Responsive image
博碩士論文 etd-0630113-115818 詳細資訊
Title page for etd-0630113-115818
論文名稱
Title
ITO電極對電阻式記憶體切換特性的機制與研究
Study on Resistance Switching Mechanism in Resistance Random Access Memory with ITO Electrode
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-28
繳交日期
Date of Submission
2013-07-31
關鍵字
Keywords
comsol模擬、超臨界流體(SCCO2)、電阻式記憶體、氧化銦錫透明導電膜
Transparent conductive film of ITO, SCCO2, Comsol simulation, Resistance Random access memory
統計
Statistics
本論文已被瀏覽 5773 次,被下載 3094
The thesis/dissertation has been browsed 5773 times, has been downloaded 3094 times.
中文摘要
ITO為透明導電膜,因具高透光性與良好的導電性,其所應用的範圍有觸控面板、太陽電池、電漿顯示器等。本論文研究應用ITO透明導電薄膜於RRAM上作為電極的特性,製作出一個電阻式記憶體(RRAM)能有效降低功率消耗及操作電壓。實驗利用多靶磁控濺鍍系統製作ITO導電透明電極於SiO2: Gd /TiN 之上形成Metal/Insulator/Metal之RRAM結構,並量測其I-V電性,探討RRAM高低阻態的切換行為。由電性結果發現,Set電壓約為0.2V,Reset電壓約為0.5V,Set與Reset操作電壓有極不對稱的特殊現象,經電流之機制擬合,提出一橢圓空乏區模型解釋。隨後,進行ITO/SiO2: Gd /TiN 樣品照射UV光與紅光影響RRAM特性實驗,比較照光前後,發現低阻值狀態(LRS)的電流機制從未照光前的Schottky emission轉變成照光後Poole-Frenkel 傳導機制。其主因為照光後會使存在於ITO薄膜缺陷中的電子活化,而在缺陷中跳躍。本論文研究set電壓非常小的原因發現其主因為臨界電壓與氧離子濃度梯度兩個因素所影響,且經由改變ITO電極厚度說明與濃度梯度關係。經由Comsol模擬確認ITO電極I-V 曲線的不對稱性。最後基於超臨界二氧化碳超流體(SCCO2)的強氧化能力進行樣品處理,使RRAM的操作電流更下降2.5倍。主因為經SCCO2處理時,經由導入氧離子會修補ITO薄膜中的缺陷,降低RRAM的操作電流及操作功率的消耗。
Abstract
ITO is a transparent conductive film, owning to high transmittance and good electrical conductivity, ITO has been applied in a wide range over touch panel, solar cell and plasma display. Therefore application of ITO transparent conductive film in resistive random access memory (RRAM) has been studied in this thesis, ITO is promising power consumption inhibitive material in the fabrication of RRAM devices. Meanwhile, operating voltage can be effectively reduced, which makes it possible for the application in stacking memory array. Multi-target magnetron sputtering system is used to deposition ITO/Gd:SiO2/TiN Metal-Insulator-Metal RRAM structure. Besides high and low resistance states of RRAM are investigated by measuring IV electrical curve. Set and Reset operating voltage exhibit asymmetric property, namely Set voltage is about 0.2V and Reset voltage is about 0.5V. Conduction current fitting is applied to explore the reason of the asymmetric voltage, and a model of ellipse depletion region is proposed to explain the abnormal phenomenon. Furthermore, the RRAM property of ITO/SiO2: Gd /TiN sample is measured under UV and red light illumination. Comparing the results obtained before and after light exposure, it is found the low resistance state (LRS) conduction mechanism of the sample transforms from Schottky emission to Poole-Frenkel (after exposure). Due to the activation of defects in ITO film, electrons can hop within the defects. In this work, it is found the ultra-small set voltage results from the combination effects of critical voltage and oxygen ion concentration gradient. Variation the thickness of ITO electrodes is carried out to investigate the influence of oxygen ion concentration gradient. Simulation result by Comsol proves asymmetric property of I-V curve. In addition, the operating current of the device decreases 2.5 times for ITO sample after super critical CO2 (SCCO2) treatment, due to the defects reparation process through the introduction of oxygen from H2O. And the repairing process will facilitate the decrease of RRAM operating current and power consumption.
目次 Table of Contents
中文摘要 i
Abstract ii
目錄 iv
圖目錄 viii
表目錄 xi
1-1前言 1
1-2研究目的與動機 2
第二章文獻回顧 3
2-1 記憶體簡介 3
2-2 次世代記憶體簡介 4
2-2-2相變化記憶體【6】 5
2-2-3磁阻式記憶體【8】 6
2-3 絕緣體載子傳導機制 9
2-3-1 穿隧(Tunneling) 10
2-3-2 熱離子發射(Thermionic Emission) 11
2-3-3 普爾-法蘭克發射(Poole-Frenkel Emission) 12
2-3-4 歐姆傳導(Ohmic Conduction) 14
2-3-5 離子電導(Ionic Conduction) 14
2-3-6 空間電荷限制電流(Space Charge Limit Current, SCLC) 15
2-3-7 跳耀傳導(Hopping Conduction)【20】 15
2-4 超臨界流體簡介 16
第三章實驗設備與原理 20
3-1多靶磁控濺鍍系統( Multi-Target Sputter) 20
3-2 N&K薄膜特性分析儀(N & K analyzer) 21
3-3 傅立葉轉換紅外光譜儀 (Fourier-Transform Infrared Spectrometer) 22
3-4 X光光電子能譜儀(X-ray Photoelectron Spectroscopy) 24
3-5半導體電性量測系統 25
3-6 超臨界流體(SCCO2) 26
第四章比較Pt與ITO電極之RRAM結構 28
4-1釓摻雜二氧化矽電阻式記憶體製作流程 28
4-1-1 釓摻雜二氧化矽薄膜備製 29
4-1-2 Pt電極薄膜備製 29
4-1-3 ITO電極薄膜備製 29
4-2釓摻雜二氧化之材料分析 30
4-2-1 FTIR 分析 30
4-2-2 XPS分析 31
4-3 釓摻雜二氧化矽之RRAM電性分析 32
4-3-1 Forming Process: 33
4-3-2 Reset與Set Process 33
4-3-3 記憶保存力(Retention) 34
4-3-4 耐操度(Endurance) 35
4-4 以ITO電極作為釓摻雜二氧化矽電阻式記憶體之電性分析 36
4-4-1 Sample ITO1 RRAM之Forming 過程 36
4-4-2 ITO/Gd:SiO2/TiN RRAM之Set與Reset過程 37
4-4-3 ITO電極作為釓摻雜二氧化矽RRAM Sample之Retention 38
4-4-4 ITO/Gd:SiO2/TiN RRAM之Endurance量測 39
4-4-5 ITO電極與Pt電極作為Gd:SiO2 RRAM可靠度的比較 39
4-5 ITO/Gd:SiO2/TiN電流機制擬合 40
4-6 ITO/Gd:SiO2/TiN傳導機制模型 42
第五章照光對ITO電極RRAM的影響 44
5-1 照射紅光與UV光對元件之影響 44
5-2照射紅光與UV光電流機制擬合 44
5-3 照光環境下傳導機制模型 46
第六章Set電壓與RRAM傳導機制研究 48
6-1 Pt電極與ITO電極I-V曲線比較 48
6-2 Set電壓對RRAM機制研究 49
6-3 Set電壓機制與濃度梯度關係 50
6-3-1 不同厚度ITO電極製程結構 50
6-3-2 ITO自限流Forming Process 51
6-3-3 三種不同厚度ITO電極I-V Curve 52
6-3-4 ITO電極厚度之Set與Reset電壓統計 54
6-3-5 濃度梯度模型說明 56
第七章研究ITO電極I-V 曲線不對稱性 57
7-1 ITO電極不對稱性 57
7-2 Comsol模型模擬 57
第八章ITO/Gd:SiO2/TiN經SCCO2之特性研究 60
8-1 SCCO2處理前備置流程 60
8-2經SCCO2處理的元件結構與實驗參數 60
8-3 SCCO2t處理後ITO電極之材料分析 61
8-4 SCCO2處理後ITO電極之電性分析 67
8-5 SCCO2處理後ITO/Gd:SiO2/TiN RRAM機制模型 72
第九章結論 74
參考文獻 75
參考文獻 References
1. 蔡濬名, 氧化鋅薄膜於非揮發電阻式記憶體特性之研究. 國立清華大學,碩士論文, (2008).
2. K.-C. Liu, W.-H. Tzeng, K.-M. Chang, Y.-C. Chan, C.-C. Kuo, Bipolar resistive switching effect in Gd2O3 films for transparent memory application. Microelectronic Eng 88, 1586 (2011).
3. 楊明輝, 透明導電膜. 義軒圖書出版社, (2006).
4. 鄭佩慈, 鐵電材料之特性與應用. 儀科中心簡訊 第68期, (2005).
5. D. A. Buck, Ferroelectrics for Digital Information Storage and Switching.”, Massachusetts Institute of Technology. Dept. of Electrical Engineering, Master Thesis, (1952).
6. S. Lai, Current status of the phase change memory and its future. IEDM, 7803 (2003).
7. K. Kim, S. J. A. h, RELIABILITY INVESTIGATIONS FOR MANUFACTURABLE HIGH DENSITY PRAM IRPS, 157 (2005).
8. 葉林秀, 李家謀, 徐明豐, 吳德和, 磁阻式隨機存取記憶體技術的發展-現在與未來. 物理雙月刊 26卷, pp.607 (2004).
9. K. Kinoshita, New Model Proposed for Switching Mechanism of ReRAM IEEE NVSMW, 84 (2006).
10. H. Y. Lee, P. S. Chen, Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust HfO 2 Based RRAM IEDM, 1 (2008).
11. L.-E. Yu, S. Kim, Structure Effects on Resistive Switching of Al/TiO x /Al Devices for RRAM Applications. Elect. Dev. Lett. 29, 331 (2008).
12. C. Ho, E. K. Lai, A Highly Reliable Self-Aligned Graded Oxide WO x Resistance Memory: Conduction Mechanisms and Reliability. VLSI Technology, Symposium, 228 (2007).
13. Y.-T. Tsai et al., Investigation for coexistence of dual resistive switching characteristics in DyMn2O5 memory devices. Appl. Phys. Lett. 99, 092106 (2011).
14. Z. Jin, G. Liu, J. Wang, Organic nonvolatile resistive memory devices based on thermally deposited Au nanoparticle. AIP Advances 3, 052113 (2013).
15. S.-S. Sheu, K.-H. Cheng, M.-F. Chang, Fast-Write Resistive RAM (RRAM) for Embedded Applications. Future Landscape of Embedded Memories, 61 (2010).
16. K.-C. Chang et al., Reducing operation current of Ni-doped silicon oxide resistance random access memory by supercritical CO2 fluid treatment. Appl. Phys. Lett. 99, 263501 (2011).
17. T.-M. Tsai et al., Dehydroxyl effect of Sn-doped silicon oxide resistance random access memory with supercritical CO2 fluid treatment. Appl. Phys. Lett. 101, 112906 (2012).
18. K.-C. Chang et al., The Effect of Silicon Oxide Based RRAM with Tin Doping. Electrochemical and Solid-State Letters 15, H65 (2012).
19. S. Sze, Physics of semiconductor devices. Wiley-Blackwell (New York, 2007), vol. 3rd edition.
20. D. Ielmini, Y. Zhang, Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J Appl Phys102, 054517 (2007).
21. V. Dostal, A supercritical carbon dioxide cycle for next generation nuclear reactors. Massachusetts Institute of Technology, (2004).
22. E. Székely, Supercritical Fluid Extraction. Budapest University of Technology and Economics, (2007).
23. H. Guo et al., Structure and optical properties of sol–gel derived Gd2O3 waveguide films. Appl Surf Sci 230, 215 (2004).
24. D. A. Neumayer, Materials characterization of ZrO2–SiO2 and HfO2–SiO2 binary oxides deposited by chemical solution deposition. J Appl Phys 90, 1801 (2009).
25. JEOL, Handbook of X-ray Photoelectron Spectroscopy. JEOL Serving Advanced Technology.
26. Y.-E. Syu, T.-C. Chang, Redox Reaction Switching Mechanism in RRAM Device With Pt/CoSiO X /TiN Structure. Elect. Dev. Lett. 32, 545 (2011).
27. C. E. R. C. (CERC), Resistive switching in transition metal oxides. Materials review 11, 28 (2008).
28. W. H. Hayt, Engineering Electromagnetics. McGraw-Hill 5th Edition, (1993).
29. Y. Fan, J. Li, 六方奈米氧化銦的製備及其氣敏性質和表面酸鹼性質研究. ACTA CHIMICA SINICA 69, 1667 (2011).
30. 潘盈志, 鋯摻雜氧化矽薄膜電阻式記憶體之製作研究. 國立中山大學,碩士論文, (2012).
31. J. Jouhannaud, J. Rossignol, D. Stuerga, Rapid synthesis of tin (IV) oxide nanoparticles by microwave induced thermohydrolysis. J of Solid State Chem 181, 1439 (2008).
32. Y.-E. Syu et al., Atomic-level quantized reaction of HfOx memristor. Appl. Phys. Lett. 102, 172903 (2013).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code