Responsive image
博碩士論文 etd-0630113-211228 詳細資訊
Title page for etd-0630113-211228
論文名稱
Title
前瞻顯示器InGaZnO薄膜電晶體於電應力與環境敏感性 之電性物理機制研究
Study of Physical Mechanisms of Electrical Reliability and Environmental Sensitivity for Advanced InGaZnO Thin Film Transistors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
204
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-20
繳交日期
Date of Submission
2013-07-30
關鍵字
Keywords
三端點之電阻式記憶體、紫外光偵測器、氧化鋁阻障層、照光不穩定性、閘極電壓不穩定性、汲極電壓不穩定性、銦鎵鋅氧薄膜電晶體
gate bias induced instability, UV photo sensor, passivation layer of Al2O3, resistive random access memory on three-terminal operation, drain bias induced instability, indium-gallium-zinc oxide thin film transistor (a-IGZO TFT), illumination induced instability
統計
Statistics
本論文已被瀏覽 5746 次,被下載 3
The thesis/dissertation has been browsed 5746 times, has been downloaded 3 times.
中文摘要
隨著數位時代的來臨,平面顯示器產業蓬勃發展,被廣泛的應用於許多消費性電子產品上,如智慧型電視、攜帶式資訊產品、筆記型電腦、數位相機等。對於做為控制畫素開關元件與電流驅動元件的薄膜電晶體,將決定平面顯示器的好壞。因此具有高載子移動率與高均勻性的銦鎵鋅氧化物薄膜電晶體,未來極有潛力成為下一世代平面顯示器之重要技術。
在本論文第一部分,著重於銦鎵鋅氧薄膜電晶體應用於主動式液晶顯示器與有機發光二極體顯示器操作電壓下之穩定性與可靠度分析。首先探討元件在閘極電應力下之可靠度分析。在閘極正偏壓操作下,由於元件易受到環境氣氛吸附於被通道影響,造成次臨界偏壓有明顯的偏移。此外在照光閘極負偏壓操作下,相較於暗態具有嚴重之劣化趨勢。在照光下產生大量之光激發電子電洞對,電洞受閘極垂直電場獲得能量,並於主動層傳遞造成電洞補獲之現象。此外,在加入熱效應下,主動層易受熱擾動,使一些鍵結較弱的結構形成斷鍵,造成臨界電壓劣化。而暗態閘極負偏壓操作較無明顯之劣化,主要是由於銦鎵鋅氧化物為n型半導體,不易產生電洞反轉,另外電洞在主動層之載子移動率很低,因此不會有電洞補獲造成劣化之現象。
另一方面,我們更進一步引入元件在汲極偏壓(Drain stress)操作下與熱載子(Hot-carrier stress)操作下之穩定性與可靠度分析。在汲極正偏壓操作下,外界氧氣易受到汲極正偏壓影吸附於靠近汲極端之背通道表面,造成汲極端產生額外能障,進而影響載子傳導路徑。然而,在熱載子(Hot-carrier stress)操作下,元件則不易受到外界氣氛吸附影響,主要是由於在熱載子操作下,主動層易產生熱,使吸附之氣體分子得到能量進行脫附。此外,加入照光條件,在汲極偏壓操作下,由於照光產生之電洞,受到閘極垂直電場影響,使電洞不均勻被捕獲在主動層與閘極絕緣層介面,造成靠近汲極端地方會有異常電容值增加的現象。 而在熱載子操作於照光下的實驗中,電子被捕獲在主動層與閘極絕緣層介面因此呈現次臨界電壓向右偏移現象。
接著,為了改善銦鎵鋅氧薄膜電晶之穩定性,我們成功利用了氧化鋁阻障層來改善元件於環境氣氛下的電性不穩定性。在閘極施加正偏壓操作下,元件對於環境氣氛的影響被完全抑制,主要是由於氧化鋁薄膜為易氧化與高緻密性的材料,可以有效隔絕環境氣體吸附於主動層被通道。此外,氧化鋁阻障層也大幅降低元件在閘極負偏壓照光情況下的次臨界電壓偏移現象。主要是由於在沉積氧化鋁時,銦鎵鋅氧薄膜之主動層受到修復,主動層材料本身的缺陷與主動層/閘極氧化層界面缺陷受到修補。材料本身的修補減少照光下產生大量之光激發電子電洞對;介面缺陷的修補減少電洞被缺陷捕獲的機會。因此,元件在照光閘極負偏壓操作下情況下,得以呈現非常穩定的狀態。
最後,我們藉由銦鎵鋅氧薄膜電晶體對於紫外光波段的光,具有持久性光漏電流(Persistent Photo-leakage Current : PPC)的特性,成功應用於紫外光偵測器。並利用閘極與汲極脈衝偏壓的操作,抹除掉漏電流,達到可重複操作之功能。在未來有機會整合於可攜式電子產品顯示器上,提升電子產品之附加價值。此外,藉由銦鎵鋅氧化物薄膜電晶體的三端點結構,成功將其用於電阻式記憶體操作。而元件切換之物理機制,主要是依據氧空缺所形成的電阻絲做傳導。此外元件具有良好的雙極(bipolar)電阻轉換特性、低電流操作、與第三端點可調變之特性。此記憶體有機會可以整合於顯示器面板上,將有助於全透明式之系統面板的開發。
Abstract
In the first part, we investigate the instability of negative bias temperature in the dark and the illumination stresses for the amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (a-IGZO TFTs). During the negative bias temperature illumination stress, properties exhibit an obvious negative threshold voltage shift and a significant degradation of subthreshold swing. The photoelectric heat effect that combined the effects of electric field, illumination, and temperature induces the generation of dangling bonds in the interface, resulting in an apparent degradation. It is related to the presence of light energy. Finally, this work also employs the capacitance-voltage measurement and recovery behavior to further clarify the mechanism of degradation behaviors.
In the second part, we investigate oxygen adsorption/desorption to influence on the electrical properties of a-IGZO TFTs during drain or gate-drain stresses. After a drain stress, instable electrical characteristics of device are observed, including a current crowding effect of current-voltage and a stretch-out of capacitance-voltage. These are caused by the oxygen adsorbed on the a-IGZO surface near the drain region. However, for the gate-drain stress, the device exhibits a stable electrical behavior, which could be results from the self-heating effects and desorbed the oxygen by heat energy.
In the third part, we investigate behavior of drain bias stress and gate-drain bias stress under illumination for a-IGZO TFTs working as the current-driver. Properties exhibit two-stage degradation behavior during drain bias stress. The photo excites holes non-uniform trapping under illumination inducing drain side barrier lowering and causing an apparent hump phenomenon of the subthreshold swing. However, the positive threshold voltage shift without a hump phenomenon after gate-drain bias stress is different degradation behaviors. It relies on the existing of inversion layer in the channel. In addition, this section also investigates degradation behavior of AC drain-bias stress under illumination. We observe different degradation behavior after the AC drain-bias stress, which the hump phenomenon disappeared but the Vth shift is observed. Significantly, the degradation behavior during the AC drain-bias stress is related with the duty-ratio and frequency of the AC pulse waveform. The experiment results indicate the pulse-width (PW) time during the drain bias makes the holes trapping at interface defect between insulator/active layer, and on the other hand during the pulse-base (PB) time the hole trapping induces surface band banding make electron inject into the interface defect, Resulting in the electron and hole recombine within the interface defect.
In the fourth part, we investigate the effects of ambient atmosphere on electrical characteristics of Al2O3 passivated a-IGZO TFTs during positive bias temperature stress. Under H2O vapor environment, the Al2O3 passivated device exhibited a stable electrical behaviors (ΔVth < 0.5V), while the unpassivated device showed an apparent hump effect in the transfer curves under bias stress. The hump phenomenon was attributed to the absorption of H2O molecule which can serve as donors to develop a conductive back channel. The experiment results present that Al2O3 is an effective passivation layer to suppress water vapor absorption on a-IGZO back channel. Furthermore, this work also presents the light-color-dependent negative bias stress (NBIS) effect on a-IGZO TFTs with Al2O3 passivation layer. The experiment results show that the Al2O3 passivated devices present stable electrical behaviors under different incident lights (ΔVT < 0.1 V of dark and red, ΔVT < 1 V of green, and ΔVT < 4 V of blue), whereas the unpassivated devices exhibit observable negative shifts during NBIS (ΔVT < 1 V of dark and red, ΔVT > 8 V of green, andΔVT > 15 V of blue). From the result above, the Al2O3 passivaiton layer can effectively passivate the defects in the a-IGZO film, reducing electron-hole pairs generated during the illumination process.
Finally, we achieve the applications of a-GIZO TFTs architecture based UV sensor and RRAMs. In the UV sensor application, the persistent photo-leakage current (PPC) effect induces higher off-current in the dark for 1000s after UV light illumination. It can be reset by applying gate or drain pulse, enabling reproducible switching behavior throughout the endurance test. Furthermore, in the Resistive Random Access Memory (RRAM) application the three terminal operated a-IGZO TFTs show excellent memory properties, such as lower operating current during switching, larger memory window of High Resistance State/Low Resistance State (HRS)/(LRS) with a magnitude about 4.5 orders and high stability during 300-cycle endurance test. The resistive switching behavior can be regarded as the formation/rupture of conductive filaments in a-IGZO layer. The added value of UV sensor and RRAM application of IGZO-TFT is undoubtly propelling the further integration with system on panel of future transparent electronic products.
目次 Table of Contents
Acknowledgment i
Chinese Abstract iii
English Abstreact v
Contents ix
Figure Captions xii
Table Captions xix
Chapter 1 1
1.1 Overview of thin-film transistors 1
1.1.1 Indium gallium zinc oxide thin-film transistors 4
1.2 Overview of nonvolatile memory device 5
1.3 Organization of the Dissertation 7
Chapter 2 15
2.1 Fabrication Process Flow of a-IGZO TFT 15
2.2 Methods of Device Parameter Extraction 17
2.2.1 Determination of the Thershold Voltage 17
2.2.2 Determination of the mobility 17
2.2.3 Determination of the Subthreshold Swing 17
2.3 Instability of Amorphous InGaZnO Thin Film Transistors 18
2.3.1 Instability of Electrical Bias Operation 18
2.3.2 Instability in Different Environments 19
2.3.3 Instability under Light Illumination 22
2.4 Basic Reliability of RRAM Memory 23
2.4.1 Retention 24
2.4.2 Endurance 24
Chapter 3 34
3.1 Introduction 34
3.2 Experiment 35
3.3 Results and Discussion 36
3.4 Conclusion 40
Chapter 4 50
4.1 Introduction 50
4.2 Experiment 51
4.3 Results and Discussion 52
4.4 Conclusion 56
Chapter 5 66
5.1 DC Drain Bias Stress 66
5.1.1 Introduction 66
5.1.2 Experiment 67
5.1.3 Results and Discussion 68
5.1.4 Conclusion 72
5.2 AC Drain Bias Stress 73
5.2.1 Introduction 73
5.2.2 Experiment 74
5.2.3 Results and Discussion 75
5.2.4 Conclusion 79
Chapter 6 98
6.1 The vary ambient effect 98
6.1.1 Introduction 98
6.1.2 Experiment 99
6.1.3 Results and Discussion 100
6.1.4 Conclusion 104
6.2 Instability of Wavelength illumination 104
6.2.1 Introduction 104
6.2.2 Experiment 106
6.2.3 Results and Discussion 107
6.2.4 Conclusion 111
Chapter 7 130
7.1 Introduction 130
7.2 a-IGZO TFT for UV sensor application 131
7.2.1 Experiment 131
7.2.2 Results and Discussion 132
7.2.3 Conclusion 135
7.3 a-IGZO TFT for RRAM application 136
7.3.1 Experiment 136
7.3.2 Results and Discussion 137
7.3.3 Conclusion 140
Chapter 8 153
References 158
Vita 簡歷 179
Publication List 180
參考文獻 References
Chapter 1
[1.1] A. Nathan, G. R. Chaji, and S. J. Ashtiani, J. Disp. Technol., 1, 267 (2005).
[1.2] Y. Matsueda, R. Kakkad, Y. S. Park, H. H. Yoon, W. P. Lee, J. B. Koo, and H. K. Chung, in SID Tech. Dig. p.1116, (2004).
[1.3] H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, S. Tsuda, and S. Nakano, IEDM Tech. Dig, p. 563, (1991).
[1.4] W. E. Howard, J. Soc. Inform. Display, 3(3), 127 (1995).
[1.5] J. H. Lee, W. J. Nam, B. K. Kim, H. S. Choi, Y. M. Ha, and M. K. Han, IEEE Electron Device Lett., 27, 830 (2006).
[1.6] T. Kamiya, K. Nomura and H. Hosono., Science and Technology of Advanced. Material, Vol. 11, pp. 044305, (2010).
[1.7] T. Kamiya, K. Nomura, and H. Hosono, J. Disp. Technol., 5, 468 (2009).
[1.8] H. Hosono, Journal of Non-Crystalline Solids, 352, 851 (2006).
[1.9] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, vol. 432, no. 7016, pp. 488–492, Nov. (2004).
[1.10] E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martins, Adv. Mater., vol. 17, no. 5, pp. 590–594, Mar. (2005).
[1.11] C. Kim, S. Kim, and C. Lee, Jap. J. Appl. Phys., 1, 8501 (2005).
[1.12] T. Kamiya, K. Nomura, and H. Hosono, Sci. Technol. Adv. Mater., 11, 044305 (2010).
[1.13] J.-H. Lee, D.-H. Kim, D.-J. Yang, S.-Y. Hong, K.-S. Yoon, P.-S. Hong, C.-O. Jeong, H.-S. Park, S. Y. Kim, S. K. Lim, and S. S. Kim, Proc. SID Dig. Tech. Papers, 625 (2008).
[1.14] T. Kamiya and H. Hosono. “Material characteristics and applications of transparent amorphous oxide semiconductors”, NPG Asia Material, Vol. 2, pp. 15-22, (2010).
[1.15] Y. Ohta, Y. Chikama, T. Hara, Y. Mizuno, T. Aita, M. Takei, M. Suzuki,O. Nakagawa, Y. Harumoto, H. Nishiki, and N. Kimura, Proc. Int. Display Workshop, 1685 (2009).
[1.16] T. Kamiya, K. Nomura, H. Hosono, J. Display Technol. 5, 273 (2009)
[1.17] J. Y. Kwon, K. S. Son, J. S. Jung, T. S. Kim, M. K. Ryu, K. B. Park, B. W. Yoo,J. W. Kim, Y. G. Lee, K. C. Park, S. Y. Lee, and J. M. Kim, IEEE Electron Device Lett., 29, 1309 (2008).
[1.18] D. Kahng, S. M. Sze, Bell Syst. Tech. Journal., 46, 1288 (1967).
[1.19] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proc. Of IEEE, 85, 1248 (1997).
[1.20] K. Yoneda, R. Yokoyama, and T. Yamada, Proc. Symp. VLSI Circuits, p.85, (2001).
[1.21] M. H. White, Y. Yang, A. Purwar, and M. L. French, IEEE Int’l Nonvolatile Memory Technology Conference, 52 (1996).
[1.22] M. H. White, D. A. Adams, J. Bu, IEEE Circuits and Devices Magazine., 16, 22 (2000).
[1.23] Y. C. King, T. J. King, and C. Hu, IEEE Int. Electron Devices Meeting Tech. Dig., 115 (1998).
[1.24] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, IEEE Int. Electron Devices Meeting Tech. Dig., 521 (1995).
[1.25] L. Goux, G. Russo, N. Menou, J. G. Lisoni, M. Schwitters, V. Paraschiv, D. Maes, C. Artoni, G. Corallo, L. Haspeslagh, D. J. Wouters, R. Zambrano, and C. Muller, IEEE Trans. Electron Devices, 52, 447 (2005).
[1.26] B. N. Engel, J. Akerman, B. Butcher, R. W. Dave, M. DeHerrera, M. Durlam, G. Grynkewich, J. Janesky, S. V. Pietambaram, N. D. Rizzo, J. M. Slaughter, K. Smith, J. J. Sun, and S. Tehrani, IEEE Trans. Magnetics, Vol. 41, p.132 (2005).
[1.27] S. Lai, IEDM Tech. Dig., p.255 (2003).
[1.28] A. Chen, S. Haddad, Y.-C. Wu, T.-N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, and M. Taguchi, Int. Electron Devices Meet. p. 746 (2005).
[1.29] D. C. Kim, M. J. Lee, S. E. Ahn, S. Seo, J. C. Park, I. K. Yoo, I. G. Baek, H. J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U-In Chung, J. T. Moon, and B. I. Ryu, Appl. Phys. Lett. 88, 232106 (2006).
[1.30] X. Wu, P. Zhou, J. Li, L. Y. Chen, H. B. Lv, Y. Y. Lin and T. A. Tang, Appl. Phys. Lett. 90, p.183507 (2007).
[1.31] M. C. Chen, T. C. Chang, C. T. Tsai, S. Y. Huang, S. C. Chen, C. W. Hu, S. M. Sze, and M. J. Tsai, 2010, Appl. Phys. Lett. 96, 262110 (2010).
[1.32] A. Sawa, Mater. Today, 11, 28 (2008).
[1.33] W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Ignatiev, IEDM Tech., 193, (2002).
[1.34] W. Guan, S. Long, Q. Liu, M. Liu, and W. Wang, IEEE Electron Device Letters, 29, 434 (2008).

















Chapter 2
[2.1] J. S. Park, W. J. Maeng, H. S. Kim, J. S. Park, Thin Solid Films 520 (2012) 1679–1693.
[2.2] J. K. Jeong, H.J. Chung, Y.G. Mo, H.D. Kim, H.K. Chung, Inf. Disp. 9 (2008) 20..
[2.3] H.J. In, O.K. Kwon, IEEE Electron Device Lett. 30 (2009) 377.
[2.4] J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, Applied Physics Letters, vol. 93, 093504, (2008).
[2.5] R. B. M. Crossa and M. M. De Souza, Applied Physics Letters, vol. 89, 263513, (2006).
[2.6] A. Suresh and J. F. Muth, Applied Physics Letters, vol. 92, 33502, (2008).
[2.7] J. Lee, J. S. Park, Y. S. Pyo, D.B. Lee, E.H. Kim, D. Stryakhilev, T.W. Kim, D.U. Jin, Y.-G., Mo, Appl. Phys. Lett. 95 (2009) 123502.
[2.8] J. M. Lee, I.-T. Cho, J.-H. Lee, H.-I. Kwon, Appl. Phys. Lett. 93 (2008) 093504.
[2.9] M. E. Lopes, H. L. Gomes, M. C. R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, and I. Ferreira, Appl. Phys. Lett. 95 (2009) 063502.
[2.10] K. Nomura, T. Kamiya, H. Yanagi, E. Ikenaga, K. Yang, K. Kobayashi, M. Hirano, and H. Hosono., Applied Physics Letters, vol. 92, pp. 202117, (2008).
[2.11] A. Suresh and J. F. Muth, Appl. Phys. Lett. 92 (2008) 033502.
[2.12] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono., Nature, vol. 432, pp. 488-492, (2004).
[2.13] J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, Applied Physics Letters, vol. 92, 072104 (2008).
[2.14] D. Kang, H. Lim, C. Kim, I. Song, J.Park, and Y. Parka, Applied Physics Letters, vol. 90, 192101 (2007).
[2.15] J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo, and H. D. Kim, Applied Physics Letters, vol. 93, 123508 (2008).
[2.16] D. W. Greve, Field Effect Devices and Applications: Devices for Portable, Low-Power, and Imaging Systems (Prentice-Hall, Upper Saddle River, NJ, 1998), Chap. 7, pp. 280-288
[2.17] T. Kamiya, K. Nomura, and H. Hosono, SCIENCE AND TECHNOLOGY OF ADVANCEDMATERIALS, 11 (2010) 044305.
[2.18] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, Japanese Journal of Applied Physics, vol. 48, 010203, (2009).
[2.19] Y. Kamada, S. Fujita, T. Hiramatsu, T. Matsuda, H. Nitta, M. Furuta, and T. Hirao, Japanese Journal of Applied Physics, vol. 49, 03CB03, (2010).
[2.20] Y. Kamada, S. Fujita, T. Hiramatsu, T. Matsuda, M. Furuta, T. Hirao, Solid-State Electronics, vol.54, pp. 1392–1397 (2010).
[2.21] P. Görrn, M. Lehnhardt, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 91 (2007) 193504.
[2.22] J. H. Shin, J. S. Lee, C. S. Hwang, S. H. K. Park, W. S. Cheong, M. Ryu, C. W. Byun, J. I. Lee, and H. Y. Chu, ETRI J. 31 (2009) 62.
[2.23] Oba, F., Togo, A., Tanaka, I., Paier, J. & Kresse, G. Defect, Phys. Rev. B 77, 245202 (2008)
[2.24] Liu, P-T., Chou, Y-T. & Teng, L-F., Appl. Phys. Lett. 94, 242101 (2009)
[2.25] S. Jeon, S. E. Ahn, I. Song, C. J. Kim, U. I. Chung, E.a Lee, I. Yoo, A. Nathan, S. Lee, J. Robertson and K. Kim, NATURE MATERIALS VOL 11( 2012).
[2.26] Janotti, A. & Van de Walle, C. G. Native point defects in ZnO. Phys. Rev. B 76, 165202 (2007).
[2.27] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, , Proc. IEEE, 85, 1248–1271 (1997).
[2.28] J. De Blauwe, M. Ostraat, M. Green, G. Weber, T. Sorsch, A. Kerber, F. Klemens, R. Cirelli, E. Ferry, J. L. Grazul, F. Baumann, Y. Kim, W. Mansfield, J. Bude, J. T. C. Lee, S. J. Hillenius, R. C. Flagan, and H. A. Atwater, in IEEE Int. Electron Devices Meeting (IEDM) Tech. 683-686 (2000).
[2.29] Y.-C. King, T.-J. King, and C. Hu, IEEE Trans. Electron Devices, 48, 696-700 (2001).
[2.30] H. I. Hanafi, S. Tiwari, and I. Khan, IEEE Trans. Electron Devices, 43, 1553-1558 (1996).









Chapter 3
[3.1] H. Godo, D. Kawae, S. Yoshitomi, T. Sasaki, S. Ito, H. Ohara, H. Kishida, M. Takahashi, A. Miyanaga, and S. Yamazaki, J. J. of Applied Physics 49 (2010)
[3.2] C. T. Tsai, T. C. Chang, S. C. Chen, I. Lo, S. W. Tsao, M.C. Hung, J. J. Chang, C. Y. Wu, and C. Y. Huang, Appl. Phys. Lett. 96, 242105 (2010)
[3.3] W. F. Chung, T. C. Chang, H. W. Li, S. C. Chen, Y. C. Chen, T. Y. Tseng, Y. H. Tai, Electrochem. Solid State Lett., 14(6) (2011) H235-H237.
[3.4] H. H. Hsieh, H. H. Lu, H. C. Ting, C. S. Chuang, C. Y. Chen, and Y. Lin, Journal of Information Display, Vol. 11, No. 4 (2010)
[3.5] A. Nathan, G. R. Chaji, and S. J. Ashtiani, J. Disp. Technol., 1, 267 (2005).
[3.6] S. Y. Huang, T. C. Chang*, M. C. Chen, T. C. Chen, F. Y. Jian, Y. C. Chen, H. C. Huang, and D. S. Gan, has been accepted by Surface & Coatings Technology (2011).
[3.7] P. Görrn, M. Lehnhardt, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 91 (2007) 193504.S. Y. Huang, T. C. Chang, L. W. Lin, M. C. Yang, M. C. Chen, J. C. Jhu, and F. Y. Jian, Appl. Phys. Lett. 100, 222901 (2012)
[3.8] T. C. Chen, T. C. Chang, T. Y. Hsieh, W. S. Lu, F. Y. Jian, C. T. Tsai, S. Y. Huang, C. S. Lin, Appl. Phys. Lett. 99, 022104 (2011)
[3.9] S. Y. Huang, T. C. Chang, M. C. Chen, S. C. Chen, T. C. Chen, and F. Y. Jian, Electrochem. Solid State Lett., 15(5), H161-H163 (2012)
[3.10] C. S. Lin, Y. C. Chen, T. C. Chang, S. C. Chen, F. Y. Jian, H. W. Li, T. C. Chen, C. F. Weng, J. Lu, and W. C. Hsu, IEEE Electron Device Lett. 30 (11), 1179-1181 (2009)
[3.11] G. W. Chang, T. C. Chang, J. C. Jhu, T. M. Tsai, Y. E. Syu, K. C. Chang, Y. H. Tai, F. Y. Jian, and Y. C. Hung, EEE Electron Device Lett. 33 (4) (2007).
[3.12] Y. K. Moon, S. Lee, W. S. Kim, B. W. Kang, C. O. Jeong, D. H. Lee, and J. W. Park, Appl. Phys. Lett. 95, 013507 (2009)
[3.13] D. K. Schroder, Microelectronics Reliability 47 (2007) 841–852























Chapter 4
[4.1] B. S. Yang, M. S. Huh, S. Oh, U. S. Lee, Y. J. Kim, M. S. Oh, J. K. Jeong, C. S. Hwang, and H. J. Kim, Appl. Phys. Lett. 98, 122110 (2011).
[4.2] C. J. Kim, S. Kim, J. H. Lee, J. S. Park, S. K. J. Park, E. Lee, J Lee, Y. Park, J. H. Kim, S. T. Shin, and U. I. Chung, Appl. Phys. Lett. 95, 252103 (2009).
[4.3] M. K. Ryu, S. Y, S. H. K. Park, C. S. Hwang, and J. K. Jeong, Appl. Phys. Lett. 95, 072104 (2009).
[4.4] M. C. Chen, T. C. Chang, S. Y. Huang, K. C. Chang, H. W. Li, S. C. Chen, J. Lu, and Y. Shi, Appl. Phys. Lett. 94, 62111 (2009).
[4.5] J. L. Song, J. S. Park, H. Kim, Y. W. Heo, J. H. Lee, and J. J. Kim, Appl. Phys. Lett. 90, 022106 (2007).
[4.6] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004)
[4.7] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett. 90, 212114 (2007).
[4.8] H. Godo, D. Kawae, S. Yoshitomi, T. Sasaki, S. Ito, H. Ohara, H. Kishida, M. Takahashi, A. Miyanaga, and S. Yamazaki, J. J. of Applied Physics 49 (2010)
[4.9] H. H. Hsieh, H. H. Lu, H. C. Ting, C. S. Chuang, C. Y. Chen, and Y. Lin, Journal of Information Display, Vol. 11, No. 4 (2010)
[4.10] C. Chen, K. Abe, T. C. Fung, H. Kumomi, and J. Kanicki, Jpn. J. of Applied Physics 48, 03B025 (2009)
[4.11] K. Nnmura, T. Kamiya, Y. Kikuchi, M. Hirano, H. Hosono, Thin Solid Films, 518, 3012-3016 (2010)
[4.12] J. Y. Kwon, K. S. Son, J. S. Jung, T. S. Kim, M. K. Ryu, K. B. Park, B. W. Yoo, J. W. Kim, Y. G. Lee, K. C. Park, S. Y. Lee, and J. M. Kim, IEEE Electron Device Lett. 29, 1309 (2008).
[4.13] D. Kang, H. Lim, C. Kim, I. Song, J. Park, Y. Park, and J. G. Chung, Appl. Phys. Lett. 90, 192101 (2007).
[4.14] J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett. 93, 123508 (2008).
[4.15] J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett. 92, 072104 (2008).
[4.16] M. Fujii, H. Yano, T. Hatayama, Y. Uraoka, T. Fuyuki, J. S. Jung, and J. Y. Kwon, Jpn. J. of Applied Physics 47, No. 8, 6236-6240 (2008)
















Chapter 5
[5.1] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett. 90, 212114 (2007).
[5.2] C. T. Tsai, T. C. Chang, S. C. Chen, I. Lo, S. W. Tsao, M.C. Hung, J. J. Chang, C. Y. Wu, and C. Y. Huang, Appl. Phys. Lett. 96, 242105 (2010)
[5.3] C. Chen, K. Abe, T. C. Fung, H. Kumomi, and J. Kanicki, Jpn. J. of Applied Physics 48, 03B025 (2009)
[5.4] J. Y. Kwon, K. S. Son, J. S. Jung, T. S. Kim, M. K. Ryu, K. B. Park, B. W. Yoo, J. W. Kim, Y. G. Lee, K. C. Park, S. Y. Lee, and J. M. Kim, IEEE Electron Device Lett. 29, 1309 (2008).
[5.5] T. C. Chen, T. C. Chang, C. T. Tsai, T. Y. Hsieh, S. C. Chen, C. S. Lin, M. C. Hung, C. H. Tu, J. J. Chang, and P. L. Chen, Appl. Phys. Lett. 97, 112104 (2010)
[5.6] S. Y. Huang, T. C. Chang, M. C. Chen, T. C. Chen, F. Y. Jian, Y. C. Chen, H. C. Huang, D. S. Gan, Surf. Coat. Technol. (accepted).
[5.7] M. Fujii, Y. Hiroshi, H. Tomoaki, U. Yukiharu, F. Takashi, J. J. Sim, K. J. Yeon, Jpn. J. of Applied Physics 47, No. 8, 6236-6240 (2008)
[5.8] S. D. Wang, M. ZHANG, M. WANG, X. LU, and M. WONG, Jpn. J. of Applied Physics 44, No. 9A, 6435–6440 (2005)
[5.9] S. Y. Huang, T. C. Chang, M. C. Chen, S. C. Chen, C. T. Tsai, M. C. Hung, C. H. Tu, C. H. Chen, J. J. Chang, and W. L. Liau, Electrochem. Solid State Lett., 14(4), H177-H179 (2011)
[5.10] C. S. Lin, Y. C. Chen, T. C. Chang, S. C. Chen, F. Y. Jian, H. W. Li, T. C. Chen, C. F. Weng, J. Lu, and W. C. Hsu, IEEE Electron Device Lett. 30 (11), 1179-1181 (2009)
[5.11] W. F. Chung, T. C. Chang, C. S. Lin, K. J. Tu, H. W. Li, T. Y. Tseng, Y. C. Chen, and Y. H. Tai, J. Electrochem. Soc., 159 (3), H286-H289 (2012)
[5.12] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature (London), 432 (2004) 488.
[5.13] C. T. Tsai, T. C. Chang, S. C. Chen, I. Lo, S. W. Tsao, M. C. Hung, J. J.Chang, C. Y. Wu, and C. Y. Huang. Appl, Phys. Lett. ,Vol. 96(2010) 242105.
[5.14] E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martins. Adv. Mater (Weinheim Ger), 17 (2005) 590.
[5.15] H. N Lee, J. Kyung, S.K. Kang, D. Y. Kim, M. C Sung, S. J. Kim, C. N. Kim, H. G. Kim, S. T. Kim, Tech. Dig. SID, California, USA, (2007) 1826.
[5.16] S.Y. Huang, T.C. Chang, M.C. Chen, S.C. Chen, T.C. Chen and F.Y. Jian . Electrochem. Solid-State Lett., Vol.15(5) (2012) H161-H163.
[5.17] W.F. Chung, T.C. Chang, H.W. Li, C.W. Chen, Y.C. Chen, S.C. Chen, T.Y. Tseng and Y.H. Tai, Electrochem. Solid-State Lett. Vol.14(3) (2011) H114-H116.
[5.18] G.W. Chang, T. C. Chang, J. C. Jhu, T. M. Tsai, Y. E. Syu, K. C. Chang, Y. H. Tai, F. Y. Jian, Y. C. Hung. IEEE Electron Device Lett. Vol. 3 (2012) 540-542.
[5.19] W. F. Chung, T. C. Chang, H. W. Li, S. C. Chen, Y. C. Chen, T. Y. Tseng and Y. H. Tai. Appl. Phys. Lett. Vol.98(2011) 152109.
[5.20] T.Y. Hsieh, T.C. Chang, T.C. Chen, Y.T. Chen, M.Y. Tsai, A.K. Chu,Y.C. Chung, H.C. Ting, and C.Y. Chen. IEEE Electron Device Lett. Vol.34(2013) 63-65
[5.21] M.Y. Tsai, T.C. Chang, A.K. Chu, T.C. Chen, T.Y. Hsieh and Y.T. Che. ECS Trans. Vol.45(2012) 119-131.
[5.22] X. Huang, C. Wu, H. Lu, F. Ren, Q. Xu, H. Ou, R. Zhang ,and Y. Zheng. Appl. Phys. Lett. Vol.100(2012) 243505.
[5.23] S.Y. Huang, T. C. Chang, M. C. Yang, L. W. Lin, M.H. Wu, K. H. Yang, M. C. Chen, Y. J. Chiu, and Bo-Liang Yeh. Appl. Phys. Lett. Vol.101(2012) 253502.
[5.24] N. Yamaguchi, S. Taniguchi, T. Miyajima, and M. Ikeda. J. Vac. Sci. Technol. B. Vol.27(2009) 1746.
[5.25] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, Appl. Phys. Lett. Vol.97(2010) 192103.
[5.26] M. Fujii, Y. Hiroshi, H. Tomoaki, U. Yukiharu, F. Takashi, J. J. Sim, and K. J. Yeon, Jpn. J. Appl. Phys. 47(8) (2008) 6236–6240.
[5.27] S. Y. Huang, T. C. Chang, L. W. Lin, M. Y. Yang, M.C. Chen, J. C. Jhu, and F. Y. Jian. Appl. Phys. Lett. Vol.100(2012) 222901.
















Chapter 6
[6.1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004)
[6.2] J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett.. 91, 113505 (2007).
[6.3] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett. 90, 212114 (2007).
[6.4] J. Y. Kwon, K. S. Son, J. S. Jung, T. S. Kim, M. K. Ryu, K. B. Park, B. W. Yoo, J. W. Kim, Y. G. Lee, K. C. Park, S. Y. Lee, and J. M. Kim, IEEE Electron Device Lett. 29, 1309 (2008).
[6.5] D. Kang, H. Lim, C. Kim, I. Song, J. Park, Y. Park, and J. G. Chung, Appl. Phys. Lett. 90, 192101 (2007).
[6.6] J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett. 92, 072104 (2008).
[6.7] S. Y. Sung, J. H. Choi, U. B. Han, K. C. Lee, J. H. Lee, J. J. Kim, W. Lim, S. J. Pearton, D. P. Norton, and Y. W. Heo, Appl. Phys. Lett. 96, 102107 (2010)
[6.8] S. Yang, D. H. Cho, M. K. Ryu, S. H. K. Park, C. S. Hwang, J. Jang, and J. K. Jeong Appl. Phys. Lett. 96,213511 (2010).
[6.9] T. Arai, N. Morosawa, K. Tokunaga, Y. Terai, E. Fukumoto, T. Fujimori, T. Nakayama, T. Yamaguchi and T. Sasaoka, SID-10 Digest, 1033-1036 (2010)
[6.10] S. Yang, D. H. Cho, M. K. Ryu, S. H. K. Park, C. S. Hwand, J. Jang, and J. K. Jeong, IEEE Electron Device Lett. 31, 144 (2010).
[6.11] J. Park, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, K.-K. Kim, S. Lee, K. Hong, J. Lee, J. Jung, E. Lee, K.-W. Kwon, and Y. Park, Appl. Phys. Lett. 93, 053505 (2008).
[6.12] C. F. Huang, C. Y. Peng, Y. J. Yang, H C. Sun, H. C. Chang, P. S. Kuo, H. L. Chang, C. Z. Liu, and C. W. Liu, IEEE Electron Device Lett. 29, 1332 (2008).
[6.13] R. B. M. Cross and M. M. De. Souza, Appl. Phys. Lett. 89, 263513 (2006).
[6.14] P. Gorrn, P. Holzer, T. Riedl, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, and S. Kipp, Appl. Phys. Lett. 90, 063502 (2007).
[6.15] A. Suresh and J. F. Muth, Appl. Phys. Lett. 92, 033502 (2008).
[6.16] J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett. 93, 123508 (2008).
[6.17] N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Surf. Sci., 86, 335 (1979).
[6.18] Y. Shimizu, M. Shimabukuro, H. Arai, and T. Seiyama, J. Electrochem. Soc., 136, 1206 (1989).
[6.19] M. Stewart, R. S. Howell, L. Pires, M. K. Hatalis, W. Howard, and O. Parche, IEDM Tech. Dig. (1998) 871.
[6.20] R. M. A. Dawson, Z. Shen, D. A. Furest, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, IEDM Tech. Dig. (1998) 875.
[6.21] H.Y. Lu, P.T. Liu, T. C. Chang, and S. Chi, IEEE Electron Device Lett. 27 (2006) 743.
[6.22] T. C. Chen, T. C. Chang, T. Y. Hsieh, W. S. Lu, F. Y. Jian, C. T. Tsai, S. Y. Huang, C. S. Lin, Appl. Phys. Lett. 99 (2011) 022104.
[6.23] J. S. Park, T. W. Kim, D. Stryakhilev, J. S. Lee, S. G. An, Y. S. Pyo, D. B. Lee, Y. G. Mo, D. U. Jin, and H. K. Chung, Appl. Phys. Lett. 95 (2009) 013503.
[6.24] Y. C. Chen, T. C. Chang, H. W. Li, S. C. Chen, J. Lu, W. F. Chung, Y. H. Tai, and T. Y. Tseng, Appl. Phys. Lett. 96 (2010) 262104.
[6.25] C. T. Tsai, T. C. Chang, S. C. Chen, I. Lo, S. W. Tsao, M.C. Hung, J. J. Chang, C. Y. Wu, and C. Y. Huang, Appl. Phys. Lett. 96 (2010) 242105.
[6.26] H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Thin Solid Films 516 (2008) 1516.
[6.27] W. F. Chung, T. C. Chang, H. W. Li, S. C. Chen, Y. C. Chen, T. Y. Tseng, Y. H. Tai, Electrochem. Solid State Lett., 14(6) (2011) H235-H237.
[6.28] M. C. Chen, T. C. Chang, S. Y. Huang, K. C. Chang, H. W. Li, S. C. Chen, J. Lu, and Y. Shi, Appl. Phys. Lett. 94, (2009) 162111.
[6.29] K. H. Ji, J. -I. Kim, Y. -G. Mo, J. H. Jeong, S. Yang, C. -S. Hwang, S. -H. K. Park, M. -K. Ryu, S. -Y. Lee, and J. K. Jeong, IEEE Electron Device Lett. 31 (2010) 1404.
[6.30] M. C. Chen, T. C. Chang, S. Y. Huang, S. C. Chen, C. W. Hu, C. T. Tsai, and Simon M. Sze, Electrochem. Solid State Lett., 13(6) (2010) H191-H193.
[6.31] M. C. Chen, T. C. Chang, C. T. Tsai, S. Y. Huang, S. C. Chen, C. W. Hu, S. M. Sze, and M. J. Tsai, Appl. Phys. Lett. 96 (2010) 262110.
[6.32] D. Kang, H. Lim, C. Kim, I. Song, J. Park, Y. Park, and J. G. Chung, Appl. Phys. Lett. 90, 192101 (2007).
[6.33] J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett. 92, 072104 (2008).
[6.34] S. Y. Huang, T. C. Chang, M. C. Chen, S. C. Chen, C. T. Tsai, M. C. Hung, C. H. Tu, C. H. Chen, J. J. Chang , W. L. Liau, Electrochem. Solid-State Lett. 14(4) (2011) H177.
[6.35] J. Park, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, K.-K. Kim, S. Lee, K. Hong, J. Lee, J. Jung, E. Lee, K.-W. Kwon, and Y. Park, Appl. Phys. Lett. 93 (2008) 053505.
[6.36] J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett. 93 (2008) 123508.
[6.37] T. C. Chen, T. C. Chang, T. Y. Hsieh, C. T. Tsai, S. C. Chen, C. S. Lin, M. C. Hung, C. H. Tu, J. J. Chang, and P. L. Chen, Appl. Phys. Lett. 97 (2010) 192103.
[6.38] Nomura K, Kamiya T, Yanagi H, Ikenaga E, Yang K, Kobayashi K, Hirano M and Hosono, Appl. Phys. Lett. 92 (2008) 202117.
[6.39] H.Oh,S. Mi.Yoon, M. K. Ryu, C. S. Hwang, S. Yang, and S. H. K. Park, Appl. Phys. Lett. 97 (2010) 183502.
[6.40] Lee K-H, Jung J S, Son K S, Park J S, Kim T S, Choi R, Jeong J K, Kwon J-Y, Koo B and Lee S, Appl. Phys. Lett. 95 (2009) 232106.
[6.41] P. Görrn, M. Lehnhardt, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 91 (2007) 193504.
[6.42] J. H. Shin, J. S. Lee, C. S. Hwang, S. H. K. Park, W. S. Cheong, M. Ryu, C. W. Byun, J. I. Lee, and H. Y. Chu, ETRI J. 31 (2009) 62.
[6.43] A. Suresh and J. F. Muth, Appl. Phys. Lett. 92 (2008) 033502.
[6.44] M.E. Lopes, H. L. Gomes, M. C. R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, and I. Ferreira, Appl. Phys. Lett. 95 (2009) 063502.














Chapter 7
[7.1] S. Jeon, S. Park, I. Song, J. H. Hur, J. Park, H. Kim, S. Kim, S. Kim, H. Yin, U. I. Chung, E. Lee, and C. Kim, Applied Materials & Interfaces, Vol. 3, NO. 1 (2011).
[7.2] M. C. Chen, T. C. Chang, C. T. Tsai, S. Y. Huang, S. C. Chen, C. W. Hu, S. M. Sze, and M. J. Tsai, Appl. Phys. Lett., 96, 262110 (2010).
[7.3] M. C. Chen, T. C. Chang, S. Y. Huang, S. C. Chen, C. W. Hu, C. T. Tsai, and S. M. Sze, Electrochem. Solid State Lett., 13(6), H191-H193 (2010).
[7.4] T. C. Chang, F. Y. Jian, S. C. Chen, Y. T. Tsai, Mater. Today 14(12), 608 (2011).
[7.5] H. Godo, D. Kawae, S. Yoshitomi, T. Sasaki, S. Ito, H. Ohara, H. Kishida, M. Takahashi, A. Miyanaga, and S. Yamazaki, J. J. of Applied Physics, 49 (2010).
[7.6] H. H. Hsieh, H. H. Lu, H. C. Ting, C. S. Chuang, C. Y. Chen, and Y. Lin, Journal of Information Display, Vol. 11, No. 4 (2010).
[7.7] W. F. Chung, T. C. Chang, H. W. Li, S. C. Chen, Y. C. Chen, T. Y. Tseng, Y. H. Tai, Electrochem. Solid State Lett., 14(6) H235-H237 (2011).
[7.8] A. Nathan, G. R. Chaji, and S. J. Ashtiani, J. Disp. Technol., 1, 267 (2005).
[7.9] S. Jeon, S. E. Ahn, I. Song, C. J. Kim, U. I. Chung, E. Lee, I. Yoo, A. Nathan, S. Lee, J. Robertson and K. Kim, NATURE MATERIALS, VOL 11 (2012).
[7.10] F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, . Phys. Rev. B 77, 245202 (2008).
[7.11] Su, Y. K. et al, Langmuir 26, 603-606 (2010).
[7.12] Y. Kamada, S. Fujita, T. Hiramatsu, T. Matsuda, H. Nitta, M. Furuta, and T. Hirao, Japanese Journal of Applied Physics, vol. 49, 03CB03, (2010)
[7.13] J. H. Shin, J. S. Lee, C. S. Hwang, S. H. K. Park, W. S. Cheong, M. Ryu, C. W. Byun, J. I. Lee, and H. Y. Chu, ETRI J. 31 (2009) 62
[7.14] P. Görrn, M. Lehnhardt, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 91 (2007) 193504.
[7.15] N. Xu, B. Gao, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Ham, J. F. Kang, and B. Yu, Dig. Tech. Pap. – Symp. VLSI Technol., 2008, 100
[7.16] M. C. Chen, T. C. Chang, C. T. Tsai, S. Y. Huang, S. C. Chen, C. W. Hu, S. M. Sze, and M. J. Tsai, Appl. Phys. Lett., 96, 262110 (2010).
[7.17] Y. E. Syu, T. C. Chang, C. T. Tsai, G. W. Chang, T. M. Tsai, K. C. Chang, Y. H. Tai, M. J. Tsai, and S. M. Sze, Electrochem. Solid State Lett., 14(10), H419-H421 (2011).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.219.236.62
論文開放下載的時間是 校外不公開

Your IP address is 18.219.236.62
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code