Responsive image
博碩士論文 etd-0630110-105033 詳細資訊
Title page for etd-0630110-105033
論文名稱
Title
轉殖阿拉伯芥植株外源表現甘藷半胱胺酸蛋白分解酶SPCP3改變其生長特徵和增加對乾旱逆境敏感性及細胞死亡
Ectopic expression of sweet potato cysteine protease SPCP3 altered developmental characteristics and enhanced drought stress sensitivity and cell death in transgenic Arabidopsis plants
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
117
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-28
繳交日期
Date of Submission
2010-06-30
關鍵字
Keywords
granulin-like功能域、葉片老化、甘藷、乾旱、半胱胺酸蛋白分解酶SPCP3、ethephon
ethephon, drought, granulin-like domain, leaf senescence, Cysteine protease SPCP3, sweet potato
統計
Statistics
本論文已被瀏覽 5652 次,被下載 0
The thesis/dissertation has been browsed 5652 times, has been downloaded 0 times.
中文摘要
利用ethephon處理甘藷分離的葉片會導致SPCP3表現 (Chen et al., 2006)、葉綠素含量及Fv/Fm值下降、H2O2量增加及細胞死亡、葉片快速老化。外加還原態glutathione、EGTA或cycloheximide等調節物質可減緩ethephon處理所導致的葉片老化及細胞死亡影響。此部份研究結果顯示氧化性逆境、鈣離子的流入及新合成蛋白質會影響ethephon誘導葉片老化及細胞死亡的效應。Ethephon誘導葉片老化及細胞死亡過程,granulin-containing cysteine protease SPCP3亦受它所誘導,因此本研究利用阿拉伯芥轉殖植株探討SPCP3可能扮演的生理功能與角色。實驗結果發現外源表現SPCP3於轉殖植株導致植株提早開花、開花時含較少的rosette leaves、較高的黃化果莢百分率及較低的種子發芽率。在乾旱實驗亦發現轉殖植株的Fv/Fm值和相對含水量明顯減少、H2O2含量增加,並且有較高程度的細胞死亡。此結果顯示外源表現SPCP3改變轉殖植株發育特徵與對乾旱逆境敏感性。先前研究指出granulin-like domain在酵素活性調控上扮演重要的角色 (Yamada et al., 2001)。因此本研究預先移除SPCP3的granulin-like domain,結果發現對於轉殖植株在乾旱逆境敏感性的反應無顯著影響。根據這些結果結論氧化逆境、鈣離子的流入及新合成蛋白質參與乙烯訊息傳導,活化功能性基因SPCP3表現及葉片老化,且外源表現SPCP3導致轉殖植株發育特徵與對乾旱逆境敏感性改變,granulin-like domain存在與否對外源表現SPCP3造成對乾旱敏感性的生理功能似乎無太大影響。
Abstract
Ethephon treatment caused SPCP3 gene expression (Chen et al., 2006), reduction of chlorophyll content, decrease of Fv/Fm value, increase of H2O2 amount, and more cell death, and accelerated leaf senescence in detached sweet potato leave. Exogenous application of modulators such as reduced glutathione, EGTA or cycloheximide delay leaf senescence and cell death caused by ethephon. These data suggest that oxidative stress, calcium influx and de novo synthesized protein may influence ethephon-mediated leaf senescence and cell death. When ethephon induced leaf senescence and cell death, granulin-containing cysteine protease SPCP3 gene was induced. Transgenic Arabidopsis system was used to explore the possible physiological role and function of SPCP3. The results showed that ectopic expression of SPCP3 in transgenic Arabidopsis plants caused earlier flowering, less rosette leaves when flowering, higher yellowing silique percentage during harvest, and lower germination percentage than that in control. During drought treatment, transgenic plants also exhibited reduction of Fv/Fm value and relative water content, but an increase in H2O2 content and cell death. These data suggest that ecopic expression of SPCP3 caused altered developmental characteristics and drought stress sensitivity. Previous report suggests that granulin-like domain may play a role in regulating enzymatic activity of granulin-containing cysteine protease (Yamada et al., 2001). In this report we demonstrate that pre-removal of granulin-like domain of SPCP3 does not affect significantly drought stress sensitivity compared to full-length SPCP3 in transgenic Arabidopsis plants. Based on these data we conclude that oxidative stress, calcium influx, and de novo synthesized proteins may be involved in ethylene signaling leading to leaf senescence and SPCP3 gene expression in detached sweet potato leaves, and ectopic SPCP3 expression in transgenic Arabidopsis plants caused altered developmental characteristics and enhanced drought sensitivity. Granulin-like domain may have no significant influence on SPCP3-mediated effect on drought stress sensitivity.
目次 Table of Contents
壹、
緒論……………………………………………………… 1
甘藷……………………………………………………… 1
阿拉伯芥……………………………………………… 2
葉片細胞老化生理……………………………………… 2
細胞程式死亡…………………………………………… 4
乙烯的生理功能研究…………………………………… 7
Granulin-containing半胱胺酸蛋白分解酶 ………… 9
貳、材料與方法………………………………………… 14
A.實驗材料……………………………………………… 14
B.實驗方法……………………………………………… 15
I、調節物(modulator)對ethephon誘導甘藷葉片老化及細胞死亡的影響……… 15
Ethephon的處理………………………………… 16
調節物的前處理…………………………………… 17
Fv/Fm測量 ……………………………………… 18
葉綠素含量測量 ………………………………… 18
DAB染色分析 ……………………………………18
Evans blue染色分析…………………………… 19
II、利用轉殖阿拉伯芥探討甘藷半胱胺酸蛋白酶SPCP3的生理功能…………………………………………… 19
(A) 轉殖阿拉伯芥植株發育性狀定量分析…………19
對照組及轉殖植株之相對開花天數測量…………20
對照組及轉殖植株於開花時之rosette leaves數
目測量……………………………………………20
對照組及轉殖植株之黃化果莢百分比測量……20
對照組及轉植植株採收時葉片之葉綠素含量測量20
(B) 對照組及轉殖後代種子發芽性狀分析……………21
無菌培養基配製…………………………………22
種子發芽率、發芽曲線及發芽速率的測量………22
(C) 轉殖阿拉伯芥植株耐乾旱逆境分析……………23
Fv/Fm測量 ………………………………………23
相對含水量測量………………………………… 24
DAB染色分析……………………………………… 24
Evans blue染色分析………………………………24
轉殖阿拉伯芥植株genomic PCR分析…………… 25
RT-PCR分析……………………………………28
西方墨點雜交分析………………………………… 33
参、結果……………………………………………… 41
I、Ethephon誘導分離的甘藷葉片老化及細胞死亡受還原態 glutathione、EGTA及cycloheximide影響 ……41
ethephon誘導分離甘藷葉片老化及細胞死亡 ……41
還原態glutathione處理減緩ethephon誘導分離甘藷葉片的老化及細胞死亡………………………………….42
EGTA處理減緩ethephon誘導分離甘藷葉片的老化及細胞死亡…………………………………………………43
Cycloheximide處理減緩ethephon誘導分離甘藷葉片的老化及細胞死亡…………………………………….44
II、甘藷半胱胺酸蛋白分解酶SPCP3於轉殖阿拉伯芥45
植株之功能性研究外源表現SPCP3改變轉殖阿拉伯芥植株發育性狀………………………………………… 45
外源表現SPCP3降低轉殖阿拉伯芥種子存活率……47
外源表現SPCP3增加轉殖阿拉伯芥植株對乾旱逆境的敏感性……………………………………………………47
外源表現含或不含granulin-like domain之SPCP3對轉殖阿拉 伯芥植株於乾旱逆境的敏感性無顯著影響…49
肆、討論……………………………………………… 52
參考文獻……………………………………………… 62


參考文獻 References
Adams DO, Yang SF. Ethylene biosynthesis: identification of 1-amino-
cyclo-propane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA 1979; 76: 170-74.

Adrain C, Martin SJ. Double knockout blow for caspases. Science 2006;311: 785-86.

Alesandrini F, Mathis R, Van De Sype G, Herouart D, Puppo A. Possible roles for a cysteine protease and hydrogen peroxide in soybean nodule development and senescence. New Phytol 2003; 158: 131-38.

Ande`me Ondzighi C, Christopher DA, Cho EJ, Chang SC and,
Staehelina LA. Arabidopsis protein disulfide isomerase-5 inhibits
cysteine proteases during trafficking to vacuoles before programmed cell
death of the endothelium in developing seeds. Plant Cell 2008; 20:
2205–20.

Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 2004; 55: 373-99.

Atkinson MM, Midland SL, Sims JJ, Keen NT. Syringolide 1 triggers Ca2+ influx, K+ efflux, and extracellular alkalization in soybean cells carrying the disease-resistance gene Rpg4. Plant Physiol 1996; 112: 297-302.

Avrova AO, Stewart HE, De Jong W, Heilbronn J, Lyon GD, Birch PRJ. A cysteine protease gene is expressed early in resistant potato interactions with Phytophthora infestans. Mol Plant-Microbe Interact 1999; 12: 1114-19.

Balk J, Chew SK, Leaver CJ, McCabe PF. The intermembrane space of plant mitochondria contains a DNase activity that may be involved in programmed cell death. Plant J 2003; 34: 573–83.

Bañuelosa GR, Argumedoa R, Patela K, Nga V, Zhoua F and Vellanoweth RL. The developmental transition to flowering in Arabidopsis is associated with an increase in leaf chloroplastic lipoxygenase activity. Plant Sci 2008; 174: 366-73.

Bateman A, Belcourt D, Bennett HPJ, Lazure C, Solomon S. Granulins, a novel class of peptide from leukocytes. Biochem Biophys Res Commun
1990; 173: 1161–68.

Barth C , Tullio MD and, Conklin PL. The role of ascorbic acid in the control of flowering time and the onset of senescence. J Exp Bot 2006; 57: 1657–65.

Bateman A, Bennett HPJ. Granulins: the structure and function of an emerging family of growth factors. J Endocrinol 1998; 158: 145–51.

Beers EP. Programmed cell death during plant growth and development. Cell Death Differ 1997; 4: 649-61.

Bleecker AB and Kende H. Ethylene: a gaseous signal molecule in plants.
Annu Rev Cell Dev Biol 2000: 16: 13-18.

Brown CA, Halper J. Mitogenic effects of transforming growth factor type e on epithelial and fibroblastic cells – comparison with other growth factors. Exp Cell Res 1990; 190: 233–42.

Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, and Leaver CJ. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-
induced senescence in Arabidopsis. Plant J. 2005; 42: 567-85.

Buckner B, Johal GS, Janick-Buckner D. Cell death in maize. Physiologia Plantarum 2000; 108: 231-39.

Callis J. Regulation of protein degradation. Plant Cell 1995; 7: 845–57.

Carbonell J, Garcy`0a-Marty`0nez JL. Fruit set of unpollinated ovaries of Pisum sativum L: influence of vegetative parts. Planta 1980; 147: 444–50.

Carbonell J, Garcy`0a-Marty`0nez JL. Ribulose 1,5-bisphosphate carboxylase and fruit set or degeneration of unpollinated ovaries of Pisum sativum L. Planta 1985;164:534–39.

Carrasco P, Carbonell J. Involvement of a neutral proteolytic activity in the senescence of unpollinated ovaries of Pisum sativum L. Physiol Plant 1988;72:610–16.

Chen HJ, Hou WC, Liu JS, Yang CY, Huang DJ, Lin YH. Molecular cloning and characterization of a cDNA encoding asparaginyl endopeptidase from sweet potato (Ipomoea batatas (L.) Lam) senescent leaves. J Exp Bot 2004; 55: 825-35.

Chen HJ, Huang DJ, Hou WC, Liu JS, Lin YH. Molecular cloning and characterization of a granulin-containing cysteine protease SPCP3 from sweet potato (Ipomoea batatas) senescent leaves. J Plant Physiol 2006; 163: 863-76.

Chen HJ, Huang GJ, Chen WS, Su CT, Hou WC, and Lin YH. Molecular cloning and expression of a sweet potato cysteine protease SPCP1 from senescent leaves. Bot Stud 2009; 50: 159-70.

Chen HJ, Su CT, Lin CH, Huang GJ, Lin YH. Expression of sweet potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis plants. J Plant Physiol 2010a; 167: 838-47.

Chen HJ, Tsai YJ, Chen WS, Huang GJ, Huang SS, and Lin YH. Ethephon-mediated effects on leaf senescence are affected by reduced glutathione and EGTA in sweet potato detached leaves. Botanical Studies 2010b; 51: 171-81.

Chen YC, Lin HH, and Jeng ST. Calcium influxes and mitogen-activated protein kinase kinase activation mediate ethylene inducing ipomoelin gene expression in sweet potato. Plant Cell Environ 2008; 31: 62-72.

Chéour F, Arul J, Makhlouf J, and Willemot C. Delay of membrane lipid degradation by calcium treatment during cabbage leaf senescence. Plant Physiol 1992; 100: 1656-60.

Choe HT and Whang M. Effects of ethephon on aging and photosynthetic
activity in isolated chloroplasts. Plant Physiol 1986; 80: 305-09.

Cerco´s M, Carrasco P, Granell A, Carbonell J. Biosynthesis and degradation of Rubisco during ovary senescence and fruit development induced by gibberellic acid in Pisum sativum. Physiol Plant 1992; 85: 476–82.

Dangl JL, Dietrich RA, Richberg MH. Death don’t have no mercy:
cell death programs in plant–microbe interactions. Plant Cell 1996; 8: 1793–807.

de J, Yakimova ET, Kapchina VM, Woltering EJ. A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells. Planta 2002; 214: 537-45.

Desikan R, Mackerness SAH, Hancock JT, Neill SJ. Regulation of the
Arabidopsis transcriptome by oxidative stress. Plant Physiol 2001; 127:
159-72.

Dolatabadian A and Saleh Jouneghani R. Impact of exogenous ascorbic acid on antioxidant activity and some physiological traits of common bean subjected to salinity stress. Not Bot Hort Agrobot Cluj 2009; 37: 165-172.

Ge L, Liu JZ, Wong WS, Hsiao WLW, Chong K, Xu ZK, Yang SF, Kung SD, Li N. Identification of a novel multiple environmental factor
responsive 1-aminocyclopropane-1-carboxylate synthase gene, NT-ACS2, from tobacco. Plant Cell Environ 2000; 23: 1169–82.

Gepstein S, Sabehi G, Carp M, Hajouj T, Nesher MFO, Yariv I, Dor C and Bassani M. Large-scale identification of leaf senescence-associated
genes. Plant J. 2003; 36: 629–42.

Grant M, Brown I, Adams S, Knight M, Ainslie A, Mansfield J. The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J 2000; 23: 441–50.

Greenberg JT. Programmed cell death: A way of life for plants. Proc Natl Acad Sci USA 1996; 73: 12094-97.

Grudkowska M and Zagdańska B. Multifunctional role of plant cysteine proteinases. Acta Biochimica Polonica 2004; 51: 609-24.

Hamilton AJ, Lycett GW, and Grierson D. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 1990; 346: 284-87.

Harrak H, Azelmat S, Baker EN, Tabaeizadeh Z. Isolation and characterization of a gene encoding a drought induced cysteine protease in tomato (Lycopersicon esculentum). Genome 2001; 44: 368–74.

Hayashi Y, Yamada K, Shimada T, Matsushima R, Nishizawa NK, Nishimura M, Hara-Nishimura I. A proteinase-sorting body that prepares for cell death or stresses in the epidermal cells of Arabidopsis. Plant Cell Physiol 2001; 42: 894-99.

He Y, Fukushige H, Hildebrande DF, and Gan S. Evidence supporting a role for jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 2002; 128: 876-84.

He Y, Tang RH, Hao Y, Stevens RD,Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei ZM. Nitric Oxide Represses the Arabidopsis Floral Transition. Science 2004; 305: 1968-71.

Hortensteiner S. Chlorophyll degradation during senescence. Annu Rev Plant Biol 2006; 57: 55–77.

Hung SH, Yu CW, Lin CH. Hydrogen peroxide functions as a stress signal in plants. Inst Bot Aca Sinica 2005; 46: 1-10.

Iakimova ET, Woltering EJ, Kapchina-Toteva VM, Harren FJ, Cristescu SM. Cadmium toxicity in cultured tomato cells--role of ethylene, proteases and oxidative stress in cell death signaling. Cell Biol Int 2008; 32: 1521-29.

Jabs T, Tschope M, Colling C, Hahlbrock K, Scheel D. Elicitor-stimulated ion fluxes and O2− from the oxidative burst are essential components in triggering defence gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci USA 1997; 94: 4800–05.

Jih PJ, Chen YC, Jeng ST. Involvement of hydrogen peroxide and nitric
oxide in expression of the ipomoelin gene from sweet potato. Plant
Physiol 2003; 132: 381-89.

John I, Drake R, Farrell A, Cooper W, Lee P, Horton P, and Grierson D. Delayed leaf senescence in ethylene-deficient ACC-oxidase antisense tomato plants: molecular and physiological analysis. Plant J 1995; 483-90.

Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, and Hirt H Stress signaling in plants: A mitogen activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA 1996; 93: 11274–79.

Kadota Y, Watanabe T, Fujii S, Maeda M, Ohno R, Higashi K, Sano T, Muto S, Hasezawa S, and Kuchitsu K. Cell cycle dependence of elicitor-
induced signal transduction in tobacco BY-2 cells. Plant Cell Physiol 2005; 46: 156–65.

Kamphuis IG, Drenth J, Barker EN. Thiol proteases: comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem
bromelain. J Mol Biol 1985; 182: 317–29.

Kawamura H, Ito S, Yamashino T, Niwa Y, Nakamichi N and Mizuno T.
Characterization of Genetic Links between Two Clock-Associated Genes, GI and PRR5 in the Current Clock Model of Arabidopsis thaliana. Biosci Biotechnol Biochem 2008; 72: 2770–74.

Klaus A and Heribert H. REACTIVE OXYGEN SPECIES: Metabolism,
oxidative stress, and signal transduction. Annu Rev Plant Biol 2004; 55: 373–99.

Kikuchi Y, Saika H, Yuasa K, Nagahama M and Tsuji A. Isolation and Biochemical Characterization of Two Forms of RD21 from Cotyledons of Daikon Radish (Raphanus sativus) J Biochem 2008; 144; 789–98.

Kim MC, Chung WS, Yun DJ and Cho MJ. Calcium and Calmodulin-Mediated Regulation of Gene Expression in Plants. Mol Plant 2009; 2: 13–21 .

Koehl J, Djulic A, Kirner V, Nguyen TT, Heiser I. Ethylene is required
for elicitin-induced oxidative burst but not for cell death induction in
tobacco cell suspension cultures. J Plant Physiol 2007; 164: 1555-63.

Koizumi M, Yamaguchi-Shinozaki K, Tsuji H and Shinozaki K. Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis Thaliana. Gene 1993; 129: 175–82.

Koornneef M, Alonso-Blanco C, Peeters AJM, Soppe W. Genetic control of flowering time in Arabidopsis. Annu Rev Plant Physiol
Plant Mol Biol 1998; 49: 345-70.

Kurusu T, Yagala T, Miyao A, Hirochika H, Kuchitsu K. Identification of a putative voltage-gated Ca2+ channel as a key regulator of elicitor-
induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J 2005; 42: 798–809.

Lamb C and Dixon RA. The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 1997; 48: 251–75.

Levine A, Tenhaken R, Dixon R, Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 1994; 79: 583-93.

Lichtenthaler HK. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 1987; 148: 350-82.
Ligterink W, Kroj T, zur Nieden U, Hirt H, and Scheel D. Receptor-
mediated activation of a MAP kinase in pathogen defense of plants. Science 1997; 276: 2054–57.

Lim PO, Woo HR, Nam HG. Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci 2003; 8:272-78.

Martı´nez DE, Costa ML, Gomez FM, Otegui MS, and Guiamet JJ.‘Senescence-associated vacuoles’ are involved in the degradation of chloroplast proteins in tobacco leaves. Plant J 2008; 56: 196–206.

Mattoo AK and Aharoni N. Ethylene and plant senescence. In: Senescence and aging in plants, (Noodén, L.D. and Leopold, A.C. Eds.), Academic Press San Diego 1988; 241-81.

McCabe PF and Leaver CJ. Programmed cell death in cell cultures. Plant Mol Biol 2000; 44: 359–68.

McCabe PF, Levine A, Meijer PJ, Tapon NA, Pennell RI. A programmed cell death pathway activated in carrot cells cultured at low cell density. Plant J 1997; 12: 267-80.

Mehdy MC. Active Oxygen Species in Plant Defense against Pathogens.
Plant Physiol 1994; 105: 467-72.

Meyer AJ and Hell RD. Glutathione homeostasis and redox-regulation by
sulfhydryl groups. Photosynth Res 2005; 86: 435–57.

Morris KAH, Mackerness S, Page T, John CF, Murphy AM, Carr JP, and Buchanan-Wollaston V. Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J 2000; 23: 677-85.

Mortley DG, Bonsi CK, Loretan PA, Morris CE, Hill WA, Ogbuehi CR. Evaluation of sweet potato genotypes for 65 adaptability to hydroponic systems. Crop Sci 1991; 31: 845-47.

Noodén LD. The phenomena of senescence and aging. In: Noodén LD, Leopold SC, eds. Senescence and aging in plants. San Diego: Academic Press 1988; 1–50.

Nürnberger T, Scheel D. Signal transmission in the plant immune response. Trends Plant Sci 2001; 6: 372–79.

Oeller KW, Wong LM, Taylor LR, Pike DA, and Thenlogis A. Reversible inhibition of tomato fruit senescence by antisense 1-amino- cyclopropane-l-carboxylate synthase. Science 1991; 254: 427-39.

Oh SA, Lee SY, Chung IK, Lee CH, and Nam HG. A senescence associated gene of Arabidopsis thaliana is distinctively regulated during
natural and artificially induced leaf senescence. Plant Mol Biol 1996; 30: 739-54.

Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium–apoptosis link. Nat Rev Mol Cell Biol 2003; 4: 552–65.

Ouzounidou G , Ilias I, Giannakoula A. Comparative study on the effects of various plant growth regulators on growth, quality and physiology of CAPSICUM ANNUUM L. Pak J Bot 2010; 42: 805-14.

Overmyer K, Brosche M and Kangasjarvi. Reactive oxygen species and hormonal control of cell death. Trends in Plant Sci 2003; 8: 335-42.

Pennell RI and Lamb C. Programmed Cell Death in Plants. Plant Cell 1997; 9: 1157-68.

Parnell PG, Wunderlich J, Carter B, Jaroslava H. Transforming growth factor e: amino acid analysis and partial amino acid sequence. Growth Factors 1992; 7: 65-72.

Picton S, Barton SL, Bouzayen M, Hamilton AJ, and Grierson D. Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. Plant J 1993; 3: 469-81.
Qu GQ, Liu X, Zhang YL, Yao D, Ma QM, Yang MY, Zhu WH, Yu S, Luo YB. Evidence for programmed cell death and activation of specific caspase-like enzymes in the tomato fruit heat stress response. Planta 2009; 229: 1269-79.

Raper CDJ, Thomas JF, Tolley-Henry L, Rideout JW. Assessment of an
apparent relationship between availability of soluble carbohydrates and reduced nitrogen during floral initiation in tobacco. BotGaz 1988; 149: 289–94.

Reape TJ and McCabe PF. Apoptotic-like programmed cell death in plants. New Phytol 2008; 180: 13-26.

Ren D, Yang H, and Zhang S. Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem 2002; 277: 559–65.

Rideout JW, Raper CD, Miner GS. Changes in ratio of soluble sugars and free amino nitrogen in the apical meristem during floral transition of tobacco. Int J Plant Sci 1992; 153: 78–88.

Sanders D , Brownlee C, and Harper JF. Communicating with calcium. Plant Cell 1999; 11: 691-706.

Shao HB, Chu LY, Shao MA, Cheruth AJ, and Mi HO. Higher plant
antioxidants and redox signaling under environmental stresses. C R
Biologies 2008; 331: 433-41.

Shoyab M, McDonald VL, Byles C, Todaro GJ, Plowman GD. Epithelins 1 and 2, isolation and characterization of two cysteine-rich growth modulating proteins. Proc Natl Acad Sci USA 1990; 87: 7912–16.

Simpson GG, Gendall AR, Dean C.When to switch to flowering. Annu Rev Cell Dev Biol 1999; 15: 519-50.

Tabaeizadeh Z, Chen RD, Yu LX, Lafontaine JG. Identification
and immunolocalization of a 65 kDa drought induced protein in cultivated tomato Lycopersicon esculentum. Protoplasma 1995; 186: 208–19.

The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000; 408: 796-815.

Tolkatchev D, Xu P, Ni F. A peptide derived from the Cterminal part of a plant cysteine protease folds into a stack of two b-hairpins, a scaffold present in the emerging family of granulin-like growth factors. J Pept Res 2001; 57: 227–33.

Trinh DP, Brown KM, Jeang KT. Epithelin/granulin growth factors: extracellular cofactors for HIV-1 and HIV-2 Tat proteins. Biochem Biophys Res Commun 1999; 256: 299–306.

Vranken WF, Chen ZG, Xu P, James S, Bennett HPJ, Ni F. A 30-residue fragment of the carp granulin-1 protein folds into a stack of two b-hairpins similar to that found in the native protein. J Pept Res 1999; 53: 590–97.

Vranovå E, Inzé D, and Breusegem FV. Signal transduction during oxidative stress. J Exp Bot 2002; 53: 1227-36.

Wang KLC, Li H, and Ecker JR. Ethylene biosynthesis and signaling networks. Plant Cell 2002; S131–51.

Wendehenne D, Lamotte O, Frachisse JM, Barbier-Brygoo H, Pugin A.
Nitrate efflux is an essential component of the cryptogein signalling
pathway leading to defence responses and hypersensitive cell death in
tobacco. Plant Cell 2002; 14: 1937–51.
Woolhouse HW. The biochemistry and regulation of senescence in chloroplasts. Can J Bot 1984; 62: 2934–42.

Xu H, Heath MC. Role of calcium in signal transduction during the
hypersensitive response caused by basidiospore-derived infection of the
cowpea rust fungus. Plant Cell 1998; 10: 585–98.

Yamada K, Matsushima R, Nishimura M, and Hara-Nishimura I. A Slow Maturation of a Cysteine Protease with a Granulin Domain in the Vacuoles of Senescing Arabidopsis Leaves. Plant Physiol 2001; 127: 1626-34.

Yakimova ET, Kapchina-Toteva VM, Laarhoven LJ, Harren FM, Woltering EJ. Involvement of ethylene and lipid signalling in cadmium-induced programmed cell death in tomato suspension cells. Plant Physiol Biochem 2006; 44: 581-89.

Yang KY, Liu Y, and Zhang S. Activation of a mitogen activated
protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci USA 2001; 98: 741–46.

Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants.Annu Rev Plant Physiol 1984; 35:155–90.

Yang T and Poovaiah BW. An early ethylene up-regulated gene encoding a Calmodulin binding protein involved in plant senescence and death. J Biol Chem 2000; 49: 38467–73.

Yen CH, Yang CH. Evidence for Programmed Cell Death during Leaf Senescence in Plants. Plant Cell Physiol 1998; 39; 922-27.

Zelisko A, Garcı´a-Lorenzo M, Jackowski G, Jansson S, and Funk C. AtFtsH6 is involved in the degradation of the light-harvesting complex II during high-light acclimation and senescence. Proc Natl Acad Sci 2005; 102: 13690–704.

Zhang H, Serrero G. Inhibition of tumorigenicity of the teratoma PC cell line by transfection with antisense cDNA for PC cell-derived growth factor (PCDGF, epithelin/granulin precursor). Proc Natl Acad Sci USA 1998; 95: 14202–07.

Zhao MG, Tian QY, and Zhang WH. Ethylene activates a plasma membrane Ca2+-permeable channel in tobacco suspension cells. New Phytol 2007; 174: 507–15.

Zimmermann P, Zentgraf U. The correlation between oxidative stress and leaf senescence during plant development. Cell Mol Biol Lett 2005; 10: 515–34.

許莆明,甘藷cysteine protease SPCP3 之功能性研究。中國文化大學生物科技研究所,碩士論文2007。

全秀華,甘藷的營養成分—高纖聖品。財團法人癌症基金會網頁http://www.canceraway.org.tw/AboutUs_Show2.asp?AppCode=SITEPAGES&id=338,2003年9月。

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.202.4
論文開放下載的時間是 校外不公開

Your IP address is 3.15.202.4
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code