1] H. L. Hartnagel, A. L. Dawar, A. K. Jain, C. Jagadish, “Semiconducting Transparent Thin Films”, pp. 17.
[2.2] W. T. Pawlewicz, J. B. Mann, W. H. Lowdermilk and Milam, Appl. Phys. Lett, vol. 34, pp. 196, 1979.
[2.3] R. T. Chen and D. Robinson, Appl. Phys. Lett, vol. 60, pp. 1541, 1992.
[2.4] B. J. Kellett, A. Gauzzi, J. H. James, B. Dwir, D. Paveuna and F. K. Reinhart, Appl. Phys. Lett, vol.57, pp.2588, 1990.
[2.5] Yasutaka Takahashi, Masaaki Kanamori, Akiko Kondoh, Hideki Minoura and Yutaka Ohya, “Photoconductivity of Ultrathin Zinc Oxide Films”, Jpn. J. Appl. Phys. Vol. 33, pp.6611-6615, 1994.
[2.6] R. Keezer: J. Appl. Phys 35, pp.1866 (1961).
[2.7] D. A. Melnick, “Zinc Oxide Photoconduction, an Oxygen Adsorption Process”, J. Chem. Phys, vol. 26, no. 5, pp.1136-1146, 1957.
[2.8] Y. Takahashi, A. Ogiso, R. Tomoda, K. Sugiyama, H. Minoura and M.Tsuili, J. Chem. Soc. Faraday Trans, 178, pp.2563, 1982.
[2.9] M. F. Ogawa, Y. Natsume, T. Hirayama, H. Sakata, J. Mater. Sci. Lett, 9, pp.1351, (1990).
[2.10] Y. Natsume, H. Sakata, T. Hirayama, Phys. Stat. Sol. (a) 148, pp.485, (1995).
[2.11] S. Bandyopadhyay, G. K. Paul, R. Roy, S.K. Sen, S. Sen, ”Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol-gel technique”, Materials Chemistry and Physics, 74, pp.83-91(2002).
[2.12] J. W. Orton, M. J. Powell, Rep. Prog. Phys. 43, pp.1263 (1980).
[2.13] N.F. Mott, Philos. Mag. 19, pp.835 (1969).
[4.1] Donghun Kang, Hyuck Lim, Changjung Kim, Ihun Song, “Amorphous gallium indium zinc oxide thin film transistors Sensitive to oxygen molecules ” Appl Phys Lett (90) 192101 (2007)
[4.2] Jae-Hoon Lee *, Woo-Jin Nam, Kwang-Sub Shin, Min-Koo Han, “Hysteresis phenomenon of hydrogenated amorphous silicon thin
film transistors for an active matrix organic light emitting diode” Journal of Non-Crystalline Solids 352 (2006) 1719–1722
[4.3] M. M. De Souza, S. Jejurikar, and K. P. Adhi, “Impact of aluminum nitride as an insulator on the performance of zinc oxide thin film transistors”, Appl. Phys. Lett. 92, 093509 (2008)
[4.4] Richard B. M. Cross and Maria Merlyne De Souza, “The Effect of Gate-Bias Stress and Temperature on the Performance of ZnO Thin-Film Transistors”, IEEE TRANSACTIONS ON DEVICE AND
MATERIALS RELIABILITY, VOL. 8, NO. 2, JUNE 2008
[4.5] R. B. M. Crossa_ and M. M. De Souza, “Investigating the stability of zinc oxide thin film transistors” Appl Phys Lett (89)263513 (2006)
[4.6] In-Tak Cho, Jeong-Min Lee, Jong-Ho Lee “Charge trapping and detrapping characteristics in amorphous InGaZnO TFTs under static and dynamic stresses” Semicond. Sci. Technol. 24 (2009) 015013
[4.7] A. Suresh and J. F. Mutha “Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors Appl Phys Lett (92) 033502 (2008)
[4.8] Jeong-Min Lee, In-Tak Cho, Jong-Ho Lee, “Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors” Appl Phys Lett (93) 093504 (2008)
[4.9] FR Libsch, J Kanicki, “Bias-stress-induced stretched-exponential time dependence of charge injection and trapping in amorphous thin-film transistors” Appl Phys Lett (62) 1286 (1993)
[4.10] Yasutaka Takahashi, Masaaki Kanamori, Akiko Kondoh, Hideki Minoura and Yutaka Ohya, “Photoconductivity of Ultrathin Zinc Oxide Films”, Jpn. J. Appl. Phys. Vol. 33, pp.6611-6615, 1994.
[4.11] Huaxiang Yin, Sunil Kim, Chang Jung Kim, “2008 Fully transparent nonvolatile memory employing amorphous oxides as charge trap and transistor's channel layer”, ApplPhysLett (93) 172109 (2008)
[4.12] Hideo Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application”, Journal of Non-Crystalline Solids Volume 352, Issues 9-20, 15 June 2006, Pages 851-858
[4.13] R Martins, E Fortunato, P Nunes, “Zinc oxide as an ozone sensor”, Journal of Applied Physics 96, 1398 (2004)
[4.14] Sergiu T. Shishiyanu, Teodor S. Shishiyanu “Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor”, Sensors and Actuators B: Chemical Volume 107, Issue 1, Pages 379-386 (2005)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.211.66
論文開放下載的時間是 校外不公開

Your IP address is 18.191.211.66
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code