Responsive image
博碩士論文 etd-0630113-001727 詳細資訊
Title page for etd-0630113-001727
論文名稱
Title
具自我對準與內部阻絕氧化層之電荷捕陷式非揮發性記憶體的應用與探討
A Study of Self-Aligned SONOS-type Nonvolatile Memory with Internal Block Oxide
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-18
繳交日期
Date of Submission
2013-08-03
關鍵字
Keywords
記憶窗口、福勒-諾德漢、非揮發性記憶體、資料保持時間、電荷捕陷
Fowler-Nordheim, NVM, SONOS, retention time, memory window
統計
Statistics
本論文已被瀏覽 5745 次,被下載 0
The thesis/dissertation has been browsed 5745 times, has been downloaded 0 times.
中文摘要
在本篇論文之中,我們提出了具自我對準與內部阻絕氧化層之電荷捕陷式非揮發性記憶體(Self-Aligned SONOS-type Nonvolatile Memory with Internal Block Oxide, SAIBO-SONOS NVM)。在自我對準技術下將氧化物從SONOS-type NVM之源汲極兩端埋入並輔以乾式蝕刻方式而形成內部阻絕氧化層,之後便完成SAIBO-SONOS NVM。接著以福勒-諾德漢穿隧(Fowler-Nordheim tunneling, FN-tunneling)機制來進行寫入與抹除動作。經由Silvaco TCAD驗證後,相較於無內部阻絕氧化層之電荷捕陷式非揮發性記憶體(SONOS-type NVM without Internal Block Oxide, SONOS NVM),SAIBO-SONOS NVM都有較佳之非揮發性記憶體之特性。當SAIBO-SONOS NVM寫抹的閘極偏壓為正負14 V時,而且時間都為一秒,寫抹窗口分別改善了16 %與3.3 %,也因此使SAIBO-SONOS NVM之記憶窗口改善了16 %。這是因為內部阻絕氧化層減少了源汲極兩端之電場侵入而改善閘極控制能力。此外資料保持時間特性上,當時間達到十年線時,SAIBO-SONOS NVM之記憶窗口相較於SONOS NVM也改善了50 %。而當閘極持續微縮至40奈米時,SAIBO-SONOS NVM仍然有較佳之寫抹效率與資料保持時間。
Abstract
In this thesis, we have proposed the self-aligned SONOS-type nonvolatile memory with internal block oxide (SAIBO-SONOS NVM). We use the dry etching method to bury oxide materials from the source/drain (S/D) regions with self-aligned technique to form the internal block oxide structure, and then the SAIBO-SONOS NVM can be finished. Next, program and erase operation can use the Fowler-Nordheim (FN) injection mechanism to carry out. According to the Silvaco simulation results, the SAIBO-SONOS NVM exhibits excellent characteristics compared with the SONOS-type NVM without internal oxide (SONOS NVM). The program/erase (P/E) window of the SAIBO-SONOS NVM can be improved 16 % and 3.3 % with a gate bias of ±14 V for 1 s, respectively. Therefore, its memory window can be improved 16 %. The reason is that the internal block oxide can restrain S/D electric field encroachment, so the gate controllability can be enhanced. In addition, retention time characteristics after ten years for the SAIBO-SONOS NVM can be ameliorated 50 %. Also, as gate length continuously scales down to 40 nm, the SAIBO-SONOS NVM still has better P/E efficiency and retention time.
目次 Table of Contents
第一章 緒論 1
1.1 研究背景與重要性 1
1.2 動機與目的 3
1.3 論文架構 6
第二章 非揮發性記憶體之操作機制及其原理 7
2.1 傳統SONOS-type NVM 之介紹 7
2.2 福勒-諾德漢穿隧寫入機制探討 9
2.3 福勒-諾德漢穿隧抹除機制探討 10
2.4 資料保持時間 12
第三章 元件架構設計與製作 14
3.1 元件設計與模擬製程 14
3-1-1 具自我對準與內部阻絕氧化層之奈米元件 14
3-1-2 具自我對準與內部阻絕氧化層之電荷捕陷式非揮發性記憶體 16
3-1-3 無內部阻絕氧化層之奈米元件製程模擬圖 18
3-1-4 無內部阻絕氧化層之電荷捕陷式非揮發性記憶體 19
3.2 元件設計與實際製程 20
3-2-1 具自我對準與內部阻絕氧化層之電荷捕陷式非揮發性記憶體 20
第四章 電性探討與分析 22
4.1 具自我對準與內部阻絕氧化層之奈米元件的使用模型 22
4.2 具自我對準與內部阻絕氧化層之電荷捕陷式非揮發性記憶體的使用模型 23
4.3 具自我對準與內部阻絕氧化層之奈米元件之電性模擬與分析 24
4.4 具自我對準與內部阻絕氧化層之電荷捕陷式非揮發性記憶體之電性分析 27
4-4-1 固定氧化層電荷值與電荷捕陷式非揮發性記憶體之關係 27
4-4-2 SONOS NVM與SAIBO-SONOS NVM之電性探討 32
4-4-3 TANOS NVM與SAIBO-SONOS NVM之電性探討 43
4-4-4 三種不同之電荷捕陷式非揮發性記憶體之電性比較 48
4-4-5 高溫下之資料保持時間特性探討 52
4.5 實作討論與量測結果 53
4.6 SEM與TEM照相與結果討論 58
第五章 總結 62
5.1 結論 62
5-1-1 具自我對準與內部阻絕氧化層之奈米元件 62
5-1-2 SAIBO-SONOS NVM 62
5-1-3 SAIBO-TANOS NVM 63
5-1-4 元件微縮之探討 63
5.2 未來展望 64
參考文獻 65
附錄 70
A.1 通道熱載子注入機制探討 70
A.2 熱電洞注入機制探討 72
A.3 基板暫態熱載子注入 73
A.4 容忍度 74
A.5 干擾 75
A.6 元件模擬設計參數 76
A-6-1 元件設計參數 76
A-6-2 元件材料模擬參數 78
A-6-3 元件製程模擬參數 79
A.7 實作檢討與討論 80
A.8 Study of the SAIBO-SONOS NVM with S/D overlap and underlap 81
附錄參考文獻 84
個人著作 85
共同著作 86
參考文獻 References
[1]. J. J. Chang, “Nonvolatile Semiconductor Memory Devices,” Proc. IEEE, vol. 64, no. 7, pp. 1039-1059, Jul. 1976.
[2]. F. Wang and M. Hamdi, “Matching the Speed Gap between SRAM and DRAM,” in Proc. IEEE Int. Conf. High Perform. Switching Routing, May 2008, pp. 104-109.
[3]. S. S. Chung, P.-Y. Chiang, G. Chou, C.-T. Huang, P. Chen, C.-H. Chu, and C. C.-H. Hsu, “A Novel Leakage Current Separation Technique in a Direct Tunneling Regime Gate Oxide SONOS Memory Cell,” in Proc. IEEE Tech. Dig. Int. Electron Devices Meet., Dec. 2003, pp. 617-620.
[4]. 施敏, 伍國珏著 張鼎張, 劉柏村譯, 半導體元件物理學. 國立交通大學第三版.
[5]. 施敏, “浮閘記憶體從發明到數位電子時代,” 奈米通訊期刊, 第十九卷, 第一期, pp. 2-13.
[6]. K. Kim, “The Future Prospect of Semiconductor Nonvolatile Memory,” in Proc. IEEE Int. Magn. Conf., May 2006, pp. 102.
[7]. S. Satoh, G. J. Hemink, K. Hatakeyama, and S. Aritome, “Stress Induced Leakage Current of Tunnel Oxide Derived from Flash Memory Read-Disturb Characteristics,” in Proc. IEEE Int. Conf. Microelectron. Test Struct., Mar. 1995, pp. 97-101.
[8]. C.-Yuan Lu, T.-C. Lu, and R. Liu, “Non-Volatile Memory Technology-Today and Tomorrow,” in Proc. IEEE Int. Symp. Phys. Failure Anal. Integr. Circuits, Jul. 2006, pp. 18-23.
[9]. B. De Salvo, C. Gerardi, R. Van Schaijk, S. A. Lombardo, D. Corso, C. Plantamura, S. Serafino, G. Ammendola, M. Van Duuren, P. Goarin, W. Y. Mei, K. D. Van Jeugd, T. Baron, M. Gély, P. Mur, and S. Deleonibus, “Performance and Reliability Features of Advanced Nonvolatile Memories Based on Discrete Traps (Silicon Nanocrystals, SONOS),” IEEE Trans. Device Mater. Reliab., vol. 4, no. 3, pp. 377-387, Sep. 2004.
[10]. D. H. Li, I. H. Park, S. Cho, J.-G. Yun, J. H. Lee, D.-H. Kim, G. S. Lee, Y. Kim, S. H. Park, W. B. Shim, W. Kim, and B. -G. Park, “Effects of Equivalent Oxide Thickness on Bandgap-Engineered SONOS Flash Memory,” in Proc. IEEE Nanotechnology Mater. Devices Conf., Jun. 2009, pp. 255-258.
[11]. S.-K. Sung, I.-H. Park, C. J. Lee, Y. K. Lee, J. D. Lee, B.-G. Park, S. D. Chae, and C. W. Kim, “Fabrication and Program/Erase Characteristics of 30-nm SONOS Nonvolatile Memory Devices,” IEEE Trans. Nanotechnol., vol. 2, no. 4, pp. 258-264, Dec. 2003.
[12]. C. Sandhya, A. B. Oak, A. S. Joshi, U. Ganguly, C. Olsen, S. M. Seutter, L. Date, R. Hung, J. Vasi, and S. Mahapatra, “Impact of SiN Composition Variation on SANOS Memory Performance and Reliability under NAND (FN/FN) Operation,” IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 3123-3132, Dec. 2009.
[13]. D. H. Li and B.-G. Park, “Improvement on Erase Characteristics of SONOS Flash Memory by Bandgap Engineering of Tunnel Oxide,” in Proc. IEEE Int. Integr. Reliab. Workshop Final Rep., Oct. 2009, pp. 138-140.
[14]. K.-H. Wu, H.-C. Chien, C.-C. Chan, T.-S. Chen, and C.-H. Kao, “SONOS Device With Tapered Bandgap Nitride Layer,” IEEE Trans. Electron Devices, vol. 52, no. 5, pp. 987-992, May 2005.
[15]. Y. Sun, H. Y. Yu, N. Singh, K. C. Leong, E. Gnani, G. Baccarani, G. Q. Lo, and D. L. Kwong, “Vertical-Si-Nanowire-Based Nonvolatile Memory Devices With Improved Performance and Reduced Process Complexity,” IEEE Trans. Electron Devices, vol. 58, no. 5, pp. 1329-1335, May 2011.
[16]. T.-Y. Chiang, Y.-H. Wu, W. C.-Y. Ma, P.-Y. Kuo, K.-T. Wang, C.-C. Liao, C.-R. Yeh, W.-L. Yang, and T.-S. Chao, “Characteristics of SONOS-Type Flash Memory With In Situ Embedded Silicon Nanocrystals,” IEEE Trans. Electron Device, vol. 57, no. 8, pp. 1895 -1902, Aug. 2010.
[17]. Y. Sun, H. Y. Yu, N. Singh, T. T. Le, E. Gnani, G. Baccarani, K. C. Leong, G. Q. Lo, and L. Kwong, “Junction-Less Stackable SONOS Memory Realized on Vertical-Si-Nanowire for 3-D Application,” in Proc. IEEE Int. Symp. VLSI Technol. Syst. Appl., Apr. 2011, pp. 154-155.
[18]. C.-H. Shih, W. Chang, Y.-X. Luo, J.-T. Liang, M.-K. Huang, N. D. Chien, R.-K. Shia, J.-J. Tsai, W.-F. Wu, and C. Lien, “Schottky Barrier Silicon Nanowire SONOS Memory With Ultralow Programming and Erasing Voltages,” IEEE Electron Device Lett., vol. 32, no. 11, pp. 1477-1479, Nov. 2011.
[19]. M.-F. Hung, Y.-C. Wu, S.-C. Tien, and J.-H. Chen, “Polycrystalline-Si TFT TANOS Flash Memory Cell With Si Nanocrystals for High Program/Erase Speed and Good Retention,” IEEE Electron Device Lett., vol. 33, no. 5, pp. 649-651, May 2012.
[20]. K.-T. Wang, F.-C. Hsueh, Y.-L. Lu, T.-Y. Chiang, Y.-H. Wu, C.-C. Liao, L.-C. Yen, and T.-S. Chao, “Novel 2-Bit/Cell Wrapped-Select-Gate SONOS TFT Memory Using Source-Side Injection for NOR-Type Flash Array,” IEEE Electron Device Lett., vol. 33, no. 6, pp. 839-841, Jun. 2012.
[21]. P.-C. Huang, L.-A. Chen, and J.-T. Sheu, “Electric-Field Enhancement of a Gate-All-Around Nanowire Thin-Film Transistor Memory,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 216-218, Mar. 2010.
[22]. H.-B. Chen, Y.-C. Wu, L.-C. Chen, J.-H. Chiang, C.-K. Yang, and C.-Y. Chang, “High-Reliability Trigate Poly-Si Channel Flash Memory Cell With Si-Nanocrystal Embedded Charge-Trapping Layer,” IEEE Electron Device Lett., vol. 33, no. 4, pp. 537-539, Apr. 2012.
[23]. G. C. Patil and S. Qureshi, “A Novel Partially Insulated Schottky Source/Drain MOSFET: Short Channel and Self Heating Effects,” in Proc. IEEE Int. Conf. Microelectron., Dec. 2010, pp. 252-255.
[24]. M. H. White, Y. Wang, S. J. Wrazien, and Y. Zhao, “Advancements in Nanoelectronic SONOS Nonvolatile Semiconductor Memory (NVSM) Devices and Technology,” IEEE Int. J. High Speed Electron. Syst., vol. 16, no. 2, pp. 479-501, Jun. 2006.
[25]. C.-H. Choi, K.-H. Oh, J.-S. Goo, Z. Yu, and R. W. Dutton, “Direct Tunneling Current Model for Circuit Simulation,” in Proc. IEEE Tech. Dig. Int. Electron Devices Meet., Dec. 1999, pp. 735-740.
[26]. S.-C. Lai, H.-T. Lue, M.-J. Yang, J.-Y. Hsieh, S.-Y. Wang, T.-B. Wu, G.-L. Luo, C.-H. Chien, E.-K. Lai, K.-Y. Hsieh, R. Liu, and C.-Y. Lu, “MA BE-SONOS: A Bandgap Engineered SONOS Using Metal Gate and Al2O3 Blocking Layer to Overcome Erase Saturation,” in Proc. IEEE Non-Volatile Semicond. Mem. Workshop, Aug. 2007, pp. 88-89.
[27]. C. H. Lee, K. I. Choi, M. K. Cho, Y. H. Song, K. C. Park, and K. Kim, “A Novel SONOS Structure of SiO2/SiN/A12O3 With TaN Metal Gate for Multi-giga Bit Flash Memories,” in Proc. IEEE Tech. Dig. Int. Electron Devices Meet., Dec. 2003, pp. 613-616.
[28]. Y. Wang and M. H. White, “An Analytical Retention Model for SONOS Nonvolatile Memory Devices in the Excess Electron State,” Solid-State Electron., vol. 49, no. 1, pp. 97-107, Jan. 2005.
[29]. Athena User’s Manual: Device Simulation Software, Silvaco International Inc., Santa Clara, CA, USA, Sep. 2010.
[30]. Atlas User’s Manual: Device Simulation Software, Silvaco International Inc., Santa Clara, CA, USA, Sep. 2010.
[31]. Ben G. Streetman, Sanjay Kumar Banerjee著 吳孟奇, 洪勝富, 連振炘, 龔正, 吳忠義譯, 半導體元件. 東華書局第六版.
[32]. A. Padovani, A. Arreghini, L. Vandelli, L. Larcher, G. Van Den Bosch, P. Pavan, J. Van Houdt, “A Comprehensive Understanding of the Erase of TANOS Memories Through Charge Separation Experiments and Simulations,” IEEE Trans. Electron Devices, vol. 58, no. 9, pp. 3147-3155, Sep. 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.119.160.154
論文開放下載的時間是 校外不公開

Your IP address is 18.119.160.154
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code