Responsive image
博碩士論文 etd-0630109-162046 詳細資訊
Title page for etd-0630109-162046
論文名稱
Title
化學修飾離胺酸與氮端胺基影響台灣眼鏡蛇心臟毒素3破壞磷脂質球體之機制
Chemical modification of lysine residues and α-amino group affects the mechanism of Naja naja atra cardiotoxin 3 on damaging phospholipid vesicles
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-29
繳交日期
Date of Submission
2009-06-30
關鍵字
Keywords
膽固醇、心臟毒素3
Lysine
統計
Statistics
本論文已被瀏覽 5641 次,被下載 2843
The thesis/dissertation has been browsed 5641 times, has been downloaded 2843 times.
中文摘要
自台灣眼鏡蛇毒(Naja naja atra) 純化的心臟毒素(cardiotoxins),在文獻報導中指出具有六種isoforms,本論文以cardiotoxin 3 (CTX3)作為實驗材料。CTX3是由60個胺基酸所組成的polypeptide-chain,並有四對雙硫鍵構成的三個指環結構(Three-finger loops)。CTX3會造成紅血球的溶血反應,並在人工脂質體上聚集成多聚體而形成類似通道的孔洞使脂質體內含物釋出。因此本論文將探討何種因素影響CTX3在細胞膜上的作用。首先以Methyl-β-cyclodextrin (MβCD)將紅血球細胞上的膽固醇予以剔除後觀察到CTX3對於紅血球細胞的破膜能力有明顯上升。而脂質體中加入膽固醇,發現CTX3結合到脂質體的量與破膜能力都有顯著的下降。對CTX3的離胺酸進行Guanidination (Gu-CTX3)化學修飾後再對與氮端氨基進行Trinitrobenzoylation (TNP-Gu-CTX3)修飾,對於脂質體無論有無膽固醇,其結合量與破膜能力都無太大改變。這些蛋白質的結合量會隨著環境的鹽類濃度增加而減少;而破膜能力也和上述結果一致,會隨著鹽類濃度增加而減少。但CTX3不同於Gu-CTX3和TNP- Gu-CTX3,其破膜能力與聚集情形在1 M鹽類離子環境下幾乎完全消失。FTIR spectra結果顯示在有或無膽固醇的脂質體上,此三種蛋白質的構型都有所不同。綜合上述結果,CTX3在膜上的構型會受到膽固醇以及化學修飾離胺酸而影響其活性。
Abstract
Taiwan cobra (Naja naja atra) cardiotoxins, are composed of 60 amino acids and structurally stabilized by four disulfide bonds to form three loops structure. Cardiotoxins induced hemolysis of red blood cells and form a channel-like structure in inducing phospholipid vesicles leakage. The aim of the present study is to explore the events affect the membrane-damaging activity of cardiotoxin 3 (CTX3). Depletion of cholesterol in membrane of red blood cells using methyl-β-cyclodextrin (MβCD) enhanced the hemolytic activity of CTX3. Expectedly, CTX3 showed a low binding capability and lower membrane-damaging activity toward phospholipid vesicles containing cholesterol. Guanidinated of lysine residues and selective trinitrobenzoylation (TNP) at N-terminus of guanidinated CTX3 (Gu-CTX3) insignificantly altered binding capability and membrane-damaging activity of CTX3 regardless of phospholipid vesicles containing cholesterol. The binding of CTX3, Gu-CTX3 and TNP-Gu-CTX3 with phospholipid vesicles was reduced by increasing NaCl concentration. Consistent with these observations, membrane-damaging activity of CTX3, Gu-CTX3 and TNP-Gu-CTX3 were also decreased with increasing NaCl concentration. Unlike that of Gu-CTX3 and TNP-Gu-CTX3, membrane-damaging activity and membrane-induced oligomerization of CTX3 was completely abolished by 1 M NaCl. Fourier transform infrared spectroscopy indicated that CTX3, Gu-CTX3 and TNP-Gu-CTX3 adopted different conformation on binding with phospholipid vesicles and phospholipid/cholesterol vesicles. Taken together, our data indicate that membrane-bound conformation of CTX3 is affected by cholesterol and guanidination of lysine residues.
目次 Table of Contents
目錄 1
摘要 2
縮寫表 4
前言 5
實驗材料 12
研究方法與材料 13
結果 22
討論 31
參考文獻 37
圖 44
參考文獻 References
Bougis, P., Rochat, H., Piironi, G., and Verger, R. (1981) Penetration of phospholipid monolayers by cardiotoxins. Biochemistry 20, 4915-4920.

Bougis, P., Akila, K., and Rochat, H. (1989) On the inhibition of [Na+,K+]-ATPases by the components of Naja mossambica mossambica venom: evidence for two distinct rat brain [Na+,K+]-ATPase activities. Biochemistry 28, 3037-3043

Chen, K. C., Kao, P. H., Lin, S. R., and Chang, L. S. (2007) The mechanism of cytotoxicity by Naja naja atra cardiotoxin 3 is physically distant from its membrane-damaging effect. Toxicon 50, 816–824.

Chien, K. Y., Huang, W. N., Jean, J. H., and Wu, W.G. (1991) Fusion of sphingomyelin vesicles induced by proteins from Taiwan cobra (Naja naja atra) venom. J. Biol. Chem. 266, 3252-3259.

Chiou, S. H., Hung, C. C., Huang, H. C., Chen, S. T., Wang, K. T., and Yang, C. C. (1995) Sequence comparison and computer modeling of cardiotoxins and cobrotoxin isolated from Taiwan cobra. Biochem Mol Biol Int. 31, 1031-1040.

Coutinho, A., Silva, L., Fedorov, A., and Prieto, M. (2004) Cholesterol and ergosterol influence nystatin surface aggregation: relation to pore formation. Biophys. J. 87, 3264-3276.

Dubovskii, P. V., Dementieva, D. V., Utkin, E. V. B. Y. N., and Arseniev, A. S. (2001) Membrane binding motif of the P-type cardiotoxin. J. Mol. Biol. 305, 137-149.

Dubovskii, P. V., Lesovoy, D. M., Dubinnyi, M. A., Utkin, Y. N., and Arseniev, A. S. (2003) Interaction of the P-type cardiotoxin with phospholipid membranes. Eur. J. Biochem. 270, 2038–2046.

Efremov, R. G., Volynsky, P. E., Nolde, D. E., Dubovskii, P. V., and Arseniev, A. S. (2002) Interaction of cardiotoxins with membranes: a molecular modeling study. Biophys. J. 83, 144–153.

Fletcher, J. E., Jiang, M. S., Tripolitis, L., Smith, L. A., and Beech, J. (1990) Interactions in red blood cells between fatty acids and either snake venom cardiotoxin or halothane. Toxicon 28, 657-67.

Forouhar, F., Huang, W. N., Liu, J. H., Chien, K. Y., Wu, W. G., and Hsiao, C. D. (2003) Structural basis of membrane-induced cardiotoxin A3 oligomerization. J. Biol. Chem. 278, 21980-21988.

Giddings, K. S., Johnson, A. E., and Tweten, R. K. (2003) Redefining cholesterol's role in the mechanism of the cholesterol-dependent cytolysins. Proc. Natl. Acad. Sci. U. S. A. 100, 11315-11320.

Gatineau, E., Takechi, M. Bouet, F. Mansuelle, P. Rochat, H. Harvey, A. L. Montenay-Garestier, T., and Menez, A. (1990) Delineation of the functional site of a snake venom cardiotoxin: preparation, structure, and function of monoacetylated derivatives. Biochem. Mol. Biol. Int. 29, 6480-6489.

Heiner, A. L., Gibbons, E., Fairbourn, J. L., Gonzalez, L. J., McLemore, C. O., Brueseke, T. J., Judd, A. M., and Bell, J. D. (2008) Effects of cholesterol on physical properties of human erythrocyte membranes: impact on susceptibility to hydrolysis by secretory phospholipase A2. Biochemistry 94, 3084-3093.

Hodges, S. J., Agbaji, A. S., Harvey, A. L., and Hider, R. C. (1987) Cobra cardiotoxins. Purification, effects on skeletal muscle and structure/activity relationships. Eur. J. Biochem. 165, 373-383.

Huang, J., and Feigenson G. W. (1999) A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys. J. 76. 2142–2157.

Huang, W. N., Sue, S. C., Wang, D. S., Wu, P. L., and Wu, W. G. (2003) Peripheral binding mode and penetration depth of cobra cardiotoxin on phospholipid membranes as studied by a combined FTIR and computer simulation approach. Biochemistry 42, 7457-7466.

Ishitsuka, R., and Kobayashi, T. (2007) Cholesterol and lipid/protein ratio control the oligomerization of a sphingomyelin-specific toxin, lysenin. Biochemistry 46, 1495-1502.

Jang, J. Y., Krishnaswamy, T., Kumar, S., Jayaraman, G., Yang P. W., and Yu, C. (1997) Comparison of the hemolytic activity and solution structures of two snake venom cardiotoxin analogues which only differ in their N-terminal amino acid. Biochemistry 36, 14635-14641.

Jayaraman, G., Kumar, T. K. A., Tsai, C. C., Srisailam, S., Chou, S. H., Ho, C. L., and Yu, C. (2000) Elucidation of the solution structure of cardiotoxin analogue V from the Taiwan cobra (Naja naja atra)- Identification of structural features important for the lethal action of snake venom cardiotoxins. Protein Sci. 9, 637-646.

Kini, R. M., and Evans, H. J. (1989) Role of cationic residues in cytolytic activity: modification of lysine residues in the cardiotoxin from Naja nigricollis venom and correlation between cytolytic and antiplatelet activity. Biochemistry 28, 9209-9215.

Liou, R. F., Chang, W. C., Chu, S. T., and Chen, Y. H. (1993) Snake venom cardiotoxin can rapidly induce actin polymerization in intact platelets. Biochem. J. 290, 591-594.

Marcelo, N., Gilbert, R., Mitchell, T., Sferrazza, M., and Byron, O. (2004) The role of cholesterol in the activity of pneumolysin, a bacterial protein toxin. Biophys. J. 86, 3141–3151.

McConnell, H. M., and Radhakrishnan, A. (2003) Condensed complexes of cholesterol and phospholipids. Biochim. Biophys. Acta. 1610, 159-173.

Menez, A., Gatineau, E., Roumestand, C., Harvey, A. L., Mauward, L., Gilquin, B., and Toma, F. (1990) Do cardiotoxins posses a functional site? Structural and chemical modification studies reveal the functional site of the cardiotoxin from Naja nigricollis. Biochemie 72, 575-588.

Nicol, F., Nir, S., and Szoka, F. C. (1996) Effect of cholesterol and charge on pore formation in bilayer vesicles by a pH-sensitive peptide. Biophys. J. 71, 3288-301.

Ou, Y. J., Leung, Y. M., Huang, S. J., and Kwan, C. Y. (1997) Dual effects of extracellular Ca2q on cardiotoxin-induced cytotoxicity and cytosolic Ca2q changes in cultured single cells of rabbit aortic endothelium. Biochim. Biophys. Acta. 1330, 29–38.

Raghuraman, H., and Chattopadhyay, A. (2005) Cholesterol inhibits the lytic activity of melittin in erythrocytes. Chem. Phys. Lipids 134, 183–189.

Soltani, C. E., Hotze, E. M., Johnson, A. E., and Tweten, R. K. (2007) Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions. Proc. Natl. Acad. Sci. U. S. A. 104, 20226-20231.

Serra, M. D., Fagiuoli, G., Nordera, P., Bernhart, I., Volpe, C. D., Giorgio, D. D., Ballio, A., and Menestrina1, G. (1999) The interaction of lipodepsipeptide toxins from pseudomonas syringae pv. syringae with biological and model membranes: a comparison of syringotoxin, syringomycin, and two syringopeptins. Mol. Plant-Microbe Interact. 12, 391-400.

Sue, S. C., Chien, K. Y., Huang, W. N., Abraham, J. K., Chen, K. M., and Wu, W. G. (2002) Heparin binding stabilizes the membrane-bound form of cobra cardiotoxin. J. Biol. Chem. 277, 2666-2673.

Surewicz, W. K. Mantsch, H. H., and Chapman, D. (1993) Determination of protein sccondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry 32, 389-394.

Tjong, S. C., Wu, P. L., Wang, C. M., Huang, W. N., Ho, N. L., and Wu, W. G. (2007) Role of glycosphingolipid conformational change in membrane pore forming activity of cobra cardiotoxin. Biochemistry 46, 12111-12123.

Verly R. M., Rodrigues M. A., Daghastanli K. R. P., Denadai A. M. r. L., Cuccovia I. M., Carlos B. Jr., Fre′zard F., Santoro M. M., Veloso D. P., and Bemquerer M. P. (2007) Effect of cholesterol on the interaction of the amphibian antimicrobial peptide DD K with liposomes. Peptides 29, 15–24.

Wang, C. H., Liu, J. H., Lee , S. C., Hsiao, C. D., and Wu, W. G. (2006) Glycosphingolipid-facilitated membrane insertion and internalization of cobra cardiotoxin. J. Biol. Chem. 281, 656-667.

Wu, C. Y., Chen, W. C., Ho, C. L., Chen, S. T., and Wang, K. T. (1997) The role of the N-terminal leucine residue in snake venom cardiotoxin II (Naja naja atra). Biochem. Biophys. Res. Commun. 233, 713-716.

Yawata, Y. (2003) Cell membrane: the red blood cell as a model. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code