Responsive image
博碩士論文 etd-0630113-223124 詳細資訊
Title page for etd-0630113-223124
論文名稱
Title
液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於人體尿液中含砷及硒化合物與營養補給品中含鉻及砷化合物之分析應用
Identification and quantification of arsenic and selenium species in human urine and chromium and arsenic species in dietary supplement by HPLC-ICP-MS and HPLC-ESI-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-24
繳交日期
Date of Submission
2013-07-30
關鍵字
Keywords
感應耦合電漿質譜儀、含砷化合物、電噴灑質譜儀、液相層析、含硒化合物、含鉻化合物
ESI-MS, Arsenic, Selenium, Chromium, ICP-MS
統計
Statistics
本論文已被瀏覽 5703 次,被下載 559
The thesis/dissertation has been browsed 5703 times, has been downloaded 559 times.
中文摘要
自然界中同一元素往往含有不同的物種型態,而物種間的毒性及特性也有所不同,相較於總量的測定,物種分析的結果更能夠完整的提供樣品資訊。利用高效能液相層析 (High Performance Liquid Chromatography,HPLC)將物種分離後,搭配感應耦合電漿質譜儀 (Inductively Coupled Plasma Mass Spectrometry,ICP-MS)偵測,其具有高重複性、低偵測極限、線性範圍廣及同位素分析能力等優點,成為物種分析工具最佳選擇之一;在分析真實樣品中往往會有不同於物種標準品的未知物種,利用電噴灑質譜儀 (Electrospray Ionization Mass Spectrometry,ESI-MS)針對未知物種進行鑑定,可以得到定量以及定性完整的資訊。
第一部分研究,使用陰離子交換樹脂 (Anion-exchange chromatography)作為管柱,以碳酸銨作為動相分離人體尿液中含砷與硒化合物,本實驗系統可以於11分鐘內分離AsB、As(III)、DMA、MMA、As(V)、Se(IV)及Se(VI)等七種砷與硒物種。分析時使用動態反應槽 (Dynamic Reaction Cell)以去除高鹽類樣品中的氯離子形成ArCl對於砷的光譜干擾,以及去除ICP系統中Ar氣體形成Ar2對於硒的光譜干擾。在最適化條件下,砷的偵測極限範圍介於0.008-0.015 ng mL-1;硒的偵測極限範圍介於0.022-0.030 ng mL-1。將此方法應用在分析NIST 2670以及來自三種不同的尿液樣品中。在分析結果中發現尿液樣品含有硒物種的未知物。將液相層析連接電噴灑質譜儀系統 (HPLC-ESI-MS)鑑定未知物,經過一次質譜和二次質譜的鑑定後,可能為硒醣 (SeSug1)。由於人與人之間飲食習慣不同,而使得尿液中砷與硒總量及物種上有所差異,經過服用含硒的補給品,可以幫助人體代謝,使得尿液中砷含量提高。
第二部分研究,以陰離子交換層析結合感應耦合電漿質譜儀對營養補給品中Cr(III)、Cr(VI)、AsB、As(III)、DMA、MMA及As(V)等物種進行分析。動相中添加EDTA作為與Cr(III)的螯合試劑,幫助鉻的分離。以梯度沖提方式在層析最適化條件下於14分鐘內分離七種物種。為了減輕鉻在偵測時來自ArC的光譜干擾,選用O2作為DRC系統的反應氣體。在最適化條件下,砷的偵測極限範圍介於0.008-0.019 ng mL-1;鉻的偵測極限範圍介於0.084-0.087 ng mL-1。方法確效上選用NRCC DORM-3,樣品則為藥局販售之營養補給品。樣品萃取方法採用微波輔助萃取,萃取試劑為2 mM EDTA及1% HF配製於含有50 mM 碳酸銨的動相B中,與微波消化結果比較後,萃取效率介於88-95%之間。在萃取前添加標準品,確認此萃取方法不會造成物種間的轉換,其回收率介於91-103%之間,證實此萃取方法的可行性。根據實驗結果顯示,自然界食品中的鉻以Cr(III)為主,由於食品中含有抗氧化劑,大部分的Cr(III)不會被氧化成Cr(VI)。
Abstract
First research, speciation of arsenic and selenium in human urine was carried out using ion chromatography (IC) for separation and inductively coupled mass spectrometry (ICP-MS) for detection. The arsenic and selenium species studied were arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB) and selenite [Se(IV)], selenate [Se(IV)]. Chromatographic separation of all the species was achieved in <11 min in gradient elution mode using (NH4)2CO3 and methanol at pH 8.8. The outlet of the IC column was directly connected to the nebulizer of ICP-MS for the determination of arsenic and selenium. The speciation of arsenic and selenium have been carried out in human urine samples. The recoveries from spiked samples were in the range of 91−109%. The unknown compounds detected in human urine were identified by coupling IC directly with electrospray ionization−mass spectrometry (ESI-MS). Selenosugar was identified in human urine. The limits of detection were in the range of 0.008−0.015 ng mL−1 for various arsenic species and 0.022-0.030 ng mL−1 for various selenium species based on peak height.
Second research, a HPLC separation procedure has been developed for the speciation of Cr(III), Cr(VI) and As(III), As(V), DMA, MMA, AsB in dietary supplement samples. The species were separated on anion-exchange LC in gradient elution mode. The mobile phase consisting of EDTA and (NH4)2CO3 at pH 8.8, operated in a linear ramp, yielded well resolved chromatograms of all the species within 14 min with retention times of less than 2% RSD. The analyses were carried out using dynamic reaction cellinductively coupled plasma-mass spectrometer (DRC-ICP-MS). The DRC conditions have also been optimized to obtained interference free measurements of 52Cr, 53Cr and 75As, which were otherwise interfered by: 35Cl16O1H, 40Ar12C on 52Cr; 37Cl16O, 40Ar13C, 40Ar12C1H on 53Cr; and 40Ar35Cl on 75As. The detection limits of the procedure were 0.008-0.019 ng As mL-1 and 0.084-0.087 ng Cr mL-1. The accuracy of the method has been validated by comparing the sum of the concentrations obtained for individual species with total concentration of the elements in NRCC SRM DORM-3 Fish Protein. The method has also been applied on three real samples, diabetic support formula tablets, diabetic support formula dietary fiber and Spirulina tablets , in which case the comparison has been made with total concentrations determined after complete dissolution of the samples. In this study, a microwave-assisted extraction method was used for the extraction of chromium and arsenic species from dietary supplemen samples. The extraction efficiency was better than 88% and the recoveries from spiked samples were in the range of 91–103%.
目次 Table of Contents
目錄
謝誌 ................................................................................................................................... i
摘要 .................................................................................................................................. ii
目錄 ................................................................................................................................... v
圖目錄 ............................................................................................................................ vii
表目錄 ............................................................................................................................. ix
第一章 液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於尿液樣品中砷與硒物種分析之應用
壹、前言 ........................................................................................................................... 1
貳、動態反應槽 (Dynamic Reaction Cell,DRC)原理 ................................................. 6
參、實驗部分
一、儀器裝置 ........................................................................................................... 7
二、藥品與溶液之配製 ......................................................................................... 10
肆、實驗流程
一、液相層析條件最適化 ..................................................................................... 15
二、DRC-ICP-MS系統最適化探討 ..................................................................... 15
三、再現性 ............................................................................................................. 17
四、校正曲線與偵測極限的估計 ......................................................................... 17
五、真實樣品分析 ................................................................................................. 17
伍、結果與討論
一、液相層析最適化探討 ..................................................................................... 18
二、DRC-ICP-MS系統最適化探討 ..................................................................... 21
三、再現性 ............................................................................................................. 34
四、校正曲線與偵測極限的估計 ......................................................................... 34
五、真實樣品分析 ................................................................................................. 40
陸、結論 ......................................................................................................................... 55
柒、參考文獻 ................................................................................................................. 56
第二章 液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於營養補給品中鉻與砷物種分析之應用
壹、前言 ......................................................................................................................... 60
貳、實驗部分
一、儀器裝置 ......................................................................................................... 64
二、藥品與溶液之配製 ......................................................................................... 64
參、實驗流程
一、液相層析條件最適化 ..................................................................................... 66
二、DRC-ICP-MS系統最適化探討 ..................................................................... 67
三、再現性 ............................................................................................................. 69
四、校正曲線與偵測極限的估計 ......................................................................... 69
五、真實樣品分析 ................................................................................................. 69
肆、結果與討論
一、液相層析最適化探討 ..................................................................................... 70
二、DRC-ICP-MS系統最適化探討 ..................................................................... 81
三、再現性 ............................................................................................................. 92
四、校正曲線與偵測極限的估計 ......................................................................... 92
五、萃取最適化條件 ............................................................................................. 98
六、真實樣品分析 ............................................................................................... 102
伍、結論 ....................................................................................................................... 112
陸、參考文獻 ............................................................................................................... 113
圖目錄
第一章 液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於尿液樣品中砷與硒物種分析之應用
圖1-1 HPLC-DRC-ICP-MS系統圖 ............................................................................ 9
圖1-2 砷與硒物種之結構式 ..................................................................................... 12
圖1-3 砷與硒物種於各pH值環境下之化學式及pKa值 ...................................... 14
圖1-4 動相A與B的pH值對層析結果的影響 ..................................................... 19
圖1-5 動相B中碳酸銨濃度對層析結果的影響 .................................................... 20
圖1-6 動相中MeOH濃度對層析結果的影響 ........................................................ 22
圖1-7 注入5 ng mL-1砷標準品與200 μg mL-1氯離子之層析圖 .......................... 25
圖1-8 以O2為反應氣體,設定q值為0.7,改變氣體流速對(a) 75As;(b) 75As16O及背景訊號的影響 ........................................................................................ 27
圖1-9 以O2為反應氣體,設定q值為0.7,改變氣體流速對(a) 78Se;(b) 80Se;(c) 78Se16O;(d) 80Se16O及背景訊號的影響 ...................................................... 28
圖1-10 以CH4為反應氣體,設定q值為 0.7,改變氣體流速對(a) 75As;(b) 75As12CH2;(c) 75As12CH3;(d) 75As12CH4及背景訊號的影響 ................... 29
圖1-11 以CH4為反應氣體,設定q值為 0.7,改變氣體流速對(a) 78Se;(b) 80Se及背景訊號的影響 ........................................................................................ 30
圖1-12 以O2為反應氣體,設定q值為0.7,改變氣體流速所得訊號強度與背景訊號之比值 (S / B)以及預估偵測極限 (EDL) ......................................... 31
圖1-13 以CH4為反應氣體,設定q值為0.7,改變氣體流速所得訊號強度與背景訊號之比值 (S / B)以及預估偵測極限 (EDL).......................................... 32
圖1-14 以O2為反應氣體,設定氣體流速為1.4 mL min-1,改變Rpq值對預估偵測極限 (EDL)的影響..................................................................................... 33
圖1-15 以O2為反應氣體,設定氣體流速為1.4 mL min-1,Rpq值為0.5 (AsO)、0.6 (Se),改變AFV對砷及硒分析物和背景訊號之影響 .......................... 35
圖1-16 不同模式下砷與硒物種之層析圖 ................................................................. 37
圖1-17 人體尿液稀釋倍數對層析結果的影響 ......................................................... 44
圖1-18 人體尿液注入HPLC-ESI-MS所得圖譜 ........................................................ 46
圖1-19 標準參考樣品2670 “Normal Level” Freeze-dried Urine稀釋5倍之層析圖......................................................................................................................... 47
圖1-20 標準參考樣品2670 “Elevated Level” Freeze-dried Urine稀釋10倍之層析圖 ..................................................................................................................... 49
圖1-21 人體尿液#1稀釋5倍之層析圖 .................................................................... 51
圖1-22 人體尿液#2稀釋5倍之層析圖 .................................................................... 52
圖1-23 人體尿液#3稀釋5倍之層析圖 .................................................................... 53
第二章 液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於營養補給品中鉻與砷物種分析之應用
圖2-1 三種常見的螯合試劑 ..................................................................................... 63
圖2-2 實驗流程圖 ..................................................................................................... 71
圖2-3 樣品萃取流程圖 ............................................................................................. 73
圖2-4 動相A與B的pH值對層析結果的影響 ..................................................... 75
圖2-5 動相B中碳酸銨濃度對層析結果的影響 .................................................... 76
圖2-6 動相A與B中EDTA的濃度對層析結果的影響 ....................................... 78
圖2-7 動相中添加MeOH濃度對層析結果的影響 ................................................ 79
圖2-8 動相流速對層析結果的影響 ......................................................................... 80
圖2-9 注入10 ng mL-1砷標準品與200 μg mL-1氯離子之層析圖 ........................ 83
圖2-10 以O2為反應氣體,設定q值為 0.7,改變氣體流速對(a) 52Cr;(b) 53Cr;(c) 75As; (d) 75As16O及背景訊號的影響 ................................................... 84
圖2-11 以CH4為反應氣體,設定q值為 0.7,改變氣體流速對(a) 52Cr; (b) 53Cr 及背景訊號的影響 ............................................................................................. 85
圖2-12 以CH4為反應氣體,設定q值為 0.7,改變氣體流速對(a) 75As;(b) 75As12CH2; (c) 75As12CH3;(d) 75As12CH4 及背景訊號的影響 ................. 86
圖2-13 以O2為反應氣體,設定q值為 0.7,改變氣體流速所得訊號強度與背景訊號之比值 (S / B)以及預估偵測極限 (EDL) ......................................... 88
圖2-14 以CH4為反應氣體,設定q值為 0.7,改變氣體流速所得訊號強度與背景訊號之比值 (S / B)以及預估偵測極限(EDL).............................................. 89
圖2-15 以 CH4為反應氣體,設定氣體流速為 1.0 mL min-1,改變Rpq值對預估偵測極限 (EDL)的影響 ................................................................................. 90
圖2-16 以 O2為反應氣體,設定氣體流速為 0.8 mL min-1,改變Rpq值對預估偵測極限 (EDL)的影響..................................................................................... 91
圖2-17 以 O2為反應氣體,設定氣體流速為 0.8 mL min-1,Rpq值為 0.60,改變AFV對鉻及砷分析物和背景訊號之影響.................................................... 93
圖2-18 鉻與砷物種在不同模式下之層析圖 ............................................................. 95
圖2-19 添加不同濃度EDTA於萃取液中,探討糖尿病補給錠中鉻之相對訊號 ....................................................................................................................... 100
圖2-20 添加不同的酸試劑於萃取液中,探討糖尿病補給錠中鉻之相對訊號 ... 101
圖2-21 標準參考樣品DORM-3 Fish protein萃取後所得鉻與砷之層析圖 .......... 104
圖2-22 糖尿病配方補給錠萃取後所得鉻與砷之層析圖 ....................................... 106
圖2-23 糖尿病補給纖食萃取後所得鉻與砷之層析圖 ........................................... 108
圖2-24 市售綠藻錠萃取後所得鉻與砷之層析圖 ................................................... 110
表目錄
第一章 液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於尿液樣品中砷與硒物種分析之應用
表1-1 各物種化合物之半數致死量 ........................................................................... 2
表1-2 尿液中砷與硒物種的文獻回顧 ....................................................................... 5
表1-3 砷與硒物種之化學式與解離常數pKa值 ..................................................... 13
表1-4 以ICP-MS分析砷與硒時常見之光譜干擾 .................................................. 16
表1-5 動相中甲醇濃度對於分析物訊號之影響 ..................................................... 23
表1-6 液相層析系統之最適化分離條件 ................................................................. 24
表1-7 HPLC-DRC-ICP-MS系統操作條件 .............................................................. 36
表1-8 以LC-DRC-ICP-MS測定5 ng mL-1砷物種及20 ng mL-1硒物種之滯留時間與分析物訊號再現性................................................................................. 38
表1-9 以HPLC- ICP-MS測定砷及硒物種之校正曲線及偵測極限 ..................... 39
表1-10 砷與硒物種偵測極限之比較 ......................................................................... 43
表1-11 HPLC-ESI-ITMS系統操作參數 .................................................................... 45
表1-12 以LC-DRC-ICP-MS測定NIST 2670 NIST 2670 “Normal Level”標準參考樣品中之砷及硒物種 ..................................................................................... 48
表1-13 以LC-DRC-ICP-MS測定NIST 2670 “Elevated Level”標準參考樣品中之砷及硒物種 ......................................................................................................... 50
表1-14 以LC-DRC-ICP-MS測定人體尿液中之砷及硒物種 .................................. 54
第二章 液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於營養補給品中鉻與砷物種分析之應用
表2-1 以ICP-MS分析鉻與砷時常見之光譜干擾 ..................................................... 68
表2-2 微波消化步驟設定參數 ................................................................................. 72
表2-3 液相層析系統之最適化分離條件 ................................................................. 82
表2-4 HPLC-DRC-ICP-MS系統操作條件 .............................................................. 94
表2-5 以LC-DRC-ICP-MS測定10 ng mL-1鉻及5 ng mL-1砷物種之滯留時間與分析物訊號再現性 ......................................................................................... 96
表2-6 以HPLC- ICPMS測定鉻及砷物種之校正曲線及偵測極限 ....................... 97
表2-7 鉻與砷物種偵測極限之比較 ......................................................................... 99
表2-8 以LC-DRC-ICP-MS測定NIST DORM-3標準參考樣品中之鉻及砷物種 ....................................................................................................................... 105
表2-9 以LC-DRC-ICP-MS測定糖尿病補給錠中之鉻及砷物種 ........................ 107
表2-10 以LC-DRC-ICP-MS測定市售糖尿病配方纖食中之鉻及砷物種 ............ 109
表2-11 以LC-DRC-ICP-MS測定市售綠藻錠中之鉻及砷物種 ............................ 111
參考文獻 References
1. Reyes, L. H.; Mar, J. L. G.; Rahman, G. M. M.; Seybert, B.; Fahrenholz, T.; Kingston, H. M. S., Simultaneous determination of arsenic and selenium species in fish tissues using microwaveassisted enzymatic extraction and ion chromatography-inductively coupled plasma mass spectrometry. Talanta 2009, 78 (3), 983-990.
2. Sakurai, T.; Kaise, T.; Ochi, T.; Saitoh, T.; Matsubara, C., Study of in vitro cytotoxicity of a water soluble organic arsenic compound, arsenosugar, in seaweed. Toxicology 1997, 122 (3), 205-212.
3. Leermakers, M.; Baeyens, W.; Gieter, M. D.; Smedts, B.; Meert, C.; Bisschop, H. C.; Morabito, R.; Quevauviller, P., Toxic arsenic compounds in environmental samples: Speciation and validation. Trends Anal. Chem. 2006, 25 (1), 1-10.
4. Ma, M. S.; Le, X. C., Effect of arsenosugar ingestion on urinary arsenic speciation. Clin. Chem. 1998, 44 (3), 539-550.
5. Rivera-Núñez, Z.; Linder, A. M.; Chen, B.; Nriagu, J. O., Low-level determination of six arsenic species in urine by High Performance Liquid Chromatography- Inductively Coupled Plasma-Mass Spectrometry (HPLC-ICP-MS). Anal. Methods 2011, 3 (5), 1122-1129.
6. Kinoshita, A.; Wanibuchi, H.; Wei, M.; Yunoki, T.; Fukushima, S., Elevation of 8-hydroxydeoxyguanosine and cell proliferation via generation of oxidative stress by organic arsenicals contributes to their carcinogenicity in the rat liver and bladder. Toxicol. Appl. Pharmacol. 2007, 221 (3), 295-305.
7. Vahter, M., What Are the Chemical Forms of Arsenic in Urine, and What Can They Tell Us About Exposure? Clin. Chem. 1994, 40 (5), 679-680.
8. Nuttall, K. L., Evaluating selenium poisoning. Ann. Clin. Lab. Sci. 2006, 36 (4), 409-420.
9. Rayman, M. P., The importance of selenium to human health. Lancet 2000, 356 (9225), 233-241.
10. Gammelgaard, B.; Jøns, O.; Bendahl, L., Selenium speciation in pretreated human urine by ion-exchange chromatography and ICP-MS detection. J. Anal. At. Spectrom. 2001, 16 (4), 339-344.
11. Ohta, Y.; Kobayashi, Y.; Konishi, S.; Hirano, S., Speciation Analysis of Selenium Metabolites in Urine and Breath by HPLC- and GC-Inductively Coupled Plasma-MS after Administration of Selenomethionine and Methylselenocysteine to Rats. Chem. Res. Toxicol. 2009, 22 (11), 1795-1801.
12. Biswas, S.; Talukder, G.; Sharma, A., Prevention of cytotoxic effects of arsenic by short-term dietary supplementation with selenium in mice in vivo. Mutation Research 1999, 441 (1), 155-160.
13. Gerhard, N. S., Selenium. Biol. Trace Elem. Res. 1992, 33 (1-3), 51-62.
14. Verdon, C. P.; Caldwell, K. L.; Fresquez, M. R.; Jones, R. L., Determination of seven arsenic compounds in urine by HPLC-ICP-DRC-MS: a CDC population biomonitoring method. Anal. Bioanal. Chem. 2009, 393 (3), 939-947.
15. Chen, B.; Hu, B.; He, M.; Mao, X.; Zu, W., Synthesis of mixed coating with multi-functional groups for in-tube hollow fiber solid phase microextraction–high performance liquid chromatography–inductively coupled plasma mass spectrometry speciation of arsenic in human urine. J. Chromatogr. A 2012, 1227 (1), 19-28.
16. Chen, L. W. L.; Lu, X.; Le, X. C., Complementary chromatography separation combined with hydride generation–inductively coupled plasma mass spectrometry for arsenic speciation in human urine. Anal. Chim. Acta 2010, 675 (1), 71-75.
17. Moreno, F.; García-Barrera, T.; Gómez-Ariza, J. L., Simultaneous analysis of mercury and selenium species including chiral forms of selenomethionine in human urine and serum by HPLC column-switching coupled to ICP-MS. Analyst 2010, 135 (10), 2700-2705.
18. Jäger, T.; Drexler, H.; Göen, T., Ion pairing and ion exchange chromatography coupled to ICP-MS to determine selenium species in human urine. J. Anal. At. Spectrom. 2013, Advance Article.
19. Dumont, E.; Ogra, Y.; Suzuki, K. T.; Vanhaecke, F.; Cornelis, R., Liquid chromatography–electrospray ionization tandem mass spectrometry for on-line characterization, monitoring and isotopic profiling of the main selenium-metabolite in human urine after consumption of Se-rich and Se-enriched food. Anal. Chim. Acta 2006, 555 (1), 25-33.
20. Gammelgaard, B.; Bendahl, L.; Jacobsen, N. W.; Stürup, S., Quantitative determination of selenium metabolites in human urine by LC-DRC-ICP-MS. J. Anal. At. Spectrom. 2005, 20 (9), 889-893.
21. Pan, F.; Tyson, J. F.; Uden, P. C., Simultaneous speciation of arsenic and selenium in human urine by high-performance liquid chromatography inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2007, 22 (8), 931-937.
22. Alava, P.; Tack, F.; Laing, G. D.; Wiele, T. V., HPLC-ICP-MS method development to monitor arsenic speciation changes by human gut microbiota. Biomed. Chromatogr. 2012, 26 (4), 524-533.
23. Gammelgaard, B.; Stürup, S.; Christensen, M. V., Human urinary excretion and metabolism of 82Se-enriched selenite and selenate determined by LC-ICP-MS. Metallomics 2012, 4 (2), 149-155.
24. D’Ilio, S.; Violante, N.; Majorani, .; Petrucci, F., Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and V in complex matrices: Still a challenge? A review. Anal. Chim. Acta 2011, 698 (1-2), 6-13.
25. Bandura, D. R.; Baranov, V. I.; Tanner, S. D., Inductively Coupled Plasma Mass Spectrometer with Axial Field in a Quadrupole Reaction Cell. J. Am. Soc. Mass. Spectrom. 2002, 13 (10), 1176-1185.
26. Pedrero, Z.; Madrid, Y., Novel approaches for selenium speciation in foodstuffs and biological specimens: A review. Anal. Chim. Acta 2009, 634 (2), 135-152.
27. Larsen, E. H.; Hansen, M.; Fan, T.; Vahl, M., Speciation of selenoamino acids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae. J. Anal. At. Spectrom. 2001, 16 (12), 1403-1408.
28. 王若芸. 液相層析結合感應耦合電漿質譜儀於銻、鉈、砷、硒分析之應用. 國立中山大學, 高雄市, 2006.
29. 謝雨哲. 液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於營養補給品中含硒化合物與藍綠藻中含砷化合物之分析應用. 國立中山大學, 高雄市, 2011.
30. Sucharová, J., Optimisation of DRC ICP-MS for determining selenium in plants. J. Anal. At. Spectrom. 2011, 26 (9), 1756-1762.
31. Hu, ZC.; Hu, SH.; Gao, S.; Liu, Y.; Lin, S., Volatile organic solvent-induced signal enhancements in inductively coupled plasma-mass spectrometry: a case study of methanol and acetone. Spectrochim. Acta, Part B 2004, 59 (9), 1463-1470.
32. Tsoi, Y. K.; Leung, K. S. Y., Simultaneous determination of seven elemental species in estuarine waters by LC-ICP-DRC-MS. J. Anal. At. Spectrom. 2010, 25 (6), 880-885.
33. 賴珮珊. 感應偶合電漿質譜儀於水樣中砷與硒之物種分析以及魚肉樣品中有機錫物種分析之應用. 國立中山大學, 高雄市, 2004.
34. 廖書翎. 感應耦合電漿質譜儀於食品中多重微量元素分析與鉻、砷及硒物種型態分析之應用. 國立中山大學, 高雄市, 2011.
35. Mar, J. L. G.; Reyes, L. H.; Rahman, G. M. M.; Kingston, H. M. S., Simultaneous Extraction of Arsenic and Selenium Species From Rice Products by Microwave-Assisted Enzymatic Extraction and Analysis by Ion Chromatography-Inductively Coupled Plasma-Mass Spectrometry. J. Agric. Food Chem. 2009, 57 (8), 3005-3013.
36. Chu, Y. L.; Jiang, S. J., Speciation analysis of arsenic compounds in edible oil by ion chromatography–inductively coupled plasma mass spectrometry. J. Chromatogr. A 2011, 1218 (31), 5175-5179.
37. Hsieh, Y. J.; Jiang, S. J., Application of HPLC-ICP-MS and HPLC-ESI-MS Procedures for Arsenic Speciation in Seaweeds. J. Agric. Food Chem. 2012, 60 (9), 2083-2089.
38. Wrobel, K.; Wrobel, K.; Parker, B.; Kannamkumarath, S. S.; Caruso, J. A., Determination of As(III), As(V), monomethylarsonic acid, dimethylarsinic acid and arsenobetaine by HPLC-ICP-MS: analysis of reference materials, fish tissues and urine. Talanta 2002, 58 (5), 899-907.
39. Marchante-Gayón, J. M.; Feldmann, I.; Thomas, C.; Jackubowski, N., Speciation of selenium in human urine by HPLC-ICP-MS with a collision and reaction cell. J. Anal. At. Spectrom. 2001, 16 (5), 457-463.
40. Zheng, J.; Ohata, M.; Furuta, N., Reversed-phase liquid chromatography with mixed ion-pair reagents coupled with ICP-MS for the direct speciation analysis of selenium compounds in human urine. J. Anal. At. Spectrom. 2002, 17 (7), 730-735.

1. Zhang, H.; Liu, Q.; Wang, T.; Yun, Z.; Li, G.; Liu, J.; Jiang, G., Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium (III) and chromium (VI) in environmental water samples. Anal. Chim. Acta 2013, 770 (1), 140-146.
2. Ambushe, A. A.; McCrindle, R. I.; McCrindle, C. M. E., Speciation of chromium in cow’s milk y solid-phase extraction/dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS). J. Anal. At. Spectrom. 2009, 24 (4), 502-507.
3. Wolf, R. E.; Morrison, M. J.; Goldhaber, M. B., Simultaneous determination of Cr(III) and Cr(VI) using reversed-phased ion-pairing liquid chromatography with dynamic reaction cell inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom 2007, 22 (9), 1051-1060.
4. Kaewkhomdee, N.; Mounicou, S.; Szpunar, J.; Lobinski, R.; Shiowatana, J., Characterization of binding and bioaccessibility of Cr in Cr-enriched yeast by sequential extraction followed by two-dimensional liquid chromatography with mass spectrometric detection. Anal. Bioanal. Chem. 2010, 396 (3), 1355-1364.
5. Roig-Navarro, A. F.; Martinez-Bravo, Y.; López, F. J.; Hernández, F., Simultaneous determination of arsenic species and chromium(VI) by high-performance liquid chromatography–inductively coupled plasma-mass spectrometry. J. Chromatogr. A 2001, 912 (2), 319-327.
6. Martinez-Bravo, Y.; Roig-Navarro, A. F; López, F. J.; Hernández, F., Multielemental determination of arsenic, selenium and chromium(VI) species in water by high-performance liquid chromatography–inductively coupled plasma mass spectrometry. J. Chromatogr. A 2001, 926 (2), 265-274.
7. Lintschinger, J.; Kalcher, K.; Gössler, W.; Kölbl, G.; Novic, M., Simultaneous determination of chromium (III) and chromium (VI) by reversed-phase ion-pair HPLC with chromium-specific detection. Fresenius J. Anal. Chem. 1995, 351 (7), 604-609.
8. Threeprom, J.; Purachaka, S.; Potipan, L., Simultaneous determination of Cr(III)–EDTA and Cr(VI) by ion interaction chromatography using a C18 column. J. Chromatogr. A 2005, 1073 (7), 291-295.
9. Séby, F.; Charles, S.; Gagean, M.; Garraaud, H.; Donard, O. F. X., Chromium speciation by hyphenation of high-performance liquid chromatography to inductively coupled plasma-mass spectrometry— study of the influence of interfering ions. J. Anal. At. Spectrom. 2003, 18 (11), 1386-1390.
10. Li, Y.; Xue, H., Determination of Cr(III) and Cr(VI) species in natural waters by catalytic cathodic stripping voltammetry. Anal. Chim. Acta 2001, 448 (1-2), 121-134.
11. Chen, Z.; Megharaj, M.; Naidu, R., Speciation of chromium in waste water using ion chromatography inductively coupled plasma mass spectrometry. Talanta 2007, 72 (2), 394-400.
12. Gürleyük, H.; Wallschläger, D., Determination of chromium(III) and chromium(VI) using suppressed ion chromatography inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2001, 16 (9), 926-930.
13. Kuo, C. Y.; Jiang, S. J.; Sahayam, A. C., Speciation of chromium and vanadium in environmental samples using HPLC-DRC-ICP-MS. J. Anal. At. Spectrom. 2007, 22 (6), 636-641.
14. Wolf, R. E.; Morrison, J. M.; Goldhaber, M. B., Simultaneous determination of Cr(III) and Cr(VI) using reversed-phased ion-pairing liquid chromatography with dynamic reaction cell inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2007, 22 (9), 1051-1060.
15. Ambushe, A. A.; McCrindle, R. I.; McCrindle, C. M. E., Speciation of chromium in cow’s milk y solid-phase extraction/dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS). J. Anal. At. Spectrom. 2009, 24 (4), 502-507.
16. Chen, Z.; Megharaj, M.; Naidu, R., Removal of interferences in the speciation of chromium using an octopole reaction system in ion chromatography with inductively coupled plasma mass spectrometry. Talanta 2007, 73 (5), 948-952.
17. Wolf, R. E.; Morman, S. A.; Hageman, P. L.; Hoefen, T. M.; Plumlee, G. S., Simultaneous speciation of arsenic, selenium, and chromium: species stability, sample preservation, and analysis of ash and soil leachates. Anal. Bioanal. Chem. 2011, 401 (9), 2733-2745.
18. Wang, H. J.; Du, X. M.; Wang, M.; Wang, T. C.; Ou-Yang, H.; Wang, B.; Zhu, M. T.; Wang, Y.; Jia, G.; Feng, W. Y., Using ion-pair reversed-phase HPLC ICP-MS to simultaneously determine Cr(III) and Cr(VI) in urine of chromate workers. Talanta 2010, 81 (4-5), 1856-1860.
19. Tsoi, Y. K.; Leung, K. S. Y., Simultaneous determination of seven elemental species in estuarine waters by LC-ICP-DRC-MS. J. Anal. At. Spectrom. 2010, 25 (6), 880-885.
20. 廖書翎. 感應耦合電漿質譜儀於食品中多重微量元素分析與鉻、砷及硒物種型態分析之應用. 國立中山大學, 高雄市, 2011.
21. Hsieh, Y. J.; Jiang, S. J., Application of HPLC-ICP-MS and HPLC-ESI-MS Procedures for Arsenic Speciation in Seaweeds. J. Agric. Food Chem. 2012, 60 (9), 2083-2089.
22. Castillo, A.; Roig-Navarro, A. F.; Pozo, O. J., Capabilities of microbore columns coupled to inductively coupled plasma mass spectrometry in speciation of arsenic and selenium. J. Chromatogr. A 2008, 1202 (2), 132-137.
23. Alava, P.; Tack, F.; Laing, G. D.; Wiele, T. V., HPLC-ICP-MS method development to monitor arsenic speciation changes by human gut microbiota. Biomed. Chromatogr. 2012, 26 (4), 524-533.
24. Raber, G.; Stock, N.; Hanel, P. Murko, M.; Navratilova, J.; Francesconi, K. A., An improved HPLC–ICPMS method for determining inorganic arsenic in food: Application to rice, wheat and tuna fish. Food Chem. 2012, 134 (1), 524-532.
25. Dufailly, V.; Guérin, T.; Noël, L.; Frémy, J. M.; Beauchemin, D., A simple method for the speciation analysis of bio-accessible arsenic in seafood using on-line continuous leaching and ion exchange chromatography coupled to inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2008, 23 (9), 1263-1268.
26. Novotnik, B.; Zuliani, T.; Ščančar, J.; Milačič, R., Chromate in food samples: an artefact of wrongly applied analytical methodology? J. Anal. At. Spectrom. 2013, 28 (4), 558-866.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code