Responsive image
博碩士論文 etd-0630113-230217 詳細資訊
Title page for etd-0630113-230217
論文名稱
Title
一、泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於海藻中微量稀土元素分析之應用 二、低溫揮發法結合電熱式揮發感應耦合電漿質譜儀於藥用活性碳中微量元素分析之應用
1. Direct determination of trace rare earth elements in seaweeds by USS-ETV-ICP-MS 2. Low temperature vaporization for USS-ETV-ICP-MS determination of trace elements in medicinal activated charcoal
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-24
繳交日期
Date of Submission
2013-07-30
關鍵字
Keywords
稀土元素、微量元素、藥用活性碳、海藻、電熱式揮發、感應耦合電漿質譜儀
medicinal activatied charcoal, 8-HQ-5-SA, EDTA, seaweed, USS-ETV-ICP-MS, TAC
統計
Statistics
本論文已被瀏覽 5715 次,被下載 146
The thesis/dissertation has been browsed 5715 times, has been downloaded 146 times.
中文摘要
超音波泥漿取樣法(Ultrasonic slurry sampling,USS)結合了液態取樣法及固體取樣法的優點,像水溶液一樣可以簡單的改變泥漿濃度,此法常被應用在電熱式揮發裝置(Electrothermal vaporization,ETV),此裝置是屬於乾進樣系統,相較於傳統氣動式霧化器而言,可降低氧化物造成的光譜干擾以及有較好的傳輸效率。此兩種裝置目前已經廣泛的結合感耦合電漿質譜儀(Inductively coupled plasma mass spectrometry,ICP-MS)進行各式樣品中的微量元素分析。研究使用 USS-ETV-ICP-MS,可以直接對固體樣品進行偵測,有別於傳統固體樣品需經過複雜且耗時的前處理步驟以及可以降低在前處理過程中可能導入的汙染或易揮發分析物的損失,造成定量上的不準確。
研究分為兩部分,第一部分研究是利用泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於海藻中微量稀土元素分析之應用。本研究主要針對稀土元素中釹、釓、鏑及鎦進行偵測分析;研究中將對於修飾劑、泥漿樣品的製備及儀器設定等參數條件進行探討。由實驗結果得知,利用 2.0% Thioacetamide(TAC)以及 0.3% 8-Hydroxyquinoline-5-sulfonic acid(8-HQ-5-SA)作為混合修飾劑,能夠有效地降低分析物揮發溫度,提升分析物的訊號;泥漿樣品配製則選擇以 1.0% m/v 泥漿樣品濃度作為最適化條件,因泥漿樣品濃度太低,分析物產生的訊號較小,容易導致定量上的不準確性,而且泥漿樣品濃度太高將會導致非常大的基質壓抑效應,易使樣品揮發不完全。在儀器參數部分,探討裂解溫度及揮發溫度,最適化條件分別為 350oC 及 2700oC,可得到較佳的分析物訊號,並在之後探討是否會有干擾物造成光譜干擾。最後對桃葉標準參考樣品(NIST SRM-1547)及四種市售海藻樣品進行定量分析。此方法對釹、釓、鏑及鎦的方法偵測極限分別可達 0.3、0.6、0.02 及 0.02 ng g-1。
第二部分研究為低溫揮發法結合電熱式揮發感應耦合電漿質譜儀於藥用活性碳中微量元素分析之應用。本研究使用低溫揮發法,期望能利用此法在低溫時就能夠將分析物(鎘、銻、碲、汞、鉈及鉛)完全揮發進入 ICP-MS 進行偵測,最後在由清除步驟將較難揮發基質去除。研究中分別對修飾劑、泥漿樣品配製以及儀器設定條件等便因進行探討,選用的修飾劑為 Disodium ethylenediamine tetraacetic acid(EDTA),EDTA 能夠有效地將需要高溫揮發的分析物轉變成較低溫度便可進行揮發,以 1.0% m/v EDTA作為最適化濃度。泥漿樣品配製則選擇以 1.0% m/v 泥漿樣品濃度作為最適化條件。在儀器參數部分,探討裂解溫度及揮發溫度,最適化條件分別為 150oC 及 1000oC,可得到較佳的分析物訊號,並在之後探討是否會有干擾物造成光譜干擾。最適化條件探討完後,對本研究低溫揮發法與傳統高溫揮發方法比較,分析物訊號可提升 1.4-3.1 倍之多。最後再以煤灰標準參考樣品(NIST SRM-1633b)以及市售藥用活性碳樣品,分別使用標準添加法及同位素稀釋法作定量分析,來驗證方法之可行性。此方法對鎘、銻、碲、汞、鉈及鉛的方法偵測極限分別可達 0.2、0.1、0.1、0.1、0.02 以及 0.6 ng g-1。
Abstract
The majority of analysis by ICP-MS are carried out on solutions using a conventional pneumatic nebulizer. However, the type of analytical tasks that can be solved by ICP-MS can be extended using a number of other sample introduction techniques that can be easily adapted to ICP-MS. Electrothermal vaporization (ETV) is one of the sample introduction techniques, that is currently employed in ICP-MS. This alternative technique to solution nebulization presents several advantages, including improved sensitivity, small sample size requirements and the capability of solid analysis. Perhaps the most notable benefit of ETV-ICP-MS is the possibility of performing direct solids analysis.
Ultrasonic slurry sampling is one of the methods for direct solid sample introduction, that has been successfully used in ETAAS. More recently, this approach has been extended to ETV-ICP-MS. Compared to traditional sample preparation methods such as acid digestion and dry pyrolysis, slurry sampling offers several benefits including reduced sample preparation time, reduced possibility of sample contamination, and decreased possibility of analyte loss before analysis. Furthermore, slurry sampling combines the benefits of solid and liquid sampling and permits the use of conventional liquid sample handling apparatus such as an autosampler.
First reaserch, ultrasonic slurry sampling electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry USS-ETV-ICP-MS. has been applied to the determination of Nd, Gd, Dy and Lu in seaweed samples. Thioacetamide (TAC) and 8-hydroxyquinoline-5-sulfonic acid (8-HQ-5-SA) was used as the modifier. Since the sensitivities of the elements studied in seaweed slurry and aqueous solution were quite different, standard addition method was used for the determination of Nd, Gd, Dy and Lu in these seaweed samples. This method has been applied to the determination of Nd, Gd, Dy and Lu in NIST SRM 1547 peach leaves reference material and four seaweed samples. Analysis results of reference sample NIST SRM 1547 peach leaves agreed satisfactorily with the information values. Detection limits estimated from standard addition curves were 0.3, 0.6, 0.02 and 0.02 ng g-1 for Nd, Gd, Dy and Lu, respectively.
Second research, a low temperature electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) method was developed for the determination of the medicinal activated charcoal, using Ethylenediaminetetraacetic acid (EDTA) as chemical modifier. In this study, a relatively low vaporization temperature was used which separated the analyte from the major matrix components and improved the ion signals significantly. Since the sensitivities of Cd, Sb, Te, Hg, Tl and Pb in various medicinal activated charcoal slurries and aqueous solution were quite different, the standard addition method and isotope dilution method were used for the determination of Cd, Sb, Te, Hg, Tl and Pb in these medicinal activated charcoal samples. This method has been applied to the determination of Cd, Sb, Te, Hg, Tl and Pb in NIST SRM 1633b coal fly ash reference material and four seaweed samples. Analysis results of reference sample NIST SRM 1633b coal fly ash agreed satisfactorily with the certified values. Detection limits estimated from standard addition curves were 0.2, 0.1, 0.1, 0.1, 0.02 and 0.6 ng g-1 for Cd, Sb, Te, Hg, Tl and Pb, respectively.
目次 Table of Contents
目錄
謝誌 i
論文提要 ii
目錄 vi
圖表目錄 viii

第一章 泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於海藻中微量稀土元素分析之應用
壹、前言 1
一、研究背景 1
二、超音波泥漿取樣法結合電熱式揮發樣品輸入系統簡介 4
貳、實驗部分 7
一、儀器裝置及操作條件 7
二、試劑藥品及溶液的配製 11
參、結果與討論 16
一、修飾劑的選擇 16
二、添加氟化物與鹼對分析物訊號之影響 18
三、裂解溫度及揮發溫度的探討 18
四、稀釋倍數的探討 22
五、界面活性劑對訊號的影響 26
六、酸對分析元素訊號的影響 26
七、光譜(同質量)干擾 26
八、校正曲線 34
九、樣品分析 34
肆、結論 44
伍、參考文獻 45

第二章 低溫揮發法結合電熱式揮發感應耦合電漿質譜儀於藥用活性碳中微量元素分析之應用
壹、前言 49
一、研究背景 49
二、鎘、碲、銻、汞、鉈及鉛之個論 51
三、同位素稀釋法 52
貳、實驗部分 53
一、儀器裝置及操作條件 53
二、試劑藥品及溶液的配製 53
參、結果與討論 62
一、修飾劑的選擇 62
二、界面活性劑對分析物訊號的影響 66
三、酸對分析物訊號的影響 66
四、稀釋倍數的探討 70
五、裂解溫度及揮發溫度的探討 70
六、低溫揮發法與傳統高溫揮發方法比較 74
七、光譜(同質量)干擾 74
八、校正曲線 77
九、定量分析 81
肆、結論 88
伍、參考文獻 89
參考文獻 References
第一章 文獻
1. Kato, Y.; Fujinaga, K.; Nakamura, K.; Takaya, Y.; Kitamura, K.; Ohta, J.; Toda, R.; Nakashima, T.; Iwamori, H., Deep-sea mud in the Pacific Ocean as a potentialresource for rare-earth elements. Nat. Geosci.2011, 4, 535-539.

2. Györgya, K.; Ajtony, Z.; Meel, K. V.; Grieken, R. V.; Czitrovszky, A.; Bencs, L., Fast heating induced impulse halogenation of refractory sample components inelectrothermal atomic absorption spectrometry by direct injection of a liquidhalogenating agent. Talanta2011, 85, 1253-1259.

3. Tsalev, D.L.; Ivanova, E., Bulgarian analytical atomic spectroscopists in the new millennium-integrated in the European research area. J. Anal. At. Spectrom. 2012, 27, 1645-1657.

4. Wu, W.; Xu, T.; Hao, Q.; Wang, Q.; Zhang, S. J.; Zhao, C. Y., Applications of X-ray fluorescence analysis of rare earths in China. J. Rare Earth2010, 28, 30-36.

5. Bong, W. S. K.; Nakai, I.; Furuya, S.; Suzuki, H.;Abe, Y .; Osaka, K.; Matsumoto, T.; Itou, M.; Imai, N.; Ninomiya, T., Development of heavy mineral and heavy element database of soil sediments in Japan using synchrotron radiation X-ray powder diffraction and high-energy (116 keV) X-ray fluorescence analysis 1. Case study of Kofu and Chiba region. Forensic. Sci. Int.2012, 220, 33-49.

6. Dybczynski, R.S.;Czerska, E.; Danko, B.; Kulisa, K.;Samczynski, Z., Comparison of performance of INAA, RNAA and ion chromatography for the determination of individual lanthanides. Appl. Radiat. Isot.2010, 68, 23-27.

7. Singh, A. K.; Padmasubashini, V.; Gopal, L., Determination of uranium, thorium and rare-earth elements in zircon samples using ICP-MS. J. Radioanal. Nucl. Chem.2012, 294, 19-25.

8. Fedyunina, N. N.; Ossipov, K. B.; Seregina, I. F.; Bolshov, M.A.; Statkus, M. A.; Tsysin, G. I., Determination of rare earth elements in rock samples by inductively coupled plasma mass-spectrometry after sorption preconcentration using Pol-DETATA sorbent. Talanta 2012, 102, 128-131.

9. Rousseau, T. C. C.; Sonke, J. E.; Chmeleff, J.; Candaudap, F.; Lacan, F.; Boaventura, G.; Seyler, P.; Jeandel, C., Rare earth element analysis in natural waters by multiple isotope dilution - sector field ICP-MS. J. Anal. At. Spectrom. 2013, 28, 573-584.

10. Padmasubashini, V.; Satyanarayana, K., Determination of Rare Earth Elements, Yttrium, Thorium, and Other Trace Elements in Monazite Samples by Inductively Coupled Plasma Mass Spectrometry. At. Spectrosc. 2013, 34, 6-14.

11. Huang, S. J.; Jiang, S. J., Determination of Zn, Cd and Pb in vegetable oil by electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.2001, 16, 664-668.

12. Ni, J. L.; Liu, C. C.; Jiang, S. J., Determination of Ga, Ge, As, Se and Sb in fly ash samples by ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Anal. Chim. Acta2005, 550, 144-150.

13. Huang, S. Y.; Jinag, S. J., 8-Hydroxyquinoline-5-sulfonic acid as the modifier for the determination of trace elements in cereals by slurry sampling electrothermal vaporization ICP-MS. Anal. Methods2010, 2, 1310-1315.

14. de Paula, C. E. R.; Caldas, L. F. S.; Brum, D. M.;Cassella, R. J., Development of an ultrasonic slurry sampling method for the determination of Cu and Mn in antibiotic tablets by electrothermal atomic absorption spectrometry. J. Pharm. Biomed. Anal.2012, 66, 197-203.

15. Alvarez, MA.; Carrillo, G., Simultaneous determination of arsenic, cadmium, copper, chromium, nickel, lead and thallium in total digested sediment samples and available fractions by electrothermal atomization atomic absorption spectroscopy (ET AAS). Talanta2012, 97, 505-512.

16. Hsiao, P. K.; Sahayam, A. C.; Jiang, S. J., Determination of trace elements in silicon powder using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.2011, 26, 586-592.

17. Lin, M. L.; Jiang, S. J., Determination of trace Cr, Mo, Pd, Cd, Pt and Pb in drug tablets by ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.2011, 26, 1813-1818.

18. Zhang, Y. F.; Hu, B., Determination of some refractory elements and Pb by fluorination assisted electrothermal vaporization inductively coupled plasma mass spectrometry with platform and wall vaporization. Spectrochim. Acta Part B2011, 66, 163-169.

19. Yi, Y. Z.; Sahayam, A. C.; Jiang, S. J., Palladium nanoparticles as the modifier for the determination of Zn, As, Cd, Sb, Hg and Pb in biological samples byultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2012, 27, 426-431.

20. Liaw, M. J.; Li, Y. C.; Jiang, S. J.,Determination of mercury in fish samples by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B1997, 52, 779-785.

21. Lu, H. H.; Jiang, S. J., Organic acids as the modifier to determine Zn, Cd, Tl and Pb in soil by slurry sampling electrothermal vaporization inductively-coupled plasma mass spectrometry. Anal. Chim. Acta2001, 429, 247-255.

22. Tseng, Y. J.; Tsai, Y. D.; Jiang, S. J., Electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry for the determination of Fe, Co, Ni, Cu, and Zn in biological samples. Anal. Bioanal. Chem.2007, 387, 2849-2855.

23. Aramendia, M.; Resano, M.;Vanhaecke, F., Determination of toxic traceimpurities in titanium dioxide by solid sampling-electrothermalvaporization-inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2009, 24, 41-50.

24. Grindlay, G.; Mora, J.;Gras, L.;de Loos-Vollebregt, M. T. C., Ultratrace determination of Pb, Se and As in wine samples by electrothermal vaporization inductively coupled plasma mass spectrometry. Anal. Chim. Acta2009, 652, 154-160.

25. Guo, X. Q.; He, M.; Chen, B. B.; Hu, B., Solidified floating organic drop microextraction combined with ETV-ICP-MS for the determination of trace heavy metals in environmental water samples. Talanta 2012, 94, 70-76.

26. Silva, A. F.; Welz, B.;de Loos-Vollebregt, M. T. C., Evaluation of pyrolysis curves for volatile elements in aqueous standards and carbon-containing matrices in electrothermal vaporization inductively coupled plasma mass spectrometry.Spectrochim. Acta Part B2008, 63, 755-762.

27. Goltz, D. M.; Gregoire, D. C.;Chakrabarti, C. L., Mechanism of vaporization of yttrium and rare earth elements in electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B1995, 50, 1365-1382.

28. Buseth, I.; Wibetoe, G.; Martinsen, I., Determination of endogenous concentrations of the lanthanides in body fluids and tissues using electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.1998, 13, 1039-1049.

29. He, M.;Hu, B.; Jiang, Z.C.,Electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of trace amount of lanthanides and yttrium in soil with polytetrafluroethylene emulsion as a chemical modifier. Anal. Chim. Acta2005, 530, 105-112.

30. Zhang, Y. F.; Jiang, Z. C.; He, M.; Hu, B., Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling. Environ. Pollut.2007, 148, 259-467.

31. Wu, S. W.; He, M.; Hu, B.; Jiang, Z. C., Determination of trace rare earth elements in natural water by electrothermal vaporization ICP-MS with pivaloyltrifluoroacetone as chemical modifier.Microchim Acta2007, 159, 269-275.

32. Al-Ammar, A. S.;Northington, J., Accuracy improvement in the determination of palladium in pharmaceuticals by eliminating volatility error when using ICP-MS coupled with direct introduction of sample dissolved in organic solvents. J. Anal. At. Spectrom.2011, 26, 1531-1533.

33. Muegge, B. D.; Brooks, S.; Richter, M. M., Electrochemiluminescence of tris(8-hydroxyquinoline-5-sulfonic acid)aluminum(III) in aqueous solution. Anal. Chem.2003, 75, 1102-1105.

34. Memon, N.; Bhanger, M. I., Micellar liquid chromatographic determination of aluminum as its complex with 8-hydroxyquinoline-5-sulfonic acid. Acta Chromatogr.2004, 14, 172-179.

35. Telgmann, L.; Sperling, M.; Karst, U., Determination of gadolinium-based MRI contrast agents in biological and environmental samples: A review. Anal. Chim. Acta2013, 764, 1-16.

36. Miller-Ihli, N. J.,Influence of slurry preparation on the accuracy of ultrasonic slurry electrothermal atomic absorption spectrometry. J. Anal. At. Spectrom.1994, 9, 1129-1134.

37. 陳鎮東, “海洋化學”, 國立編譯館, 西元 1994 年 8 月

38. Ivanova, J.; Korhammer, S.; Djingova, R.; Heidenreich, H.; Markert, B., Determination of lanthanoids and some heavy and toxicelements in plant certified reference materials by inductivelycoupled plasma mass spectrometry.Spectrochim. Acta Part B2001, 56, 3-12.

第二章 文獻
1. Soltyk, K.; Lozak, A.; Ostapczuk, P.; Fijalek, Z., Determination of chromium and selected elements in multimineral and multivitamin preparations and in pharmaceutical raw material. J. Pharm. Biomed. Anal.2003, 32, 425-432.

2. Figueiredo, E. C.; Dedina, J.; Arruda, M. A .Z., Metal furnace heated by flame as a hydride atomizer for atomic absorption spectrometry: Sb determination in environmental and pharmaceutical samples. Talanta2007, 73, 621-628.

3. Docekal, B.; Vojtkova, B., Determination of trace impurities in titanium dioxide by direct solid sampling electrothermal atomic absorption spectrometry. Spectrochim. Acta Part B2007, 62, 304-308.

4. Portugal, L. A.; Matos, G. D.; Lima, D. C.; Brito, G. B.; Fernandes, A. P.; Ferreira, S. L. C., Determination of lead in aluminum and magnesium antacids using electrothermal atomic absorption spectrometry. Microchem. J.2011, 98, 29-31.

5. Hoffmann, E.; Ludke, C.,Studies on the quantitative analysis of trace elements in single SiC crystals using laser ablation-ICP-MS. J. Anal. At. Spectrom.1999, 14, 1679-1684.

6. Lewen, N.; Mathew, S.; Schenkenberger, M.; Raglione, T., A rapid ICP-MS screen for heavy metals in pharmaceutical compounds. J. Pharm. Biomed. Anal.2004, 35, 739-752.

7. Huang, J. Q.; Hu, X.; Zhang, J. R.; Li, K. X.; Yan, Y.; Xu, X. B., The application of inductively coupled plasma mass spectrometry in pharmaceutical and biomedical analysis. J. Pharm. Biomed. Anal.2006, 40, 227-234.

8. Rao, R. N.; Talluri, M. V. N. K., An overview of recent applications of inductively coupled plasma-mass spectrometry (ICP-MS) in determination of inorganic impurities in drugs and pharmaceuticals. J. Pharm. Biomed. Anal.2007, 40, 1-13.

9. Boulyga, S. F.; Heilmann, J.; Prohaska, T.; Heumann, K. G.,Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples. Anal. Bioanal. Chem.2007, 389, 697-706.

10. Lepri, F. G.; Borges, D. L. G.; Araujo, R. G. O.; Welz, B.; Wendler, F.; Krieg, M.; Becker-Ross, H., Determination of heavy metals in activated charcoals and carbon black for Lyocell fiber production using direct solid sampling high-resolution continuum source graphite furnace atomic absorption and inductively coupled plasma optical emission spectrometry. Talanta2010, 81, 980-987.

11. Dash, K.; Venkateswarlu, G.; Thangavel, S.; Rao, S. V.; Chaurasia, S. C., Ultraviolet photolysis assisted mineralization and determination of trace levels of Cr, Cd, Cu, Sn, and Pb in isosulfan blue by ICP-MS. Microchem. J. 2011, 98, 312-316.

12. Lin, M. L.; Jiang, S. J., Determination of trace Cr, Mo, Pd, Cd, Pt and Pb in drug tablets by ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.2011, 26, 1813-1818.

13. Zeisler, R.; Paul, R. L.; Spatz, R. O.; Yu, L. L.; Mann, J. L.; Kelly, W. R.; Lang, B. E.; Leigh, S. D.; Fagan, J., Elemental analysis of a single-wall carbon nanotube candidate reference material.Anal. Bioanal. Chem.2011, 399, 509-517.

14. Kasamatsu, M.; Suzuki, Y., Application of Trace Element Analysis Using ICP-MS to Forensic Discrimination of Charcoal Ash.BUNSEKI KAGAKU2012, 61, 577-581.

15. Reed, R. B.; Goodwin, D. G.; Marsh, K. L.; Capracotta, S. S.; Higgins, C. P.; Fairbrother, D. H.; Ranville, J. F., Detection of single walled carbon nanotubes by monitoring embedded metals. Environ. Sci.: Processes Impacts2013, 15, 204-213.

16. Lam, R.; Salin, E. D., Analysis of pharmaceutical tablets by laser ablation inductively coupled plasma atomic emission spectrometry and mass spectrometry (LA-ICP-AES and LA-ICP-MS). J. Anal. At. Spectrom. 2004, 19, 938-940.

17. Huang, S. Y.; Jiang, S. J., 8-Hydroxyquinoline-5-sulfonic acid as the modifier for the determination of trace elements in cereals by slurry sampling electrothermal vaporization ICP-MS. Anal. Methods 2010, 2, 1310-1315.

18. Hsiao, P. K.; Jiang, S. J.; Sahayam, A. C., Determination of trace elements in silicon powder using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2011, 26, 586-592.

19. Yi, Y. Z.; Sahayam, A. C.; Jiang, S. J., Palladium nanoparticles as the modifier for the determination of Zn, As, Cd, Sb, Hg and Pb in biological samples byultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2012, 27, 426-431.

20. Liao, H. C.; Jiang, S. J., EDTA as the modifier for the determination of Cd, Hg and Pb in fish by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.1999, 14, 1583-1588.

21. Fan, Z. F.; Jiang, Z. C.; Yang, F.; Hu, B., Determination of platinum, palladium and rhodium in biological and environmental samples by low temperature electrothermal vaporization inductively coupled plasma atomic emission spectrometry with diethyldithiocarbamate as chemical modifier. Anal. Chim. Acta2004, 510, 45-51.

22. Resano, M.; Aramendia, M.; Vanhaecke, F., Solid sampling-electrothermal vaporization-inductively coupled plasma mass spectrometry for the direct determination of traces of boron in biological materials using isotope dilution for calibration. J. Anal. At. Spectrom.2006, 21, 1036-1044.


23. Yin, J.; Hu, B.; He, M.; Jiang, Z. C., Determination of trace rare earth elements in environmental samples by low temperatureelectrothermal vaporization inductively coupled plasma mass spectrometry after synergistic extraction with dimethylheptylmethylphosphateand1-phenyl-3-methyl-4-benzoyl-pyrazalon-5. Anal. Chim. Acta2007,594, 61-68.

24. Division of Toxicology and Environmental Medicine,Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services. Detailed data table for the 2011 priority list of hazardous substances that will be the subject of toxicological profiles.

25. Chen, F. Y.; Jiang, S. J., Slurry Sampling Flow Injection Chemical Vapor Generation Inductively Coupled Plasma Mass Spectrometry for the Determination of As, Cd, and Hg in Cereals. J. Agric. Food Chem.2009, 57, 6564-6569.

26. Liao, P. H.; Jiang, S. J.; Sahayam, A. C., Cloud point extraction combined with flow injection vapor generation inductively coupled plasma mass spectrometry for preconcentration and determination of ultra trace Cd, Sb and Hg in water samples. J. Anal. At. Spectrom. 2012, 27, 1518-1524.

27. Yi, Y. Z.; Wu, S. Y.; Jiang, S. J.; Sahayam, A. C., Cloud Point Extraction of Cr, Cu, Cd, and Pb From Water Samples and Determination by Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry with Isotope Dilution. At. Spectrosc.2013, 34, 39-47.

28. Chen, S. F.; Jiang, S. J., Determination of cadmium, mercury and lead in soil samples by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 1998, 13, 1113-1117.

29. Volynsky, A. B., Mechanisms of action of platinum group modifiers in electrothermal atomic absorption spectrometry. Spectrochim. Acta Part B2000, 55, 103-150.

30. Volynsky, A. B., Comparative efficacy of platinum group modifiers in electrothermal atomic absorption spectrometry. Spectrochim. Acta Part B2004, 59, 1799-1821.

31. Fan, Z. F.; Jiang, Z. C.; Yang, F.; Hu, B., Determination of platinum, palladium and rhodium in biological and environmental samples by low temperature electrothermal vaporization inductively coupled plasma atomic emission spectrometry with diethyldithiocarbamate as chemical modifier. Anal. Chim. Acta 2004, 510, 45-51.

32. Xiong, C. M.; Hu, B.; Jiang, Z. C., Synergic solvent extraction of rare earth elements using mixed ligand complexes of hexafluoroacetylacetone and tri-n-butylphosphate and their determination in environmental waters by low temperature ETV-ICP-MS. At. Spectrosc.2008, 29, 6-15.

33. Kaparullina, E. N.; Doronina, N. V.; Trotsenko, Y. A., Aerobic degradation of ethylenediaminetetraacetate (review). Appl.Biochem. Microbiol.2011, 47, 460-473.

34. Sun, Q.; Yuan, D. X.; Chen, Z. L.; Megharaj, M.; Naidu, R., Reduction of polyatomic interferences during ion-chromatographic speciation of metal ions via their EDTA complexes along with ICP-MS detection using an octopole reaction system. Microchim. Acta2010, 169, 41-47.

35. Quiroz, W.; Arias, H.; Bravo, M.; Pinto, M.;Lobos, M. G.; Cortes, M., Development of analytical method for determination of Sb(V), Sb(III) and TMSb(V) in occupationally exposed human urine samples by HPLC-HG-AFS. Microchem. J. 2011, 97, 18-84.

36. Otero-Romani, J.; Moreda-Pineiro, A.; Bermejo-Barrera, P.; Martin-Esteban, A., Inductively coupled plasma-optical emission spectrometry/mass spectrometry for the determination of Cu, Ni, Pb and Zn in seawater after ionic imprinted polymer based solid phase extraction. Talanta 2009, 79, 723-729.

37. Oliveira, E. P.; Yang, L.; Sturgeon, R. E.; Santelli, R. E.; Bezerra, M. A.; Willie, S. N.; Capilla, R., Determination of trace metals in high-salinity petroleum produced formation water by inductively coupled plasma mass spectrometry following on-line analyte separation/preconcentration. J. Anal. At. Spectrom. 2011, 26, 578-585.

38. Stefanova, V.; Georgieva, D.; Kmetov, V.; Roman, I.; Canals, A., Unmodified manganese ferrite nanoparticles as a new sorbent for solid-phase extraction of trace metal-APDC complexes followed by inductively coupled plasma mass spectrometry analysis. J. Anal. At. Spectrom. 2012, 27, 1743-1752.

39. Zeng, C. J.; Hu, Y.; Luo, J. W., Ionic liquid-based hollow fiber supported liquid membrane extraction combined with thermospray flame furnace AAS for the determination of cadmium. Microchim. Acta2012, 177, 53-58.

40. Ni, J. L.; Liu, C. C.; Jiang, S. J. Determination of Ga, Ge, As, Se and Sb in fly ash samples by ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Anal. Chim. Acta2005, 550, 144-150.

41. Tseng, Y. J.; Tsai, Y. D.; Jiang, S. J., Electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry for the determination of Fe, Co, Ni, Cu, and Zn in biological samples. Anal. Bioanal. Chem.2007, 387, 2849-2855.

42. Aramendia, M.; Resano, M.;Vanhaecke, F.Determination of toxic traceimpurities in titanium dioxide by solid sampling-electrothermalvaporization-inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2009, 24, 41-50.

43. Li, Y. C.; Jiang, S. J.; Chen, S. F., Determination of Ge, As, Se, Cd and Pb in plant materials by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Anal. Chim. Acta1998, 372, 365-372.

44. Liao, H. C.; Jiang, S. J., Determination of cadmium, mercury and lead in coal fly ash by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 1999, 54, 1233-1242.

45. He, M.; Hu, B.; Jiang, Z. C., Electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of trace amount of lanthanides and yttrium in soil with polytetrafluroethylene emulsion as a chemical modifier. Anal. Chim. Acta2005, 530, 105-112.
46. Pereira, J. S. F.; Antes, F. G.; Diehl, L. O.; Knorr, C. L.; Mortari, S. R.; Dressler, V. L.; Flores, E. M. M., Microwave-induced combustion of carbon nanotubes for further halogen determination. J. Anal. At. Spectrom.2010, 25, 1268-1274.

47. Zeisler, R.; Paul, R. L.; Spatz, R. O.; Yu, L. L.; Mann, J. L.; Kelly, W. R.; Lang, B. E.; Leigh, S. D.; Fagan, J., Elemental analysis of a single-wall carbon nanotube candidate reference material. Anal. Bioanal. Chem.2011, 399, 509-517.

48. Diaz-Somoano, M.; Lopez-Anton, M. A.; Martinez-Tarazona, M. R., Determination of selenium by ICP-MS and HG-ICP-MS in coal, fly ashes and sorbents used for flue gas cleaning. FUEL2004, 83, 231-235.

49. Bartonova, L.; Klika, Z.; Spears, D. A., Characterization of unburned carbon from ash after bituminous coal and lignite combustion in CFBs. FUEL2007, 86, 455-463.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code