Responsive image
博碩士論文 etd-0630111-181051 詳細資訊
Title page for etd-0630111-181051
論文名稱
Title
利用TMCS表面改質管狀陶瓷膜結合同步電混凝/電過濾程序去除水中之砷及過氯酸鹽
Removal of arsenic and perchlorate from water by the EC/EF process using a TMCS-modified tubular ceramic membrane
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-01-24
繳交日期
Date of Submission
2011-06-30
關鍵字
Keywords
電混凝、管狀陶瓷複合膜、電過濾、表面改質、三甲基氯矽烷、砷、過氯酸鹽
Tubular ceramic composite membrane, Perchlorate, Arsenic, Surface modification, TMCS, Electrofiltration, Electrocoagulation
統計
Statistics
本論文已被瀏覽 5740 次,被下載 1181
The thesis/dissertation has been browsed 5740 times, has been downloaded 1181 times.
中文摘要
砷與過氯酸鹽為目前已知之兩種新興污染物,其普遍存在於世界各類型水體之中。因此,發展有效去除技術已成為當今的重要課題。本研究首先以三甲基氯矽烷(TMCS)進行對自製管狀TiO2/Al2O3複合膜進行表面改質,以提升其過濾性能。接著,利用TMCS改質管狀陶瓷膜並搭配同步電混凝/電過濾(EC/EF)程序處理砷與過濾酸鹽模擬水樣及一真實含砷地下水,並探討其操作參數及結果。先期之電混凝試驗結果顯示,使用鋁電極之效果優於鐵電極。因此,在後續之同步電混凝/電過濾實驗中,便使用鋁電極做為犧牲性陽極。接著,研究比較管狀TiO2/Al2O3複合膜表面改質前與改質後經EC/EF程序處理污染物之去除率、濾液通量、污染物去除量及相關的用電耗能。管狀複合膜經表面改質後,雖無法有效提升其對模擬水樣中之污染物去除率,但卻可提高其濾液通量,因此,整體而言仍有較多的污染物移除量;在用電能耗方面,相較於表面改質前則有更低的電能消耗。最後,實際含砷地下水利用未改質之複合膜搭配同步EC/EF程序在最佳操作條件下,可將砷濃度降低至農業灌溉水水質標準以下。
Abstract
Arsenic and perchlorate are two types of emerging contaminants commonly found in various water bodies worldwide. Therefore, the development of effective removal technologies has become an important issue today. To this end, the following research studies were conducted. First, trimethylchlorosilane (TMCS) was used for the surface modification of a laboratory-prepared outside-in tubular TiO2/Al2O3 composite membrane aiming at enhancing the filtration performance of the said membrane layer. Second, the TMCS-modified tubular ceramic membrane coupled with the simultaneous electrocoagulation/ electrofiltration (EC/EF) process was tested and evaluated their combined performance in the remediation of arsenic- and perchlorate-spiked waters and one actual As-contaminated groundwater. In this research, the results of a preliminary electrocoagulation study have indicated that aluminum outperformed iron as the anode material. Thus, aluminum was selected as the sacrificial anode for the EC/EF tests throughout this work. In the course of various EC/EF testing, the removal efficiencies of the target contaminant in the test water specimens were compared for the tubular TiO2/Al2O3 composite membranes with and without surface modification. Also evaluated included the permeate flux, unit mass of target contaminant removed, and relevant power consumption. Though surface modification might not yield a better removal efficiency of the concerned contaminant, it gave rise to a greater permeate flux resulting in a greater removed mass of the contaminant for each of the synthetic wastewaters. Meanwhile, lower power consumption was found as compared with the case of no surface modification. As for the actual As-contaminated groundwater, the optimal EC/EF conditions for the tubular composite membrane without surface modification could low the As concentration to meet the local irrigation water quality criteria.
目次 Table of Contents
聲明切結書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 v
表目錄 x
圖目錄 xiii
照片目錄 xx
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究項目 3
第二章 文獻回顧 6
2.1 砷 6
2.1.1 砷來源及影響 6
2.1.2 砷處理技術 8
2.2 過氯酸鹽 11
2.2.1 過氯酸鹽來源及影響 11
2.2.2 過氯酸鹽處理技術 13
2.3 薄膜單元 16
2.3.1 薄膜定義與特性 16
2.3.2 薄膜分離程序 16
2.3.3薄膜組件之形式 17
2.3.4 無機膜介紹 19
2.3.5 掃流薄膜過濾 20
2.4電混凝/電過濾程序 22
2.4.1 電混凝 22
2.4.2 掃流電過濾 25
2.4.3 同步電混凝/電過濾程序 27
2.5 薄膜改質 29
2.5.1 薄膜改質 29
2.5.2 界面活性劑 30
2.5.3 矽烷偶合劑 31
第三章 實驗材料、設備與實驗方法 33
3.1 實驗材料 33
3.1.1水樣及管狀陶瓷膜複合膜製備材料 33
3.1.2 改質試藥及材料 34
3.2 實驗設備 34
3.2.1蒸氣壓氣體滲透偵測裝置 34
3.2.2 管狀無機複合膜 35
3.2.3 同步電混凝/電過濾處理系統 35
3.2.4 其他設備及儀器 37
3.3 實驗方法 38
3.3.1 陶瓷複合膜改質 38
3.3.2 電混凝瓶杯試驗 38
3.3.3同步電混凝/電過濾(EC/EF)處理系統之操作 40
3.4 無機膜性質分析 43
3.4.1無機複合膜表面顯微結構觀測 43
3.4.2薄膜孔徑分佈測定 43
3.4.3陶瓷複合膜表面官能基分析 43
3.5 水樣及濾液品質分析方法 44
第四章 結果與討論 45
4.1 管狀陶瓷複合膜之特性分析 45
4.1.1 複合膜表面與截面顯微結構 45
4.1.2 陶瓷複合膜孔徑分布 46
4.1.3 傅立葉紅外線光譜(FT-IR)與拉曼光譜(Raman)分析 48
4.2 電混凝瓶杯試驗 53
4.3 含砷模擬水樣及真實地下水利用同步電混凝/電過濾程序處理結果 55
4.3.1 含砷模擬水樣 55
4.3.1.1 電場強度及過濾壓差對濾液通量及濾液品質之影響 55
4.3.1.2 陶瓷複合膜改質前後去除砷之比較 61
4.3.2含砷之真實地下水 67
4.4 含過氯酸鹽模擬水樣利用同步電混凝/電過濾程序處理結果 69
4.4.1 電場強度及過濾壓差對濾液通量及濾液品質之影響 69
4.4.2 陶瓷複合膜改質前後去除過氯酸鹽之比較 74
4.5 濾液中砷及過氯酸鹽濃度隨處理時間的變化及濾液再處理結果 80
4.5.1 含砷模擬水樣其濾液之砷濃度隨處理時間變化及濾液再處理 80
4.5.2 含過氯酸鹽模擬水樣其濾液之過氯酸鹽濃度隨處理時間變化及濾液再處理 83
4.6 能耗評估 87
第五章 結論與建議 91
5.1 結論 91
5.2 建議 94
參考文獻 95
碩士在學期間發表之學術論文 106
參考文獻 References
1. 經濟部水利署,“台灣水資源特性”,http://www.wra.gov.tw/ct.asp?xItem=30431&ctNode=5950&comefrom=lp#5950 (2008)。
2. Smedley, P. L. and D. G. Kinniburgh, “A review of the source, behaviour and distribution of arsenic in natural water,” Applied Geochemistry, Vol. 17, pp. 517-568 (2002).
3. Liu, G., Y. Xie, S. Li, K. Wu, and J. Wang, “A hybrid adsorption/ultrafiltration process for perchlorate removal,”Journal of Membrane Science, Vol. 366, pp. 237-244 (2008).
4. 吳水波,李曉波,頋平,“膜混凝反應器除砷”,膜科學與技術,第28卷,第5期,77-81頁 (2008)。
5. Bhave, R. R., “Inorganic Membranes: Synthesis, Characteristics and Applications,” van Nostrand Rehinhold, New York, U.S.A. (1991).
6. 楊金鐘,“淺談無機濾膜及其於廢水處理之應用”,化工技術,第16卷,第7期,第174-185 頁 (2008)。
7. 劉鎮宗,“砷與生態環境的關係”,科學月刊,第26卷,第一期, 第134-140 頁,1995。
8. Tsai, S. L., S. Singh, and W. Chen, “Arsenic metabolism by microbes in nature and the impact on arsenic remediation,”Current Opinion in Biotechnology, Vol. 20, pp. 659-667 (2009).
9. 潘致弘,石東生,陳秋蓉,黃友利,“光電產業勞工砷暴露評估研究”,勞工安全衛生研究季刊,第17卷,第2期,第131-140頁(2009)。
10. 行政院勞工委員會,「物質安全資料表」,http://www.cla.gov.tw/ (2011)。
11. Ghimire, K. N., K. Inouea, H. Yamaguchia, K. Makino, and T. Miyajima, “Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste,” Water Research, Vol. 37, pp. 4945-4953 (2003).
12. Guenegou, T., A. Tambute, A. Jardy, and M. Caude, “E′ limination de I′ arsenic d′ effluents provenant de I′ hydrolyse des Le′ wisites,” Analysis, Vol. 25, pp. 279-286 (1997).
13. Cheng, R. C., S. Liang, H. C. Wang, and M. D. Beuhler,“Enhanced coagulation for arsenic removal,”Journal AWWA, September, pp. 79-90 (1994).
14. Sato, Y., K. Meea, K. Tasuku, and M. Yasumoto, “Performance of nanofiltration for arsenic removal,” Water Research, Vol. 36, pp. 3371-3377 (2002).
15. 江謝令涵,“以外加電場輔助掃流過濾處理水中砷及天然有機物”,碩士學位論文,國立台灣大學環境工程研究所,台北市 (2002)。
16. 邱誌忠,“半導體產業高濃度含砷廢水之處理-化學沉降法與活性碳吸附法之評估”,碩士學位論文,國立中興大學環境工程學系,台中市 (2004)。
17. 王文成,“以電聚浮除法處理半導體廢水中之砷”,碩士學位論文,國立中興大學環境工程學系,台中市 (2005)。
18. 呂春華,“光電廠高低濃度砷廢水處理流程之探討”碩士學位論文,國立中央大學環境工程研究所,桃園縣 (2008)。
19. 劉育麟,“電磁場輔助奈米級零價鐵連續分批反應槽處理高濃度含砷廢水之研究”,碩士學位論文,嘉南藥理科技大學環境工程與科學系,台南縣 (2009)。
20. Ericksen, G. E.,“The Chilean nitrate deposits,”American Scientist, Vol. 71, pp. 366-374 (1983).
21. Sorial, G. A. and R. Srinivasan, “Treatment of perchlorate in drinking water: A critical review,”Separation and Purification Technology, Vol. 69, pp. 7-21 (2009).
22. USEPA, “Known perchlorate releases in the U.S.,” http://www.epa.gov/fedfac/documents/perchlorate_releases_us_20050325.htm, U.S.A. (2005).
23. Motzer, W. E., “Perchlorate: problems, detection, and solutions,” Environmental Forensics, Vol. 2, pp. 301-311 (2001).
24. The Interstate Technology & Regulatory Council Perchlorate Team,“Perchlorate: Overview of issuess, status, and remedial options,” http://www.itrcweb.org/guidancedocument.asp?TID=32 (2005).
25. Urbansky, E. T., “Perchlorate in the Environment,”Kluwer Academic/Plenum Publishers, New York (2000).
26. Gu, B. H., W. J. Dong, G. M. Brown, and D. R. Cole,“Complete degradation of perchlorate in ferric chloride and hydrochloric acid under controlled temperature and pressure,”Environmental Science & Technology, Vol. 37, pp. 2291-2295 (2003).
27. U.S. EPA, “Perchlorate treatment technologies”, http://www.clu-in.org/contaminantfocus/default.focus/sec/perchlorate/cat/Treatment_Technologies/ (Accessed April, 2011).
28. 余佳靜,“利用零價鋁金屬去除過氯酸鹽之研究”,碩士學位論文,國立高雄大學土木與環境工程學系,高雄市 (2008)。
29. Gurol, M. D. and K. Kim,“Investigation of perchlorate in drinking water sources by chemical methods,”Environmental Science Research, Vol. 57, pp. 99-108 (2000).
30. Huang, C. P., D. M. Wang, S. I. Shah, and J. G. Chen,“Catalytic reduction of perchlorate by H2 gas in dilute aqueous solution,”Separation and Purification Technology, Vol. 60, pp. 14-21 (2008).
31. Shrout, J. D. and G. F. Parkin,“Influence of electron donor, oxygen, and redox potential on bacterial perchlorate degradation,”Water Research, Vol. 40, pp. 1191-1199 (2006).
32. 蔡宗憲,“地下水中之過氯酸鹽生物分解之研究”,碩士學位論文,朝陽科技大學環境工程與管理系,台中市 (2005)。
33. Reis, M. A. M., S. Velizarov, J. G. Crespo, and T. M. Cristina, “Simultaneous removal of perchlorate and nitrate from drinking water using the ion exchange membrane bioreactor concept,”Water Research, Vol. 40, pp. 231-240 (2006).
34. Clifford, D. A. and A. R. Tripp,“The treatability of perchlorate in groundwater using ion-exchange technology,”Perchlorate in the Environment, pp. 123-146, Kluwer Academic/Plenum Publishers, New York (2000).
35. Batista, J. R., A. K. Venkatesan, and M. Sharbatmaleki,“Bioregeneration of perchlorate-laden gel-type anion-exchange resin in a fluidized bed reactor,”Journal of Hazardous Materials, Vol. 117, pp. 730-737 (2010).
36. Cannon, F. S. and R. Parette, “The removal of perchlorate from groundwater by activated carbon tailored with cationic surfactants,”Water Research, Vol. 39, pp. 4020-4028 (2005).
37. Roach, J. D. and D. Tush, “Equilibrium dialysis and ultrafiltration investigations of perchlorate removal from aqueous solution using poly(diallyldimethylammonium) chloride,” Water Research, Vol. 42, pp. 1204-1210 (2008).
38. Roquebert, V., S. Booth, R. S. Cushing, G. Crozes, and E. Hansen, “Electrodialysis reversal (EDR) and ion exchange as polishing treatment for perchlorate treatment,”Desalination, Vol. 131, pp. 285-291 (2000).
39. 鄭領英、王學松,“膜的高科技應用”,五南圖書出版股份有限公司,台北市 (2000)。
40. 歐陽嶠暉,“下水道工程學”,第三版,長松文化興業股份有限公司,台北市 (2000)
41. Burggraaf, A. J., K. Keizer, and B. A. van Hassel,“Ceramic nanostructure materials, membranes and composite layers,”Solid State Ionics, Vol. 32/33, pp. 771-782 (1989).
42. H. P. Hsieh,“Inorganic Membranes for Separation and Reaction,” Elsevier Science, Amsterdam, The Netherlands (1996).
43. Mulder, M.,“Basic Principles of Membrane Technology,” 2nd Edition, Kluwer Academic Publishers, Dordrecht, The Netherlands (1997).
44. 蔡杰裕,“鈀膜反應器進行乙醇脫氫反應之研究”,碩士學位論文,逢甲大學化學工程學系,台中市 (2002)。
45. Mollah, M. Y. A., R. Schennach, J. R. Parga, and D. L. Coake,“Electrocoagulation (EC)-Science and applications,”Journal of Hazardous Materials, Vol. B84, pp. 29-41 (2001).
46. 經濟部工業局,“化學混凝處理單元設計與操作”,工業污染防治技術手冊,第26期,第6-6頁 (1990)。
47. Larry, D. B., J. F. Jukins, and B. L. Weand, “Process Chemistry for Water and Wastewater Treatment, ”Prentice-Hall, New Jersey (1982).
48. O. Larue, E. Vorobiev, C. Vu, and B. Durand, “Electrocoagulation and coagulation by Iron of Latex particles in Aqueous Suspensions,”Separation and Purification Technology, Vol. 31, pp. 177-192 (2003).
49. Weigert, T., J. Altmann, and S. Ripperger, “Crossflow electrofiltration in pilot scale,”Journal of Membrane Science, Vol. 159, pp. 253-262 (1999).
50. Huotari, H. M., I. H. Huisman, and G. Trägårdh, “Electrically enhanced crossflow membrane filtration of oily waste water using the membrane as a cathode,”Journal of Membrane Science, Vol. 156, pp. 49-60 (1999).
51. Jagannadh, S. N. and H. S. Muralidhara, “Electrokinetics methods to control membrane fouling,”Industrial and Engineering Chemistry Research, Vol. 35, pp. 1133-1140 (1996).
52. Bowen, W. R. and H. A. M. Sabuni, “Pulsed electrokinetic cleaning of cellulose nitrate microfiltration membranes,” Industrial and Engineering Chemistry Research, Vol. 31, pp. 515-523 (1992).
53. 楊金鐘,“同步電混凝/電過濾技術於廢水處理之應用”,化工技術,第12卷,第2期 (環境污染防治專輯),pp. 1-13 (2004)。
54. 陳富政,“利用同步電混凝/電過濾技術處理化學機械研磨廢水”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2003)。
55. 莊智琄,“利用同步電混凝/電過濾程序處理含奈米級TiO2”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2004)。
56. 蔡啟明,“新穎管狀碳質/陶瓷複合膜製備及其應用於同步電混凝/電過濾程序處理化學機械研磨廢水之研究”,博士學位論文,國立中山大學環境工程研究所,高雄市 (2008)。
57. 顏嘉亨,“多管式TiO¬2/Al2O3複合膜同步電混凝/電過濾處理光電產業廢水之效能評估”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2008)。
58. 賴志敏,“利用兩種不同孔徑之單一管狀陶瓷膜結合同步電混凝/電過濾程序回收再利用加工出口區二種放流水及晶背研磨廢水之可行性研究”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2010)。
59. 羅浚育,“界面活性劑與微酯粒的作用”,碩士學位論文,國立中央大學化學工程研究所,桃園縣 (2000)。
60. 歐靜枝,“乳化溶化技術實務”,復漢出版社,台南市 (1990)。
61. 邱昱維,“α-Al2O3粉末披覆γ-氨丙基三乙氧基矽烷偶合劑之研究”,碩士學位論文,國立成功大學環境工程研究所,台南市 (2005)。
62. 魏得育,“二氧化矽氣凝膠與複合氣凝膠之製備與物理性質探討”,碩士學位論文,國立清華大學化學工程學系,新竹市 (2006)。
63. 林立民,“藉由兩次表面改質處理製成降低多孔洞二氧化矽薄膜之介電常數”,碩士學位論文,逢甲大學半導體與光電產業研發碩士班,台中市 (2006)。
64. Siberzan, P., L. Léger, D. Ausserré, and J. J. Benattar, “Silanation of silica surface. A new method of constructing pure or mixed monolayers,” Langmuir, Vol. 7, pp. 1647-1651 (1991).
65. Huang, P., N. Xu, J. Shi, and Y. S. Lin, “Characterization of asymmetric ceramic membrane by modified permporometry,” Journal of Membrane Science, Vol. 116, pp. 301-305 (1996).
66. Brinker, C. J., K. D. Keefer, R. A. Assink, B. D. Kay and C. S. Ashley, “Sol-gel transition in simple silicates Ⅱ,” Journal of Non-Crystalline Solids, Vol. 63, pp. 45 (1984).
67. 行政院環保署環境檢驗所,“水中氫離子濃度指數測定方法-電極法”,NIEA W424.51A (2000)。
68. 行政院環保署環境檢驗所,“水中導電度測定方法-導電度計法”,NIEA W203.51B (2000)。
69. 行政院環保署環境檢驗所,“水中砷檢測方法-自動化連續流動式氫化物原子吸收光譜法”,NIEA W434.53B (2004)。
70. USEPA, “Method 314.0: Determination of perchlorate in drinking water using ion chromatography,” http://water.epa.gov/scitech/drinki
ngwater/labcert/analyticalmethods.cfm (1999).
71. 行政院環保署環境檢驗所,“水中金屬及微量元素檢測方法-感應耦合電漿原子發射光譜法”,NIEA W311.51B (2004)
72. Perry, R. H., D. W. Green, and J. O. Maloney, “Perry’s Chemical Enginner’s Handbook,”7th edition, McGraw-Hill, New York (1997).
73. Zeitler, V. A. and C. A. Brown,“The infrared spectra of some Ti-O-Si, Ti-O-Ti and Si-O-Si compounds,”The Journal of Physical Chemistry, Vol. 61, pp. 1174-1177 (1957).
74. Urlaub, R., U. Posset, and R. Thull, “FT-IR spectroscopic investigations on sol-gel-Derived coatings from acid-modified titanium alkoxides,”Journal of Non-Crystalline Solids, Vol. 265, pp. 276-284 (2000).
75. Montejo, M., F. P. Ureña, F. Márquez, I. S. Ignatyev, and J. J. L. González, “Vibrational spectrum of chlorotrimethylsilane,” Spectrochimica Acta Part A, Vol. 62, pp. 293-301 (2005).
76. TMCS product specification, Sigma-Aldrich Co., St. Louis, MO, USA (1997).
77. Hong, S., R. S. Faibish, and M. Elimelech,“Kinetics of permeate flux decline in crossflow membrane filtration of colloidal suspensions,” Journal of Colloid and Interface Science, Vol. 196, pp. 267-277 (1997).
78. Schafer, A. I., A. G. Fane, and T. D. Waite, “Fouling effects on rejection in the membrane filtration,”Desalination, Vol. 131, pp. 215-224 (2000).
79. 行政院環保署環境檢驗所,“環境檢驗方法偵測極限測定指引”,NIEA PA107 (2005).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code