Responsive image
博碩士論文 etd-0630113-014657 詳細資訊
Title page for etd-0630113-014657
論文名稱
Title
大量表現大型海藻裂片石蓴 (Ulva fasciata Delile) Glutathione Reductase 於水稻 (Oryza sativa L.) 提高耐冷性之研究
Studies on the Enhancement of Chilling Tolerance of Rice (Oryza sativa L.) Seedlings by Overexpression of Glutathione Reductase from Marine Macroalga Ulva fasciata Delile
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-05-22
繳交日期
Date of Submission
2013-07-30
關鍵字
Keywords
低溫逆境、Glutathione reductase、水稻、高鹽逆境、轉殖、氧化逆境、reduced glutathione
Oryza sativa, GSH (reduced glutathione), GR (Glutathione reductase), transformation, oxidative stress, salt stress, low temperature stress
統計
Statistics
本論文已被瀏覽 5784 次,被下載 0
The thesis/dissertation has been browsed 5784 times, has been downloaded 0 times.
中文摘要
本研究目的為建構大型海藻裂片石蓴 (Ulva fasciata Delile) GR (glutathione reductase) 基因 UfGr 後接GFP基因 (標誌蛋白) 於農桿菌Ti vector 及轉殖水稻台農67號 (Oryza sativa L. cv. Tainung 67, TNG67) 以測試大量表現UfGr是否可以提高水稻耐低溫及高鹽逆境之能力。經 GFP 綠螢光及GR活性篩選,獲得OE-UfGR-1, OE-UfGR-3, and OE-UfGR-16 轉殖株。利用4葉齡幼苗進行逆境篩選,發現OE-UfGR-1耐低溫 (4oC) 及高鹽 (200 mM NaCl) 逆境,OE-UfGR-3 可耐高鹽逆境,OE-UfGR-16 則不耐低溫及高鹽逆境。分析低溫對於 OE-UfGR-1 抗氧化酵素superoxide dismutase (SOD)、GR、ascorbate peroxidase (APX) 及 catalase (CAT) 活性及水溶性抗氧化物含量之影響,發現 OE-UfGR-1 GR活性在低溫仍能維持較高狀態,glutathione (GSH)/oxidized glutathione (GSSG) 比值也保持較高,malondialdehyde (MDA,脂質氧化指標) 含量明顯低於 wild type。推測 OE-UfGR-1表現較高 GR 活性造成 GSSG 被有效地還原為 GSH,提高細胞還原狀態而提高水稻幼苗耐冷性,此一推論待未來實驗證明。研究結果證明大型海藻裂片石蓴UfGR基因可以幫助水稻幼苗抵抗低溫逆境。
Abstract
The purpose of this study is to construct the gene of glutathione reductase (UfGr) of marine macroalga Ulva fascitat Delile following with GFP gene in Agrobacterium Ti vector and transformed to Oryza sativa L. cv. Tainung 67 (TNG67) to test whether overexpression of UfGr could enhance stress tolerance (low temperature and salt stress) in rice seedlings. The GFP green fluorescence and GR activity showed there are 3 transgenic lines, OE-UfGR-1, OE-UfGR-3, and OE-UfGR-16. Using 4-leaf age seedlings, OE-UfGR-1 is tolerant to low temperature (4oC) and salt stress (200 mM NaCl), OE-UfGR-3 is tolerant to salt stress, but OE-UfGR-16 did not tolerate low temperature and NaCl stress. The physiological analysis of OE-UfGR-1 to low temperature stress showed that OE-UfGR-1 seedlings maintained higher GR activity and glutathione (GSH)/oxidized glutathione (GSSG) ratio while malondialdehyde (MDA as lipid peroxidation marker) contents are low as compared to wild type. The activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) of OE-UfGR-1 seedlings was not affected after low temperature stress.It is expected that OE-UfGR-1 seedlings effectively reduce GSSG to GSH and in turn, results in a higher reducing potential for the enhancement of low temperature tolerance.It is needed to be proven in the future. In conclusion, this study shows that overexpression of UfGr could enhance the tolerance of rice seedlings to low temperature stress.
目次 Table of Contents
論文審定書…………………………………………………………………i
誌謝…………………………………………………………………………ii
中文摘要……………………………………………………………………iii
英文摘要……………………………………………………………………iv
目錄…………………………………………………………………………v
圖目錄………………………………………………………………………vi
表目錄………………………………………………………………………ix
壹、前言……………………………………………………………………1
貳、材料與方法……………………………………………………………4
參、結果……………………………………………………………………11
肆、討論……………………………………………………………………13
參考文獻……………………………………………………………………15
附錄…………………………………………………………………………36
參考文獻 References
林婉容。(2010) 水稻葉綠體Glutathione Reductase 3 參與水稻對鹽逆境耐受性之調
控。國立臺灣大學農業化學系暨研究所碩士論文。台灣,中華民國。
Agarwal S (2007) Increased antioxidant activity in Cassia seedlings under UV-B
radiation. Biologia Plantarum 51: 157-160
Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in
warm-climate plants. Trends in Plant Science 6: 36-42
Apel K, Hirt H (2004) Reactive oxygen species: Metabolism, oxidative stress, and
signal transduction. Annual Rreview of Plant Biology 55: 373-399
Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts
and their functions. Plant Physiology 141: 391-396
Badiani M, Paolacci AR, Fusari A, D’ovidio R, Scandalios JG, Porceddu E, Sermanni
GG (1997) Non-optimal growth temperatures and antioxidants in the leaves of Sorghum
bicolor (L.) Moench. II. Short-term acclimation. Journal of Plant Physiology
51:409-421
Bowler C, Van Montagu M, Inzé D (1992) Superoxide dismutase and stress tolerance.
Annual Review of Plant Physiology Molecular Biology 43: 83-116
Chalapathi Rao ASV, Reddy AR (2008) Glutathione reductase: A putative redox
regulatory system in plant cells. In Khan NA, Singh S, Umar S eds., Sulfur Assimilation
and Abiotic Stress in Plants. Springer, Berlin Heidelberg, pp. 111-14
Choe YH, Kim YS, Kim IS, Bae MJ, Lee EJ, Kim YH, Park HM, Yoon HS (2013)
Homologous expression of g-glutamylcysteine synthetase increases grain yield and
tolerance of transgenic rice plants to environmental stresses. Journal of Plant
Physiology 170: 610-618
Collen J, Davison IR (1999) Reactive oxygen metabolism in intertidal Fucus spp.
(Phaeophyceae). Journal of Phycology 35: 62-69
Collen J, Pinto E, Pedersen M, Colepicolo P (2003) Induction of oxidative stress in the
16
red macroalga Gracilaria tenuistipitata by pollutant metals. Archives of Environmental
Contamination and Toxicology 45: 337-342
Conn EE, Vennesland B (1951) Glutathione reductase of wheat germ. Journal of
Biological Chemistry 192:17-28
Connell JP and Mullet JE (1986) Pea chloroplast glutathione-reductase- purification and
characterization. Plant Physiology 82:351-356
Contour-Ansel D, Torres-Franklin ML, Cruz De CMH, D'Arcy-Lameta A (2006)
Glutathione reductase in leaves of cowpea: Cloning of two cDNAs, expression and
enzymatic activity under progressive drought stress, desiccation and abscisic acid
treatment. Annals of Botany 98: 1279-1287
Contreras L, Moenne A, Correa JA (2005) Antioxidant responses in Scytosiphon
lomentaria (Phaeophyceae) inhabitingcopper-enriched coastal environments. Journal of
Phycology 41: 1184-1195
Creissen GP, Mullineaux PM (1995) Cloning and characterization of glutathione
reductase cDNAs and identification of two genes encoding the tobacco enzyme. Planta
197: 422-425
Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. Journal of
Phycology 32: 197-211
Di Toppi and Gabbrielli (1999) Response to cadmium in higher plants. Environmental
and Experimental Botany 41: 105-130
Drumm-Herrel H, Gerhausser U, Mohr H (1989) Differential regulation by
phytochrome of the appearance of plastidic and cytoplasmic isoforms of glutathione
reductase in mustard (Sinapsis alba L.) cotyledons. Planta 178:103-109
Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple
forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180:278–84
Foster JG, Hess JL (1980) Responses of superoxide-dismutase and
glutathione-reductase activities in cotton leaf tissue exposed to an atmosphere enriched
in oxygen. Plant Physiology 66: 482-487
17
Foyer CH, Halliwell B (1976) Presence of glutathione and glutathione reductase in
chloroplasts-proposed role in ascorbic-acid metabolism. Planta 133: 21-25
Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1995)
Overexpression of glutathione reductase but not glutathione synthetase leads to
increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant
Physiology 109:1047-1057
Giannopolitis CN, Ries SK (1977) Superoxide dismutases. 1. Occurrence in
higher-plants. Plant physiology 59: 309-314
Guo Z, Ou W, Lu S, Zhong Q (2006) Differential responses of antioxidative system to
chilling and drought in four ricecultivars differing in sensitivity. Plant Physiology and
Biochemistry 44: 828-836
Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts .i. kinetics and
stoichiometry of fatty acid peroxidation. Archives of Biochemistry and
Biophysics 125: 189-&
Hong CY, Chao YY, Yang MY, Cheng SY, Cho SC, Kao CH (2009) NaCl-induced
expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is
mediated through hydrogen peroxide but not abscisic acid. Plant and Soil 320: 103-115
Huang M, Guo Z (2005) Responses of antioxidative system to chilling stress in two rice
cultivars differing in sensitivity. Biologia Plantarum 49: 81-84
Jana S, Choudhuri MA (1981) Glycolate metabolism of 3 submersed aquatic
angiosperms-effect of heavy-metals. Aquatic Botany 11: 67-77
Jimenez A, Hernandez J, del Rio L, Sevilla F (1997) Evidence for the presence of the
ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant
Physiology 114:275-284
Kaminaka H, Morita S, Nakajima M, Masumura T, Tanaka K (1998) Gene cloning and
expression of cytosolic glutathione reductase in rice (Oryza sativa L.). Plant Cell
Physiology 39: 1269-1280
18
Kang HM, Saltveit ME (2002) Reduced chilling tolerance in elongating cucumber
seedling radicles is related to their reduced antioxidant enzyme and DPPH-radical
scavenging activity. Physiologia Plantarum 115: 244-250
Kim JH, Kim SJ, Cho SH, Chow WS, Lee CH (2005) Photosystem I acceptor side
limitation is a prerequisite for the reversible decrease in the maximum extent of P700
oxidation after short-term chilling in the light in four plant species with
different chilling sensitivities. Physiologia Plantarum 123: 100-107
Kocsy G, Galiba G, Brunold C. (2001) Role of glutathione in adaptation and signalling
during chilling and cold acclimation in plants. Physiologia Plantarum 113: 158-164
Kocsy G, Szalai G, Vágŭjfalvi A, Stěhli L, Orosz G, Galiba G (2000b) Genetic study of
glutathione accumulation during cold hardening in wheat. Planta 210:295–301
Kornyeyev D, Logan BA, Payton PR, Allen RD, Holaday AS (2003) Evluated
chloroplastic glutathione reductase activity decrease chilling-induced photoinhibition by
increasing rats of photochemistry, but not thermal energy dissipation, in transgenic
cotton. Functional Plant Biology 30: 101-110
Kouril R, Lazar D, Lee H, Jo J, Naus J (2003) Moderately elevated temperature
eliminates resistance of rice plants with enhanced expression of glutathione reductase to
intensive photooxidative stress. Photosynthetica 41:571-578
Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis-the basics.
Annual Review of Plant Physiology and Plant Molecular Biology 42: 313-349
Kubo A, Sano T, Saji H, Tanaka K, Kondo N, Tanaka K (1993) Primary structure and
properties of glutathione reductase from Arabidopsis thaliana. Plant Cell Physiology
34:1259-1266
Kuk YI, Shin JS, Burgos NR, Hwang TE, Han O, Cho BH, Jung SY, Guh JO (2003)
Antioxidative enzymes offer protection from chilling damage in rice plants. Crop
Science 43: 2109-2117
Leegood RC (1985) The intercellular compartmentation of metabolites in leaves of Zea
mays L. Planta 164: 163-171
19
Libreros-Minotta CA, Pardo JP, Mendoza-Hernandez G, Rendon JL (1992) Purification
and characterization of glutathione reductase from Rhodospirillum rubrum. Arch
Biochem Biophys 298: 247-253
Logan BA, Monteiro G, Kornyeyev D, Payton P, Allen RD, Holaday AS (2003)
Transgenic overproduction of glutathione reductase does not protect cotton, Gossypium
hirsutum (Malvaceae), from photoinhibition during growth under chilling conditions.
American Journal of Botany 90: 1400-1403
Lu IF, Sung MS, Lee TM (2006) Salinity stress and hydrogen peroxide regulation of
antioxidant defense system in Ulva fasciata. Marine Biology 150: 1-15
Mahan JR, Burke JJ (1987) Purification and characterization of glutathione reductase
from corn mesophyll chloroplasts. Physiologia Plantarum 71:352-358
Matsumura T, Tabayashi N, Kamagata Y, Souma C, Saruyama H (2002) Wheat catalase
expressed in transgenic rice can improve tolerance against low temperature stress.
Physiologia Plantarum 116: 317-327
Meldrum NU, Tarr HLA (1935) The reduction of glutathione by the Warburg-Christian
system. Biochemistry Journal 29:108-115
Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends in Plant
Science 7: 405-410
Payton P, Webb R, Kornyeyev D, Allen R, Holaday AS (2001) Protecting cotton
photosynthesis during moderate chilling at high light intensity by increasing
chloroplastic antioxidant enzyme activity. Journal of Experimental Botany 52:
2345-2354
Poage M, Le Martret B, Jansen, MAK, Nugent GD, Dix, PJ (2011) Modification of
reactive oxygen species scavenging capacity of chloroplasts through plastid
transformation. Plant Molecular Biology 76: 371-384
Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for
chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen
peroxide.The Plant Cell 6: 65-74
20
Ratkevicius N, Correa JA, Moenne A (2003) Copper accumulation, synthesis of
ascorbate and activation of ascorbate peroxidase in Enteromorpha compressa (L.) Grev.
(Chlorophyta) from heavy metal-enriched environments in northern Chile. Plant Cell
and Environment 26: 1599-1608
Saruyama H, Tanida M (1995) Effect of chilling on activated oxygen-scavenging
enzymes in low temperature-sensitive and temperature-tolerant cultivars of rice (Oryza
sativa L). Plant Science 109: 105-113
Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals
triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological
Research 38: 995-1014
Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiology 59:
1011-1012
Serrano A, Rivas J, Losada M (1984) Purification properties
of glutathione-reductase from the cyanobacterium Anabaena sp strain-7119. Journal of
Bacteriology 158: 317-324
Shu DF, Wang LY, Duan M, Deng YS, Meng QW (2011) Antisense-mediated depletion
of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress.
Plant Physiology and Biochemistry 49:1228-1237
Strohm M, Eiblmeier M, Langebartels C, Jouanin L, Polle A, Sandermann H,
Renneberg (1999) Responses of transgenic poplar (Populus tremula x P-alba)
overexpressing glutathione synthetase or glutathione reductase to acute ozone stress:
visible injury and leaf gas exchange. Journal of Experimental Botany 50: 365-374
Srivalli S., Renu Khanna-Chopra (2008) Role of glutathione in abiotic stress tolerance.
In Khan NA, Singh S, Umar S eds., sulfur assimilation and abiotic stress in plants.
Springer, Berlin Heidelberg, pp. 207-225
Sung MS , Hsu YT , Hsu YT , Wu TM, Lee TM (2009) Hypersalinity and hydrogen
peroxide upregulation of gene expression of antioxidant enzymes in Ulva fasciata
against oxidative stress. Marine Biotechnology 11: 199-209
21
Szalai Gabriella, Kelloes Tibor, Galiba Gabor, Kocsy, Gabor (2009) Glutathione as an
antioxidant and regulatory molecule in plants under abiotic stress conditions. Journal of
Plant Growth Regulation 281: 66-80
Tyystjarvi E, Riikonen M, Arisi ACM, Kettunen R, Jouanin L, Foyer CH (1999)
Photoinhibition of photosysem II in tobacco plants overexpressing glutathione reductase
and poplars overexpressing superoxide dismtase. Physiology Plant 105:409-416
Wise RR (1995) Chilling-enhanced photooxidation: The production, action, and study
of reactive oxygen species produced during chilling in the light. Photosynthesis
Research 45:79-97
Wu TM, Lee TM (2008) Regulation of activity and gene expression of antioxidant
enzymes in Ulva fasciata Delile (Ulvales, Chlorophyta) in response to excess.
Phycologia 47: 346-360
Wu TM, Hsu YT, Lee TM (2009) Effects of cadmium on the regulation of antioxidant
enzyme activity, gene expression, and antioxidant defenses in the marine
macroalga Ulva fasciata. Botanical Studies 50: 25-34
Zhao S, Blumwald E (1998) Changes in oxidationreduction state and antioxidant
enzymes in the roots of jack pine seedlings during cold acclimation. Physiology Plant
104:134-142
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.147.104.248
論文開放下載的時間是 校外不公開

Your IP address is 3.147.104.248
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code