Responsive image
博碩士論文 etd-0630113-130831 詳細資訊
Title page for etd-0630113-130831
論文名稱
Title
矽(111)和碳化矽(0001)表面層狀結構的原子與電子結構:第一原理研究
Atomic and electronic structures of layered structures formed on the Si(111) and SiC(0001) surfaces: a first-principles study
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-20
繳交日期
Date of Submission
2013-07-30
關鍵字
Keywords
能帶結構、表面重構、第一原理、矽(111)、石墨烯、碳化矽(0001)
Si(111), SiC(0001), graphene, band structure, first-principles, surface reconstruction
統計
Statistics
本論文已被瀏覽 5724 次,被下載 235
The thesis/dissertation has been browsed 5724 times, has been downloaded 235 times.
中文摘要
利用第一原理的方法研究不同層狀結構在矽(111) 和碳化矽(0001) 表面上的
原子和電子結構。首先對於一維金屬線系統,我們有系統性的檢查了具有鏈
狀蜂巢結構特性的金矽(111)-(5×2) 的表面重構,且與實驗能帶結構和掃描穿隧
顯微鏡影像圖做了詳細的討論。接著同樣從系統性的搜索中找到了銀矽(111) 表
面-c(12×2),且得到跟實驗一致的掃描穿隧顯微鏡影像圖。此外,提供了一套從
3×1 到6×1 到c(12×2) 的相轉變機制。在二維金屬層狀系統中,我們重新檢查了
已被廣泛討論的鉛矽(111)-√7×√3 的表面重構,且藉由詳細的分析由實驗量測
所得的能帶圖,再次驗證了此系統的原子表面重構。最後討論2×2 石墨烯在碳化
矽(0001)-√3×√3 的表面系統,當石墨烯成長在碳化矽表面時會與基板間的作用
使原本的石墨烯線性能帶特性消失。接著利用崁入金屬會還原表面石墨烯的電子
特性,最後調整石墨烯和金屬層的距離,發現隨著間距減少會使得石墨烯線性能
帶因自旋軌道耦合的效果而造成自旋分裂增加。
Abstract
Atomic and electronic structures of metal overlayers on the Si(111) surface were
studied by first-principles calculations. For the one-dimensional metal atomic wires
on Si(111), we first revisited and examined the models with a honeycomb chain
feature for the Au/Si(111)-(5×2) surface reconstruction systematically. Our newly
identified model reproduces certain key features in the angle-resolved photoemission
spectroscopy (ARPES) measurement and experimental scanning tunneling microscope
(STM) images. Next, similarly structural models for the Ag/Si(111)-c(12×2)
phase were also identified from a systematic search. The mechanisms of phase transitions from 3×1 to 6×1 and from 6×1 to c(12×2) have also been examined. The
simulated STM images of this c(12×2) model is in excellent agreement with the experimental STM images. On the other hand, for two dimensional metal overlayers
grown on Si(111), the band structures of Pb/Si(111)-√7×√3 surface reconstruction
were analyzed in detail, and are in good agreement with the identified bands in the
experimental study. Finally, we discuss the 2×2 graphene on SiC(0001)-√3×√3.
It becomes a buffer layer when graphene growth on SiC(0001) suface, and the Dirac
point of graphene will disappear. However, by intercalating Bi or Sb layer to become
a buffer layer make the Dirac cone of graphene will preserved. On the other hand,
for the Bi and Sb buffer layer the π and π* bands of the graphene exhibit spin–orbit
(SO) splitting will be shown.
目次 Table of Contents
論文審定書i
摘要ii
ABSTRACT iii
LIST OF FIGURES vi
LIST OF TABLES viii
1 Introduction 1
2 Honeycomb chain structure of the Au/Si(111)-(5×2) surface reconstruction 7
2.1 Abstract 7
2.2 Introduction 7
2.3 Computational Methods 8
2.4 Results and Discussion 9
2.5 Conclusion 12
3 Atomic and electronic structures of Ag/Si(111)-c(12×2) surface 17
3.1 Abstract 17
3.2 Introduction 18
3.3 Computational Methods 18
3.4 Results and discussion 20
3.5 Conclusions. 24
4 Electronic structure of the Pb/Si(111)-√7×√3 reconstruction 31
4.1 Abstract 31
4.2 Introduction 31
4.3 Computational Methods and Structural Models 32
4.4 Results and Discussion 33
4.5 Conclusions36
5 First-principles study of Bi and Sb intercalated graphene on SiC(0001) substrate 42
5.1 Abstract 42
5.2 Introduction 43
5.3 Computational methods 43
5.4 Results and discussion 44
5.5 Conclusions 49
6 Conclusion 56
Reference 58
參考文獻 References
[1] H. E. Bishop and J. C. Riviere, J. Phys. D: Applied Physics 2, 1635 (1969).
[2] H. Lipson and K. E. Singer, J. Phys. C 7, 12 (1974).
[3] G. LeLay and J. P. Faurie, Surf. Sci. 69, 295 (1977).
[4] C. Schamper, W. Moritz, H. Schulz, R. Feidenhans’l, M. Nielsen, F. Grey, and
R. L. Johnson, Phys. Rev. B 43, 12130 (1991).
[5] A. A. Baski, J. Nogami, and C. F. Quate, Phys. Rev. B 41, 10247 (1990).
[6] T. Hasegawa, S. Hosaka, and S. Hosoki, Surf. Sci. 357, 858 (1996).
[7] J. D. O’Mahony, J. F. McGilp, C. F. J. Flipse, P. Weightman, and F. M. Leibsle,
Phys. Rev. B 49, 2527 (1994).
[8] J. R. Power, P. Weightman, and J. D. O’Mahony, Phys. Rev. B 56, 3587 (1997).
[9] H. S. Yoon, S. J. Park, J. E. Lee, C. N. Whang, and I.-W. Lyo, Phys. Rev.
Lett. 92, 096801 (2004).
[10] H. S. Yoon, J. E. Lee, S. J. Park, I.-W. Lyo, and M. -H. Kang, Phys. Rev. B
72, 155443 (2005).
[11] I. R. Collins, J. T. Morgan, P. T. Andrews, R. Cosso, J. D. O’Mahony, J. F.
McGlip, and G. Margaritondo, Surf. Sci. 325, 45 (1996).
[12] R. Losio, K. N. Altmann, and F. J. Himpsel, Phys. Rev. Lett. 85, 808 (2000).
[13] I. Matsuda, M. Hengsberger, F. Baumberger, T. Greber, H. W. Yeom, and J.
Osterwalder, Phys. Rev. B 68, 195319 (2003).
[14] K. N. Altmann, J. N. Crain, A. Kirakosian, J.-L. Lin, D. Y. Petrovykh, F. J.
Himpsel, and R. Losio, Phys. Rev. B 64, 35406 (2001).
[15] J. L. McChesney, J. N. Crain, V. Pérez-Dieste, F. Zheng, M. C. Gallagher, M.
Bissen, C. Gundelach, and F. J. Himpsel, Phys. Rev. B 70, 195430 (2004).
[16] I. G. Hill and A. B. McLean, Phys. Rev. B 55, 15664 (1997).
[17] H. M. Zhang, T. Balasubramanian, and R. I. G. Uhrberg, Phys. Rev. B 65,
35314 (2001).
[18] L. D. Marks and R. Plass, Phys. Rev. Lett. 75, 2172 (1995); R. Plass, and L.
D. Marks, Surf. Sci. 380, 497 (1997).
[19] S. C. Erwin, Phys. Rev. Lett. 91, 206101 (2003).
[20] M.H. Kang and J.Y. Lee, Surf. Sci. 531, 1 (2003).
[21] S. Riikonen and D. Sánchez-Portal, Phys. Rev. B 71, 235423 (2005).
[22] F. C. Chuang, Ph.D. thesis, Global structural optimizations of surface systems
with a genetic algorithm, Iowa State University, Ames, IA USA (2005).
[23] C.-Y. Ren, S.-F. Tsay, and F.-C. Chuang, Phys. Rev. B 76, 075414 (2007).
[24] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[25] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn and L. J.
Sham, Phys. Rev. 140, A1133 (1965).
[26] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[27] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993); G. Kresse and J. Furthmuller,
Phys. Rev. B 54, 11 169 (1996).
[28] J. Tersoff, and D. R. Hamann, Phys. Rev. B 31, 805(1985).
[29] For the (5×2) cell, there are 3060 (C18 4 = 18!/4!×14! =3060) models. Taking translational symmetry further into account and excluding previous 36 (5×1) models,
only 1512 models are unique. ( 3060−362 = 1512 )
[30] V. Barone, G. Del Re, G. Le Lay and R. Kern, Surf. Sci. 99 223 (1980).
[31] M. Saitoh, F. Shoji, K. Oura, and T. Hanawa, Surf. Sci. 112 306 (1981).
[32] G. Le Lay, A. Chauvet, M. Manneville and R. Kern, Application of Surf. Sci.
9 190 (1981).
[33] T. Yokotsuka, S. Kono, S. Suzuki and T. Sagawa, Surf. Sci. 127 35 (1983).
[34] G. Le Lay, Surf. Sci. 132 169 (1983).
[35] R. J. Wilson and S. Chiang, Phys. Rev. Lett. 58 369 (1987).
[36] W.C. Fan and A. Ignatiev, Phy. Rev. B 41 3592 (1990).
[37] K. J. Wan, X. F. Lin, and J. Nogami, Phy. Rev. B. 46 13635 (1992); K. J. Wan,
X. F. Lin, and J. Nogami, Phy. Rev. B. 47 13700 (1993).
[38] T. Fukuda, Phy. Rev. B 50 1969 (1994).
[39] J. M. Carpinelli and H. H. Weitering, Surf. Sci. 331 1015 (1995).
[40] Steven C. Erwin, Phys. Rev. Lett. 75 1973 (1995).
[41] L. Lottermoser, E. Landemark, D.-M. Smilgies, M. Nielsen, R. Feidenhans’l, G.
Falkenberg, R. L. Johnson, M. Gierer, A. P. Seitsonen, H. Kleine, H. Bludau,
H. Over, S. K. Kim, and F. Jona, Phy. Rev. Lett. 80 3980 (1998).
[42] C. Collazo-Davila, D. Grozea, and L. D. Marks, Phy. Rev. Lett. 80 1678 (1998).
[43] S. C. Erwin and Hanno H. Weitering, Phy. Rev. Lett. 81 2296 (1998).
[44] G. Le Lay, J.M. Layet, A. Cricenti, C. Ottaviani, P. Perfetti, Surf. Sci. 438 97 (1999).
[45] M. Gurnett, J. B. Gustafsson, K. O. Magnusson, S. M. Widstrand, and L. S.
O. Johansson, Phy. Rev. B 66 161101(R) (2002).
[46] Kazuyuki Sakamoto, Hidenori Ashima, H. M. Zhang, and Roger I. G. Uhrberg,
Phys. Rev. B 65 045305 (2001); Kazuyuki Sakamoto and R. I. G. Uhrberg, e-J.
Surf. Sci. Nanotech. 2 210 (2004).
[47] N. Miyata, I. Matsuda, M. D’angelo, H. Morikawa, T. Hirahara, and S.
Hasegawa, e-J. Surf. Sci. Nanotech. 3 151 (2005).
[48] T. Furuhashi, Yoshifumi Oshima, Hiroyuki Hirayama, Appl. Surf. Sci. 253 651
(2006).
[49] K. Sumitani, K. Masuzawa, T. Hoshino, R. Yoshida, S. Nakatani, T. Takahashi,
H. Tajiri. K. Akimoto, H. Sugiyama, X.-W. Zhang, and H. Kawata, Surf. Sci.
601 5195 (2007).
[50] Corsin Battaglia, Philipp Aebi, and S. C. Erwin, Phys. Rev. B 78 075409 (2008).
[51] Feng-Chuan Chuang,Chia-Hsiu Hsu, Cai-Zhuang Wang, and Kai-Ming Ho,
Phys. Rev. B 77 153409 (2008).
[52] C. Z. Wang, B. C. Pan, and K. M. Ho, J. Phys. Condens. Matter 11 2043
(1999).
[53] There are 4845 (C20 4 = 20!/4!×16! =4845) and 7315 (C22 4 = 22!/4!×18! =7315) models for the HCC-like and DHC-like (6×2) cell, respectively. Taking translational symmetry further into account and excluding 45 and 55 (6×1) models, only 2400
and 3630 models are unique. (4845−552 = 2400 and 7315−552 = 3630 ).
[54] V. Yeh, L. Berbil-Bautista, C. Z. Wang, K. M. Ho, and M. C. Tringides, Phys.
Rev. Lett. 85, 5158 (2000).
[55] S. H. Chang, W. B. Su, W. B. Jian, C. S. Chang, L. J. Chen, and T. T. Tsong,
Phys. Rev. B 65, 245401 (2002).
[56] C. M. Wei and M. Y. Chou, Phys. Rev. B 66 233408 (2002).
[57] M. Hupalo, J. Schmalian, and M. C. Tringides, Phys. Rev. Lett. 90 216106 (2003).
[58] M. Yakes, V. Yeh, M. Hupalo, and M.C. Tringides, Phys. Rev. B 69 224103 (2004).
[59] Ing-Shouh Hwang, R. E. Martinez, Chien Liu, and J. A. Golovchenko, Phys.
Rev. B 51, 10193 (1995).
[60] J. Slezak, P. Mutombo, and V. Chab, Phys. Rev. B 60, 13 328 (1999).
[61] O. Custance, I. Brihuega, J.-Y. Veuillen, J. M. Gomez-Rodriguez, and A. M.
Baro, Surf. Sci. 482–485, 878 (2001).
[62] C. Kumpf, O. Bunk, J. H. Zeysing, M.M. Nielsen, M. Nielsen, R.L. Johnson,
and R. Feidenhans’l, Surf. Sci. 448 L213 (2000).
[63] S. Brochard, Emilio Artacho, O. Custance, I. Brihuega, A. M. Baró, J. M. Soler,
and J. M. Gómez-Rodríguez, Phys. Rev. B 66, 205403 (2002).
[64] T.L. Chan, C.Z. Wang, M. Hupalo, M.C. Tringides, Z.Y. Lu, and K.M. Ho,
Phys. Rev. B 68 045410 (2003).
[65] J. N. Crain, K. N. Altmann, C. Bromberger, and F. J. Himpsel, Phys. Rev. B
66, 205302 (2002).
[66] J. K. Kim, K. S. Kim, J. L. McChesney, E. Rotenberg, H. N. Hwang, C. C.
Hwang, and H. W. Yeom, Phys. Rev. B 80, 075312 (2009).
[67] W. H. Choi, H. Koh, E. Rotenberg, and H. W. Yeom, Phys. Rev. B 75, 075329
(2007).
[68] Won Hoon Choi, Keun Su Kim, and Han Woong Yeom Phys. Rev. B 78, 195425
(2008).
[69] K.H. Gundlach, Solid State Electron. 9, 949 (1966).
[70] C. L. Lin, S. M. Lu, W. B. Su, H. T. Shih, B. F. Wu, Y. D. Yao, C. S. Chang,
and Tien T. Tsong, Phys. Rev. Lett. 99, 216103 (2007).
[71] J. H. Wu, M. H.Wu, S. Y. Chou, M. C. Yang, S. M. Lu, W. B. Su, and V. Yeh,
unpublished.
[72] F.C. Chuang, C.H. Hsu, C.Z. Wang, and K.M. Ho, Phys. Rev. B 78, 245418 (2008).
[73] T. C. Leung, C. L. Kao, W. S. Su, Y. J. Feng, and C. T. Chan, Phys. Rev. B
68, 195408 (2003).
[74] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva and A. A. Firsov, Science 306, 666 (2004).
[75] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science 313, 951 (2006).
[76] A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Nat. Phys. 3, 36
(2007).
[77] S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.-H. Lee,
F. Guinea, A. H. Castro Neto, and A. Lanzara, Nature Mater. 6, 770 (2007).
[78] F. Varchon, R. Feng, J. Hass, X. Li, B. N. Nguyen, C. Naud, P. Mallet, J.-Y.
Veuillen, C. Berger, E. H. Conrad, and L. Magaud, Phys. Rev. Lett. 99, 126805 (2007).
[79] A. Mattausch and O. Pankratov, Phys. Rev. Lett. 99, 076802 (2007).
[80] I. Gierz, C. Riedl, U. Starke, C. R. Ast, and K. Kern, Nano Lett. 8, 4603 (2008).
[81] Wintterlin, M.-L. Bocquet, Surface Science, 603, 1841-1852 (2009).
[82] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink,
and P. J. Kelly, Phys. Rev. Lett. 101, 026803 (2008).
[83] C. Gong, Geunsik Lee, B. Shan, E. M. Vogel, R. M. Wallace, and Kyeongjae
Cho, J of Appl. Phys. 108, 123711 (2010)
[84] N. P. Guisinger, G. M. Rutter, J. N. Crain, P. N. First, and J. A. Stroscio,
Nano Lett. 9 1462 (2009).
[85] C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, Phys. Rev.
Lett. 103, 246804 (2009).
[86] Bora Lee, Seungwu Han, and Yong-Sung Kim, Phys. Rev. B 81, 075432 (2010).
[87] F. Speck, J. Jobst, F. Fromm, M. Ostler, D. Waldmann, M. Hundhausen, H.
B. Weber, and Th. Seyller, Appl. Phys. Lett. 99, 122106 (2011).
[88] C Virojanadara, A A Zakharov, S Watcharinyanon, R Yakimova and L I
Johansson, New Journal of Physics 12, 125015 (2010); C. Virojanadara, S.
Watcharinyanon, A. A. Zakharov, and L. I. Johansson, Phys. Rev. B 82, 205402
(2010).
[89] Yuanchang Li, Gang Zhou, Jia Li, Jian Wu, Bing-Lin Gu, and Wenhui Duan,
J. Phys. Chem. C, 115, 23992 (2011).
[90] K. V. Emtsev, A. A. Zakharov, C. Coletti, S. Forti, and U. Starke, Phys. Rev.
B 84, 125423 (2011).
[91] A. L. Walter, K.-J. Jeon, A. Bostwick, F. Speck, M. Ostler, T. Seyller, L.
Moreschini, Y. S. Kim, Y. J. Chang, K. Horn, and E. Rotenberg, Appl. Phys.
Lett. 98, 184102 (2011).
[92] I. Gierz, T. Suzuki, R. T. Weitz, D. S. Lee, B. Krauss, C. Riedl, U. Starke, H.
Hochst, J. H. Smet, C. R. Ast, and K. Kern, Phys. Rev. B 81, 235408 (2010).
[93] F.C. Chuang, W.H. Lin, Z.Q. Huang, C.H. Hsu, C.C. Kuo, V. Ozolins and V
Yeh, Nanotechnology 22, 275704 (2011).
[94] Chia-Hsiu Hsu, Wen-Huan Lin, Vidvuds Ozolins, and Feng-Chuan Chuang,
Appl. Phys. Lett. 100, 063115 (2012).
[95] T. Yoneda, M. Shibuya, K. Mitsuhara, A. Visikovskiy, Y. Hoshino, Y. Kido,
Surface Science, 604, 1509 (2010).
[96] C. Virojanadara, A.A. Zakharov, R. Yakimova, L.I. Johansson, Surface Science,
604, L4-L7 (2010).
[97] S. Watcharinyanon, C. Virojanadara, L.I. Johansson, Surface Science, 605, 1918
(2011).
[98] S. Watcharinyanon, C. Virojanadara, J.R. Osiecki, A.A. Zakharov, R. Yakimova,
R.I.G. Uhrberg, L.I. Johansson, Surface Science, 605, 1662 (2011).
[99] Hae-geun Jee, Jin-Hee Han, Han-Na Hwang, Young Dok Kim, Chan-Cuk
Hwang, Surface Science, 605, 649 (2011).
[114] FC Chuang, CH Hsu, CY Chen, ZQ Huang, V Ozolins, H Lin, A Bansil, Appl.
Phys. Lett. 102, 022424 2013.
[115] T. Jayasekera, S. Xu, K. W. Kim, and M. Buongiorno Nardelli, Phys. Rev. B
84, 035442 (2011).
[116] J. Klimes, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code