Responsive image
博碩士論文 etd-0630114-175442 詳細資訊
Title page for etd-0630114-175442
論文名稱
Title
亞硝胺於淨水程序之生成與健康風險管理策略
Formation of N-Nitrosamines and the Associated Health Risks during Different Drinking Water Treatment Processes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
178
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-26
繳交日期
Date of Submission
2014-07-30
關鍵字
Keywords
前氧化處理、淨水程序、健康風險、消毒副產物、亞硝胺
Drinking water treatment processes, Pre-oxidation, Health risks, Disinfection byproducts, Nitrosamines
統計
Statistics
本論文已被瀏覽 5681 次,被下載 746
The thesis/dissertation has been browsed 5681 times, has been downloaded 746 times.
中文摘要
N-亞硝胺為含氮新興消毒副產物,在全球的飲用水和回收污水中常被檢出,其濃度多落在屬微量分析範疇的ng/L範圍,除了低濃度增加監測控制上的困難度外,更重要的是亞硝胺具有的高致癌性使其受到來自包含研究領域及管理單位的極大關注,在不同亞硝胺物種中,又以N-二甲基亞硝胺(N-Nitrosodimethylamine, NDMA)受到更為廣泛的研究與調查。目前已知的亞硝胺前驅物有二級胺、三級胺、殺蟲劑或除草劑如達有龍(Diuron)、含胺聚合物如PolyDADMAC (poly-diallyldimethylammoniumchloride)、藥品與個人保健用品如一種主要抑制胃酸分泌的藥物Ranitidine、Nizatidine等,但相關的前驅物及生成機制仍無法有效解釋飲用水和污水處理過程中觀察到的亞硝胺汙染情形,若源頭管制其生成前驅物有一定困難,清楚調查國內現有亞硝胺濃度分佈情形並了解淨水程序中亞硝胺的生成與宿命機制,調整甚至優化淨水處理技術以抑制或去除水體中亞硝胺濃度將是未來另一種亞硝胺危害管末處理的可能策略。
本研究調查六種目前在法規或相關研究領域受到注意的亞硝胺物種,其中包含NDMA、N-Nitrosodimethylamine (NMEA)、N-nitrosodiethylamine (NDEA)、N-nitroso-di-n-propylamine (NDPA)、N-nitrosodi-n-butylamine (NDBA)和N-nitrosopyrrolidine (NPYR),本研究目的為以下四點(1)針對原水與特定處理單元之放流水進行亞硝胺採樣及定量分析;(2)量化六種亞硝胺在飲用水處理過程中的生成,同時探討氧化技術置於不同階段或與其他處理技術結合使用對亞硝胺生成或去除的可能影響 (3)利用模擬實驗了解選定之處理場其原水中可能的前驅物種類,探討未來原水條件改變含有其他額外的前驅物,對淨水程序所產生什麼影響,這些前驅物在飲用水中亞硝胺負面健康風險增量上所扮演之角色及其重要性;(4)除了從濃度的角度看亞硝胺問題外,也將濃度值轉換為風險進行評估,了解目前飲用水及未來若飲用水條件改變對用戶端所造成之健康危害。
水樣中的亞硝胺先經由固相萃取法(Solid-phase extraction, SPE)進行前處理,再使用氣相層析質譜儀(Gas Chromatography/Mass Spectrometry, GC/MS)及高壓液相層析串聯質譜儀(High Pressure Liquid Chromatography/Triple Quadruple Mass Spectrometry, HPLC/MS/MS)分別分析定量水體NDMA和其他亞硝胺濃度。本研究採樣試驗與討論分為三部份:
(一) 選定位於南台灣三座重要淨水場其原水及不同處理程序(特別針對前氧化處理技術)之放流水採樣並分析其中亞硝胺濃度,採樣於2013~2014年完成,調查結果主要探討目前原水中亞硝胺存在情形、不同處理技術(如前氧化、混凝、沉澱、與過濾、生物活性碳、及後消毒等)對水中六種亞硝胺濃度可能產生的生成或去除之影響,結果顯示原水中已受到亞硝胺汙染,從總亞硝胺濃度的角度,三座淨水處理流程中至配水端前皆可去除部分亞硝胺,但在放流端處理水仍可能存在一定濃度產生足夠風險,當單一前氧化技術為必要之處理策略,使用臭氧較有效減少水中亞硝胺生成比例;當氧化技術以兩階段方式應用(即前氧化後再搭配二次氧化),以加氯為主的處理流程對亞硝胺生成較不明顯;生物活性碳之效果隨不同亞硝胺物種而有所差異前,整體而言在所有技術當中,不論使用何種消毒劑,前氧化技術的使用皆大幅增加水中亞硝胺生成濃度,其中NDMA、NMEA、NDEA、NDBA普遍有生成的現象。
(二) 第二部分研究利用實廠原水於實驗室進行批次前氧化模擬試驗,實驗中添加三種已知NDMA前驅物,包含二甲胺、Diuron、與Ranitidine,實驗參數模擬實場操作條件,探討原水在未添加與添加額外前驅物狀態下,經由前加氯與前臭氧處理可能產生對其六種亞硝胺生成潛勢變化之影響。結果顯示原水本身含有前驅物,當水中沒有其他更強勢的前驅物,DMA可生成NDMA或甚至其他亞硝胺,但水中有時可能會其他更重要之前驅物,使DMA 之亞硝胺生成效果受到抑制,整體而言前驅物在環境水體中轉換成亞硝胺的效率低,顯示原水中其他共同存在的物種可能與氧化劑反應。
(三) 最後將在前兩階段研究中所得到結果,包含不同實場淨水處理程序中六種亞硝胺濃度分布情形及實驗室批次模擬實驗結果,從亞硝胺對下游水使用者可能產生的負面健康風險角度進行探討,計算其平均增量致癌風險與每年可能增加之發生率。結果顯示前氧化確實使部分亞硝胺濃度增加亦伴隨著部分亞硝胺的去除,亞硝胺濃度增加不一定會反應在風險上,當增加的亞硝胺為具有高致癌斜率因子的亞硝胺化合物如NDMA、NDEA,則會使前氧化風險大為增加,而致癌斜率因子較低的物種如NPYR若大幅去除,也會使整體致癌風險下降,以風險的角度而言除了濃度的變化以外,亞硝胺物種的存在也扮演著重要的腳色。
本研究建立亞硝胺管理策略對飲用水處理流程中之亞硝胺汙染進行控管,若以管末處理之角度,宜從前氧化程序之合理應用,評估是否使用前氧化、所使用的氧化劑,針對可能產生之衝擊進行改善,同時避免使用含胺類混凝劑、使用氯胺等處理技術;若以源頭管制為處理手段,宜避免原水污染同時確認不同亞硝胺物種在處理流程中之宿命,再進行其前驅物之管制。
Abstract
N-Nitrosamines are a group of emerging nitrogenous disinfection byproducts (N-DBPs) that have been frequently detected in drinking water and recycled wastewater worldwide. The observed concentrations of nitrosamines in many drinking water treatment plants (DWTPs) and wastewater treatment plants (WWTPs) typically fall within the trace levels, increasing the difficulties of their detection and quantification. Nitrosamines have been of great concern in these years due to their potent carcinogenesis. Of these nitrosamine species, N-nitrosodimethylamine (NDMA) is the one of the most substantial concern in preceding researches. It has been reported that potential precursors of nitrosamines include secondary, tertiary, and quaternary amines, pesticides or herbicides (e.g., diuron), amine-based polymer (e.g., poly-diallyldimethylammoniumchloride, PolyDADMAC), pharmaceuticals and personal care products (PPCPs, e.g., a pharmaceutical named ranitidine or nizatidine that inhibiting gastric acid secretion). However, the presence of nitrosamines in DWTPs and WWTPs cannot be fully explained by the currently known precursors and associated formation mechanisms. While it is less likely to minimize the formation of nitrosamine by removing the possible precursors, fully investigating and understanding the formation and fate of nitrosamines through DWTPs and WWTPs may represent another important alternative to control the environmental hazards and human health risks posed by the presence of nitrosamines in treated water.
Six nitrosamines, including N-nitrosodimethylamine (NDMA), N-nitrosodimethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitroso-di-n-propylamine (NDPA), N-nitrosodi-n-butylamine (NDBA), and N-nitrosopyrrolidine (NPYR) are of interest and investigated in this study. The objective of this study breaks into four parts: First, to collect and analyze the nitrosamines in raw water and effluents from various drinking water treatment processes; Second, to understand and quantify the formation of six nitrosamines in drinking water treatment processes and to discuss the associated effects of treatment technologies, notably the oxidation technologies, on the fate of nitrosamines in the DWTPs; Third, to conduct lab-scale batch experiments with addition of selected NDMA precursors to simulate preoxidation in the selected DWTPs, providing insights into the complex array of the relationships amongst potential precursors, oxidation technologies, and raw water characteristics; Fourth, to assess the carcinogenic risks posed by the concentrations of nitrosamines observed in the selected DWTPs and simulated preoxidation experiments during the previous three stages of this study, understanding the current and future possible health risks to downstream users with respect to the formation of nitrosamines in drinking water under different circumstances discussed in this study.
Nitrosamines in water were pretreated by solid-phase extraction (SPE), followed by analysis with gas chromatography coupled with mass spectrometry (GC/MS) or high pressure liquid chromatography coupled with triple quadruple mass spectrometry (HPLC/MS/MS). The experimental results observed in this study were categorized as following:
1. Source water and effluent from different treatment technologies, especially oxidation, from three major DWTPs in southern Taiwan were selected for sampling and analysis of nitrosamines. The sampling was conducted in 2013 and 2014 to investigate the fate of six nitrosamines among different technologies including preoxidation, coagulation, sedimentation, filtration, biological activated carbon (BAC) and post-disinfection. In the results, the presence of nitrosamines was observed in the source water. Nitrosamines were limitedly treated through all three DWTPs. While preoxidation is the important process to enhance the formation of nitrosamines, the use of ozone for preoxidation may reduce the formation of nitrosamines in water. However, different strategies such as using chorine may be more applicable to minimize the reactions producing nitrosamines if multiple oxidation processes were employed through the drinking water treatment processes. The effect of BAC varied with different nitrosamines. NDMA, NMEA, NDEA and NDBA represent the more important species to be considered in DWTPs selected in this study.
2. The lab-scale batch experiments using source water from the DWTPs of interest in this study were conducted, with dimethylamine (DMA), diuron, and ranitidine, three known and commonly used NDMA model precursors, being added to simulate the pre-chlorination and pre-ozonation in conventional DWTPs. It was shown in the results that other unknown precursors existed in the source water. More importantly, the effects of supplying these precursors during simulated preoxidation varied with different oxidation technologies and the extents of nitrosamine formation were less than expected. It appeared that the matrix amongst nitrosamine precursors, oxidation technologies, and source water characteristics were complicated and simultaneously determine the formation of six nitrosamines during preoxidation.
3. Finally, the concentrations of six nitrosamines observed in different circumstances in the first two stages of this study, including different drinking water treatment processes and lab-scale batch simulation experiments, were applied to calculate the corresponding human health risks to downstream users by ingestion of drinking water and were discussed in terms of the average incremental cancer risk and annual increasing incidence. In the results, the conclusions drawn from the cancer risk assessment were slightly different from those when the concentrations of nitrosamines formed or reduced were of concern. Preoxidation seemed to decrease the cancer risks posed by nitrosamines in water under certain circumstances, whereas the concentrations of most nitrosamines were increased during the processes. Different carcinogenicities among nitrosamine species was the possible explanation. Even though several nitrosamines were present or formed after preoxidation, the excess risks posed by the presence of these carcinogens may be limited as long as the nitrosamines with potent carcinogenicities (e.g., higher cancer slope factors) were treated or replaced by those less potent species.
As reducing and treating the presence of potential precursors in source water may represent another important but difficult approach to control the contaminations of drinking water with respect to the existence of carcinogenic nitrosamines, the focuses of this study were to investigate the formation of nitrosamines through various treatment technologies in three major DWTPs and to discuss the relationships amongst nitrosamine precursors, preoxidation technologies, and source water characteristics by conducting the simulated preoxidation experiments. The results of this study presented a comprehensive understanding regarding the current pollutions of nitrosamines in source water, associated fate through conventional DWTPs in southern Taiwan, importance of optimizing the preoxidation technologies to minimize the formation of nitrosamines in water and more importantly, possible human health risks posed by the presence of nitrosamines in treated water. These findings are expected to provide substantial information to develop appropriate management strategies, which may effectively control the environmental hazards and public health risks by these emerging oxidation/disinfection byproducts in the future.
目次 Table of Contents
論文審定書 i
致 謝 iii
摘 要 v
Abstract ix
目 錄 xiii
圖目錄 xvii
表目錄 xxi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 4
1.3 研究問題 5
1.4 本研究之貢獻與重要性 6
第二章 文獻回顧 7
2.1 亞硝胺介紹 7
2.1.1 物理化學特性 8
2.1.2 危害性與法規規範 10
2.1.3 亞硝胺分析方法 11
2.2 亞硝胺的生成 12
2.2.1 氯化(Chlorination)生成亞硝胺 13
2.2.2 氯胺化(chloramination)生成亞硝胺 14
2.2.3 臭氧(Ozone)生成亞硝胺 19
2.2.4 活性碳(Activated Carbon, AC) 21
2.2.5 溴化物(Bromide)催化反應 22
2.3 亞硝胺的前驅物 23
2.3.1 二級胺(Secondary amines)、三級胺(Tertiary amines)、四級胺(Quaternary amines) 23
2.3.2 尿素系除草劑 (phenylurea herbicide) 29
2.3.3 藥品與個人保健用品(PPCPs) 32
2.4 亞硝胺與其前驅物的去除 38
2.4.1 混凝 38
2.4.2 避免氯胺的使用 38
2.4.3 活性碳(AC)或生物活性碳(BAC)吸附亞硝胺前驅物 39
2.4.4 紫外光(Ultraviolet, UV) 39
2.4.5 生物降解 40
2.4.6 薄膜 40
2.4.7 光催化 (Photocatalysis) 42
2.5 淨水場與環境中亞硝胺濃度 43
2.5.1 國外淨水場與環境中亞硝胺濃度 43
2.5.2 國內淨水 廠與環境中亞硝胺濃度 49
2.5.3 配水管線中亞硝胺濃度 49
第三章 研究方法 51
3.1 研究基本架構 51
3.2 場址選定與說明 53
3.3 實驗方法與設計 58
3.3.1 採樣與保存 59
3.3.2 亞硝胺濃度檢測 59
3.3.3 前氧化模擬實驗 61
3.3.3.1. 加氯實驗 62
3.3.3.2. 臭氧實驗 64
3.4 亞硝胺分析 67
3.4.1 前處理─固相萃取 67
3.4.2 儀器分析 70
3.4.3 品質保證與品質管理 73
3.5 資料分析 74
3.5.1 統計分析 74
3.5.2 亞硝胺暴露量評估(Exposure assessment) 77
3.5.3 亞硝胺致癌風險 79
第四章 結果與討論 83
4.1 各淨水場處理程序之總亞硝胺濃度變化分析 83
4.1.1 原水與放流端處理水中總亞硝胺濃度變化 83
4.1.2 不同淨水場其處理程序間之總亞硝胺濃度變化 86
4.2 不同處理技術對淨水程序中六種亞硝胺濃度變化之影響 89
4.2.1 不同前氧化處理技術 89
4.2.2 混凝、沉澱、過濾後接不同氧化程序 92
4.2.3 後加氯前接混凝、沉澱、過濾或生物活性碳 95
4.2.4 淨水場完整處理流程對六種亞硝胺之處理 97
4.3 亞硝胺濃度分佈之相關性分析 99
4.3.1 不同淨水場原水間相關性分析 99
4.3.2 不同採樣時間原水之相關性分析 101
4.3.3 不同處理流程間相關性分析 101
4.4 實驗室前氧化模擬試驗之亞硝胺生成 106
4.4.1 實場與模擬前氧化實驗結果間之差異 107
4.4.2 原水添加前驅物模擬試驗 108
4.4.3 不同採樣時期原水添加DMA模擬前氧化實驗之亞硝胺生成 111
4.4.4 不同氧化方式對DMA、Ranitidine及Diuron生成亞硝胺的影響 114
4.5 健康風險評估 117
4.5.1 不同淨水場其處理程序間亞硝胺致癌風險變化 117
4.5.2 模擬前氧化試驗中生成的亞硝胺其對應之致癌風險 124
第五章 結論與建議 131
5.1 結論 131
5.2 建議 134
參考文獻 137
附 錄 149
附錄A、 縮寫 149
個人簡歷 153
參考文獻 References
Andrzejewski, P., Kasprzyk-Hordern, B., & Nawrocki, J. (2005). The hazard of N-nitrosodimethylamine (NDMA) formation during water disinfection with strong oxidants. Desalination, 176(1-3), 37-45. doi: 10.1016/j.desal.2004.11.009
Andrzejewski, P., Kasprzyk-Hordern, B., & Nawrocki, J. (2008). N-nitrosodimethylamine (NDMA) formation during ozonation of dimethylamine-containing waters. Water Research, 42(4-5), 863-870. doi: 10.1016/j.watres.2007.08.032
Anu Ramaswami, J. B. M., Mitchell J. Small. (2005). Integrated Environmental Modeling: Pollutant Transport, Fate, and Risk in the Environment
Asami, M., Oya, M., & Kosaka, K. (2009). A nationwide survey of NDMA in raw and drinking water in Japan. Science of the Total Environment, 407(11), 3540-3545. doi: 10.1016/j.scitotenv.2009.02.014
Benitez, F. J., Acero, J. L., Real, F. J., & Garcia, C. (2009). Nanofiltration processes applied to the removal of phenyl-ureas in natural waters. Journal of Hazardous Materials, 165(1-3), 714-723. doi: 10.1016/j.jhazmat.2008.10.047
Bond, T., Huang, J., Templeton, M. R., & Graham, N. (2011). Occurrence and control of nitrogenous disinfection by-products in drinking water - A review. Water Research, 45(15), 4341-4354. doi: 10.1016/j.watres.2011.05.034
Bond, T., Templeton, M. R., & Graham, N. (2012). Precursors of nitrogenous disinfection by-products in drinking water-A critical review and analysis. Journal of Hazardous Materials, 235, 1-16. doi: 10.1016/j.jhazmat.2012.07.017
CalEPA. (2014). OEHHA Toxicity Criteria Database.
CDPH. (2009). NDMA and Other Nitrosamines - Drinking Water Issues: California Department of Public Health.
CDPH. (2010). Drinking Water Notification Levels and Response Levels: An Overview: California Department of Public Health Drinking Water Program
CDPR. (2012). The top 100 pesticides used by pounds of active ingredients statewide.
Chang, H., Chen, C. Y., & Wang, G. (2013). Characteristics of C-, N-DBPs formation from nitrogen-enriched dissolved organic matter in raw water and treated wastewater effluent. Water Research, 47(8), 2729-2741. doi: 10.1016/j.watres.2013.02.033
Charrois, J. W. A., Arend, M. W., Froese, K. L., & Hrudey, S. E. (2004). Detecting N-nitrosamines in drinking water at nanogram per liter levels using ammonia positive chemical ionization. Environmental Science & Technology, 38(18), 4835-4841. doi: 10.1021/es049846j
Charrois, J. W. A., Boyd, J. M., Froese, K. L., & Hrudey, S. E. (2007). Occurrence of N-nitrosamines in Alberta public drinking-water distribution systems. Journal of Environmental Engineering and Science, 6(1), 103-114. doi: 10.1139/s06-031
ChemIDplus. (2014).
Chen, W. H., & Young, T. M. (2008). NDMA formation during chlorination and chloramination of aqueous diuron solutions. Environmental Science & Technology, 42(4), 1072-1077. doi: 10.1021/es072044e
Chen, W. H., & Young, T. M. (2009). Influence of nitrogen source on NDMA formation during chlorination of diuron. Water Research, 43(12), 3047-3056. doi: 10.1016/j.watres.2009.04.020
Choi, J., Duirk, S. E., & Valentine, R. L. (2002). Mechanistic studies of N-nitrosodimethylamine (NDMA) formation in chlorinated drinking water. Journal of Environmental Monitoring, 4(2), 249-252. doi: 10.1039/b200622g
Choi, J., & Valentine, R. L. (2003). N-Nitrosodimethylamine formation by free-chlorine-enhanced nitrosation of dimethylamine (Vol. 37, pp. 4871-4876): Environmental Science and Technology.
Choi, J. H., & Valentine, R. L. (2002). Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product. Water Research, 36(4), 817-824. doi: 10.1016/s0043-1354(01)00303-7
Choi, J. H., & Valentine, R. L. (2003). N-nitrosodimethylamine formation hy free-chlorine-enhanced nitrosation of dimethylamine. Environmental Science & Technology, 37(21), 4871-4876. doi: 10.1021/es034020n
Choi, K. J., & Hong, S. W. (2012). Preparation of TiO2 nanofibers immobilized on quartz substrate by electrospinning for photocatalytic degradation of ranitidine. Research on Chemical Intermediates, 38(6), 1161-1169. doi: 10.1007/s11164-011-0455-z
Dolar, D., Gros, M., Rodriguez-Mozaz, S., Moreno, J., Comas, J., Rodriguez-Roda, I., & Barcelo, D. (2012). Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO. Journal of Hazardous Materials, 239, 64-69. doi: 10.1016/j.jhazmat.2012.03.029
Drissa Bamba, P. A., Didier Robert,Albert Trokourey, Bini Dongui. (2008). Photocatalytic degradation of the diuron pesticide (Vol. 6, pp. 163-167): Environ Chem Lett.
DWI. (2008). Guidance on the Water Supply (Water Quality) Regulations 2000 specific to N-Nitrosodimethylamine (NDMA) concentrations in drinking water.
Farre, M. J., Reungoat, J., Argaud, F. X., Rattier, M., Keller, J., & Gernjak, W. (2011). Fate of N-nitrosodimethylamine, trihalomethane and haloacetic acid precursors in tertiary treatment including biofiltration. Water Research, 45(17), 5695-5704. doi: 10.1016/j.watres.2011.08.033
Fenoll, J., Sabater, P., Navarro, G., Perez-Lucas, G., & Navarro, S. (2013). Photocatalytic transformation of sixteen substituted phenylurea herbicides in aqueous semiconductor suspensions: Intermediates and degradation pathways. Journal of Hazardous Materials, 244, 370-379. doi: 10.1016/j.jhazmat.2012.11.055
Flowers, R. C., & Singer, P. C. (2013). Anion Exchange Resins as a Source of Nitrosamines and Nitrosamine Precursors. Environmental Science & Technology, 47(13), 7365-7372. doi: 10.1021/es4003185
Gerecke, A. C., & Sedlak, D. L. (2003). Precursors of N-mitrosodimethylamine in natural waters. Environmental Science & Technology, 37(7), 1331-1336. doi: 10.1021/es026070i
Giacomazzi, S., & Cochet, N. (2004). Environmental impact of diuron transformation: a review. Chemosphere, 56(11), 1021-1032. doi: 10.1016/j.chempsphere.2004.04.061
Hanigan, D., Zhang, J. W., Herckes, P., Krasner, S. W., Chen, C., & Westerhoff, P. (2012). Adsorption of N-Nitrosodimethylamine Precursors by Powdered and Granular Activated Carbon. Environmental Science & Technology, 46(22), 12630-12639. doi: 10.1021/es302922w
HealthCanada. (2011). Guidelines for Canadian Drinking Water Quality Guideline Technical Document N-Nitrosodimethylamine (NDMA). Health Canada Retrieved from http://www.hc-sc.gc.ca/ewh-semt/alt_formats/hecs-sesc/pdf/pubs/water-eau/ndma/ndma-eng.pdf.
Helali, S., Puzenat, E., Perol, N., Safi, M. J., & Guillard, C. (2011). Methylamine and dimethylamine photocatalytic degradation-Adsorption isotherms and kinetics. Applied Catalysis a-General, 402(1-2), 201-207. doi: 10.1016/j.apcata.2011.06.004
Herrera-Gonzalez, V. E., Ruiz-Ordaz, N., Galindez-Mayer, J., Juarez-Ramirez, C., Santoyo-Tepole, F., & Montiel, E. M. (2013). Biodegradation of the herbicide propanil, and its 3,4-dichloroaniline by-product in a continuously operated biofilm reactor. World Journal of Microbiology & Biotechnology, 29(3), 467-474. doi: 10.1007/s11274-012-1200-5
Ho, K. L., Chung, Y. C., Lin, Y. H., & Tseng, C. P. (2008). Biofiltration of trimethylamine, dimethylamine, and methylamine by immobilized Paracoccus sp CP2 and Arthrobacter sp CP1. Chemosphere, 72(2), 250-256. doi: 10.1016/j.chemosphere.2008.01.044
Hung, H. W., Lin, T. F., Chiu, C. H., Chang, Y. C., & Hsieh, T. Y. (2010). Trace Analysis of N-Nitrosamines in Water Using Solid-Phase Microextraction Coupled with Gas Chromatograph-Tandem Mass Spectrometry. Water Air and Soil Pollution, 213(1-4), 459-469. doi: 10.1007/s11270-010-0398-9
IARC. International Agency for Research on Cancer. Retrieved April, 2012
IARC. (1987). IARC monographs on the evaluation of carcinogenic risks to human. International Agency for Research on Cancer Retrieved from http://monographs.iarc.fr/ENG/Monographs/suppl7/Suppl7.pdf.
IARC. (2014). Agents classified by the IARC monographs.
IRIS. USEPA Integrated Risk Information System Database. 2012, from http://www.epa.gov/ncea/iris/
IRIS. (2002). USEPA Integrated Risk Information System Database. from http://www.epa.gov/iris/subst/0045.htm
Jobb, D. B., Hunsinger, R.B., Meresz, O., Taguchi, V. (1994). Removal of N-nitrosodimethylamine from the Ohsweken (Six Nations) water supply final report: Ontario Ministry of Environment and Energy.
Jurado-Sanchez, B., Ballesteros, E., & Gallego, M. (2012). Occurrence of aromatic amines and N-nitrosamines in the different steps of a drinking water treatment plant. Water Research, 46(14), 4543-4555. doi: 10.1016/j.watres.2012.05.039
Kadmi, Y., Favier, L., Soutrel, I., Lemasle, M., & Wolbert, D. (2014). Ultratrace-level determination of N-Nitrosodimethylamine, N-Nitrosodiethylamine, and N-Nitrosomorpholine in waters by solid-phase extraction followed by liquid chromatography-tandem mass spectrometry. Central European Journal of Chemistry, 12(9), 928-936. doi: 10.2478/s11532-014-0537-z
Katsumata, H., Sada, M., Nakaoka, Y., Kaneco, S., Suzuki, T., & Ohta, K. (2009). Photocatalytic degradation of diuron in aqueous solution by platinized TiO2. Journal of Hazardous Materials, 171(1-3), 1081-1087. doi: 10.1016/j.jhazmat.2009.06.110
Kemper, J. M., Walse, S. S., & Mitch, W. A. (2010). Quaternary Amines As Nitrosamine Precursors: A Role for Consumer Products? Environmental Science & Technology, 44(4), 1224-1231. doi: 10.1021/es902840h
Kemper, J. M., Westerhoff, P., Dotson, A., & Mitch, W. A. (2009). Nitrosamine, Dimethylnitramine, and Chloropicrin Formation during Strong Base Anion-Exchange Treatment. Environmental Science & Technology, 43(2), 466-472. doi: 10.1021/es802460n
Kim, G. A., Son, H. J., Kim, C. W., & Kim, S. H. (2013). Nitrosamine occurrence at Korean surface water using an analytical method based on GC/LRMS. Environmental Monitoring and Assessment, 185(2), 1657-1669. doi: 10.1007/s10661-012-2658-1
Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance. Environmental Science & Technology, 36(6), 1202-1211. doi: 10.1021/es011055j
Krasner, S. W. (2009). The formation and control of emerging disinfection by-products of health concern. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 367(1904), 4077-4095. doi: 10.1098/rsta.2009.0108
Krasner, S. W., Mitch, W. A., McCurry, D. L., Hanigan, D., & Westerhoff, P. (2013). Formation, precursors, control, and occurrence of nitrosamines in drinking water: A review. Water Research, 47(13), 4433-4450. doi: 10.1016/j.watres.2013.04.050
Lamoree, M. H., Swart, C. P., van der Horst, A., & van Hattum, B. (2002). Determination of diuron and the antifouling paint biocide Irgarol 1051 in Dutch marinas and coastal waters. Journal of Chromatography A, 970(1-2), 183-190. doi: 10.1016/s0021-9673(02)00878-6
Le Roux, J., Gallard, H., & Croue, J. P. (2011). Chloramination of nitrogenous contaminants (pharmaceuticals and pesticides): NDMA and halogenated DBPs formation. Water Research, 45(10), 3164-3174. doi: 10.1016/j.watres.2011.03.035
Le Roux, J., Gallard, H., & Croue, J. P. (2012). Formation of NDMA and Halogenated DBPs by Chloramination of Tertiary Amines: The Influence of Bromide Ion. Environmental Science & Technology, 46(3), 1581-1589. doi: 10.1021/es203785s
Le Roux, J., Gallard, H., Croue, J. P., Papot, S., & Deborde, M. (2012). NDMA Formation by Chloramination of Ranitidine: Kinetics and Mechanism. Environmental Science & Technology, 46(20), 11095-11103. doi: 10.1021/es3023094
Lee, C., Choi, W., Kim, Y. G., & Yoon, J. (2005). UV photolytic mechanism of N-nitrosodimethylamine in water: Dual pathways to methylamine versus dimethylamine. Environmental Science & Technology, 39(7), 2101-2106. doi: 10.1021/es0488941
Lee, C., Choi, W., & Yoon, J. (2005). UV photolytic mechanism of N-nitrosodimethylamine in water: Roles of dissolved oxygen and solution pH. Environmental Science & Technology, 39(24), 9702-9709. doi: 10.1021/es051235j
Lee, C., Schmidt, C., Yoon, J., & von Gunten, U. (2007). Oxidation of N-nitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide: Kinetics and effect on NDMA formation potential. Environmental Science & Technology, 41(6), 2056-2063. doi: 10.1021/es062484q
Lee, J., Choi, W. Y., & Yoon, J. (2005). Photocatalytic degradation of N-mitrosodimethylamine: Mechanism, product distrihution, and TiO2 surface modification. Environmental Science & Technology, 39(17), 6800-6807. doi: 10.1021/es0481777
Lijinsky, W. (1999). N-Nitroso compounds in the diet. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 443(1-2), 129-138. doi: 10.1016/s1383-5742(99)00015-0
Lin, A. Y. C., Tsai, Y. T., Yu, T. H., Wang, X. H., & Lin, C. F. (2011). Occurrence and fate of pharmaceuticals and personal care products in Taiwan's aquatic environment. Desalination and Water Treatment, 32(1-3), 57-64. doi: 10.5004/dwt.2011.2678
Luh, J., & Marinas, B. J. (2012). Bromide Ion Effect on N-Nitrosodimethylamine Formation by Monochloramine. Environmental Science & Technology, 46(9), 5085-5092. doi: 10.1021/es300077x
Luo, Q., Wang, D. H., & Wang, Z. J. (2012). Occurrences of nitrosamines in chlorinated and chloraminated drinking water in three representative cities, China. Science of the Total Environment, 437, 219-225. doi: 10.1016/j.scitotenv.2012.08.023
Ma, F. J., Wan, Y., Yuan, G. X., Meng, L. P., Dong, Z. M., & Hu, J. Y. (2012). Occurrence and Source of Nitrosamines and Secondary Amines in Groundwater and its Adjacent Jialu River Basin, China. Environmental Science & Technology, 46(6), 3236-3243. doi: 10.1021/es204520b
Mitch, W. A., Gerecke, A. C., & Sedlak, D. L. (2003). A N-nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater. Water Research, 37(15), 3733-3741. doi: 10.1016/s0043-1354(03)00289-6
Mitch, W. A., & Schreiber, I. M. (2008). Degradation of tertiary alkylamines during chlorination/chloramination: Implications for formation of aldehydes, nitriles, halonitroalkanes, and nitrosamines. Environmental Science & Technology, 42(13), 4811-4817. doi: 10.1021/es703017z
Mitch, W. A., & Sedlak, D. L. (2002). Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination. Environmental Science & Technology, 36(4), 588-595. doi: 10.1021/es010684q
Mitch, W. A., & Sedlak, D. L. (2004). Characterization and fate of N-nitrosodimethylamine precursors in municipal wastewater treatment plants. Environmental Science & Technology, 38(5), 1445-1454. doi: 10.1021/es035025n
Mitch, W. A., Sharp, J. O., Trussell, R. R., Valentine, R. L., Alvarez-Cohen, L., & Sedlak, D. L. (2003). N-nitrosodimethylamine (NDMA) as a drinking water contaminant: A review. Environmental Engineering Science, 20(5), 389-404. doi: 10.1089/109287503768335896
Molinari, R., Pirillo, F., Loddo, V., & Palmisano, L. (2006). Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor. Catalysis Today, 118(1-2), 205-213. doi: 10.1016/j.cattod.2005.11.091
Moncada, A. (2004). Environmental fate of diuron
Muneer, M., Theurich, J., & Bahnemann, D. (1999). Formation of toxic intermediates upon the photocatalytic degradation of the pesticide diuron. Research on Chemical Intermediates, 25(7), 667-683. doi: 10.1163/156856799x00220
Munoz, F., & von Sonntag, C. (2000). The reactions of ozone with tertiary amines including the complexing agents nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA) in aqueous solution. Journal of the Chemical Society-Perkin Transactions 2(10), 2029-2033. doi: 10.1039/b004417m
Nawrocki, J., & Andrzejewski, P. (2011). Nitrosamines and water. Journal of Hazardous Materials, 189(1-2), 1-18. doi: 10.1016/j.jhazmat.2011.02.005
NIEA. (2004). 環境檢驗檢量線製備及查核指引
OEHHA. (2006). Public Health Goal for N-Nitrosodimethylamine in Drinking Water.
Okamura, H., Aoyama, I., Ono, Y., & Nishida, T. (2003). Antifouling herbicides in the coastal waters of western Japan. Marine Pollution Bulletin, 47(1-6), 59-67. doi: 10.1016/s0025-326x(02)00418-6
Ontario. (2002). Safe Drinking Water Act 2002 Ontario Regulation 169/03, Schedule 2. Government of Ontario.
Ontario, G. o. (2002). Safe Drinking Water Act 2002: Ontario Regulation169/03, Schedule 2.
Padhye, L., Luzinova, Y., Cho, M., Mizaikoff, B., Kim, J. H., & Huang, C. H. (2011). PolyDADMAC and Dimethylamine as Precursors of N-Nitrosodimethylamine during Ozonation: Reaction Kinetics and Mechanisms. Environmental Science & Technology, 45(10), 4353-4359. doi: 10.1021/es104255e
Padhye, L., Tezel, U., Mitch, W. A., Pavlostathis, S. G., & Huang, C. H. (2009). Occurrence and Fate of Nitrosamines and Their Precursors in Municipal Sludge and Anaerobic Digestion Systems. Environmental Science & Technology, 43(9), 3087-3093. doi: 10.1021/es803067p
Padhye, L., Wang, P., Karanfil, T., & Huang, C. H. (2010). Unexpected Role of Activated Carbon in Promoting Transformation of Secondary Amines to N-Nitrosamines. Environmental Science & Technology, 44(11), 4161-4168. doi: 10.1021/es903916t
Padhye, L. P., Hertzberg, B., Yushin, G., & Huang, C. H. (2011). N-Nitrosamines Formation from Secondary Amines by Nitrogen Fixation on the Surface of Activated Carbon. Environmental Science & Technology, 45(19), 8368-8376. doi: 10.1021/es201696e
Pietsch, J., Sacher, F., Schmidt, W., & Brauch, H. J. (2001). Polar nitrogen compounds and their behaviour in the drinking water treatment process. Water Research, 35(15), 3537-3544. doi: 10.1016/s0043-1354(01)00086-0
Planas, C., Palacios, O., Ventura, F., Rivera, J., & Caixach, J. (2008). Analysis of nitrosamines in water by automated SPE and isotope dilution GC/HRMS - Occurrence in the different steps of a drinking water treatment plant, and in chlorinated samples from a reservoir and a sewage treatment plant effluent. Talanta, 76(4), 906-913. doi: 10.1016/j.talanta.2008.04.060
Plumlee, M. H., Lopez-Mesas, M., Heidlberger, A., Ishida, K. P., & Reinhard, M. (2008). N-nitrosodimethylamine (NDMA) removal by reverse osmosis and UV treatment and analysis via LC-MS/MS. Water Research, 42(1-2), 347-355. doi: 10.1016/j.watres.2007.07.022
Radjenovic, J., Petrovic, M., & Barcelo, D. (2009). Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Research, 43(3), 831-841. doi: 10.1016/j.watres.2008.11.043
Sacher, F., Lenz, S., & Brauch, H. J. (1997). Analysis of primary and secondary aliphatic amines in waste water and surface water by gas chromatography mass spectrometry after derivatization with 2,4-dinitrofluorobenzene or benzenesulfonyl chloride. Journal of Chromatography A, 764(1), 85-93. doi: 10.1016/s0021-9673(96)00868-0
Salvestrini, S., Di Cerbo, P., & Capasso, S. (2002a). Kinetics and mechanism of hydrolysis of phenylureas. Journal of the Chemical Society-Perkin Transactions 2(11), 1889-1893. doi: 10.1039/b205850b
Salvestrini, S., Di Cerbo, P., & Capasso, S. (2002b). Kinetics of the chemical degradation of diuron. Chemosphere, 48(1), 69-73. doi: 10.1016/s0045-6535(02)00043-7
Schmidt, C. K., & Brauch, H. J. (2008). N,N-dimethosulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment. Environmental Science & Technology, 42(17), 6340-6346. doi: 10.1021/es7030467
Schmidt, C. K., Sacher, F., Brauch, H.J. (2006). Strategies for minimizing formation of NDMA and other nitrosamines during disinfection of drinking water.: In: Proceedings of the AWWA Water Quality Technology Conference, Denvor, C.O.,November 5-9, 2006.
Schreiber, I. M., & Mitch, W. A. (2005). Influence of the order of reagent addition on NDMA formation during chloramination. Environmental Science & Technology, 39(10), 3811-3818. doi: 10.1021/es0483286
Schreiber, I. M., & Mitch, W. A. (2006). Nitrosamine formation pathway revisited: The importance of chloramine speciation and dissolved oxygen. Environmental Science & Technology, 40(19), 6007-6014. doi: 10.1021/es060978h
Schreiber, I. M., & Mitch, W. A. (2007). Enhanced nitrogenous disinfection byproduct formation near the breakpoint: Implications for nitrification control. Environmental Science & Technology, 41(20), 7039-7046. doi: 10.1021/es070500t
Shah, A. D., Krasner, S. W., Lee, C. F. T., von Gunten, U., & Mitch, W. A. (2012). Trade-Offs in Disinfection Byproduct Formation Associated with Precursor Preoxidation for Control of N-Nitrosodimethylamine Formation. Environmental Science & Technology, 46(9), 4809-4818. doi: 10.1021/es204717j
Sharma, V. K. (2012). Kinetics and mechanism of formation and destruction of N-nitrosodimethylamine in water - A review. Separation and Purification Technology, 88, 1-10. doi: 10.1016/j.seppur.2011.11.028
Sharp, J. O., Wood, T. K., & Alvarez-Cohen, L. (2005). Aerobic biodegradation of n-nitrosodimethylamine (NDMA) by axenic bacterial strains. Biotechnology and Bioengineering, 89(5), 608-618. doi: 10.1002/bit.20405
Sharpless, C. M., & Linden, K. G. (2003). Experimental and model comparisons of low- and medium-pressure Hg lamps for the direct and H2O2 assisted UV photodegradation of N-nitrosodimethylamine in simulated drinking water. Environmental Science & Technology, 37(9), 1933-1940. doi: 10.1021/es025814p
Shen, R., & Andrews, S. A. (2011). Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection. Water Research, 45(2), 944-952. doi: 10.1016/j.watres.2010.09.036
Shen, R. Q., & Andrews, S. A. (2011). NDMA formation kinetics from three pharmaceuticals in four water matrices. Water Research, 45(17), 5687-5694. doi: 10.1016/j.watres.2011.08.034
Shen, R. Q., & Andrews, S. A. (2013a). Formation of NDMA from ranitidine and sumatriptan: The role of pH. Water Research, 47(2), 802-810. doi: 10.1016/j.watres.2012.11.004
Shen, R. Q., & Andrews, S. A. (2013b). NDMA formation from amine-based pharmaceuticals - Impact from prechlorination and water matrix. Water Research, 47(7), 2446-2457. doi: 10.1016/j.watres.2013.02.017
Steinle-Darling, E., Zedda, M., Plumlee, M. H., Ridgway, H. F., & Reinhard, M. (2007). Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines, including NDMA. Water Research, 41(17), 3959-3967. doi: 10.1016/j.watres.2007.05.034
Templeton, M. R., & Chen, Z. (2010). NDMA and seven other nitrosamines in selected UK drinking water supply systems. Journal of Water Supply Research and Technology-Aqua, 59(4), 277-283. doi: 10.2166/aqua.2010.077
Tricker, A. R., & Preussmann, R. (1992). VOLATILE N-NITROSAMINES IN MAINSTREAM CIGARETTE-SMOKE - OCCURRENCE AND FORMATION. Clinical Investigator, 70(3-4), 283-289.
TWDOH. (2008). 台灣一般民眾暴露參數彙編 Compilation of Exposure Factors
USEPA. (1991). Risk Assessment Guidance for Superfund:Volume I -Human Health Evaluation Manual (Part B,Development of Risk-based Preliminary RemediationGoals).
USEPA. (1992). Guidelines for Exposure Assessment.
USEPA. (2004). method 521 determination of nitrosamines in drinking water by solid phase extraction and capillary column gas chromatography with large volume injection and chemical ionization tandem mass spectrometry (MS/MS). National exposure research laboratory office of research and development USEPA Retrieved from http://www.epa.gov/nerlcwww/documents/m_521.pdf.
USEPA. (2006). Unregulated Contaminant Monitoring Rule 2 (UCMR 2). from http://water.epa.gov/lawsregs/rulesregs/sdwa/ucmr/ucmr2/basicinformation.cfm#list
USEPA. (2009). Drinking water contaminant candidate list 3. from http://water.epa.gov/scitech/drinkingwater/dws/ccl/ccl3.cfm
USEPA. (2014). Integrated Risk Information System Database.
USHHS. (2011). Report on Carcinogens Twelfth Edition.
Van Huy, N., Murakami, M., Sakai, H., Oguma, K., Kosaka, K., Asami, M., & Takizawa, S. (2011). Occurrence and formation potential of N-nitrosodimethylamine in ground water and river water in Tokyo. Water Research, 45(11), 3369-3377. doi: 10.1016/j.watres.2011.03.053
Von Gunten, U., Salhi, E., Schmidt, C. K., & Arnold, W. A. (2010). Kinetics and Mechanisms of N-Nitrosodimethylamine Formation upon Ozonation of N,N-Dimethylsulfamide-Containing Waters: Bromide Catalysis. Environmental Science & Technology, 44(15), 5762-5768. doi: 10.1021/es1011862
Wang, W. F., Ren, S. Y., Zhang, H. F., Yu, J. W., An, W., Hu, J. Y., & Yang, M. (2011). Occurrence of nine nitrosamines and secondary amines in source water and drinking water: Potential of secondary amines as nitrosamine precursors. Water Research, 45(16), 4930-4938. doi: 10.1016/j.watres.2011.06.041
WHO. (2008). N-Nitrosodimethylamine in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality. World Health Organization Retrieved from http://www.who.int/water_sanitation_health/dwq/chemicals/ndma_2add_feb2008.pdf.
Xing-Fang Li, S. E. H., Richard J. Bull, David A. Reckhow, Andrew Humpage, Cynthia Joll, and Anna Heitz. (2011). Analytical Methods for Predicted DBPs of Probable Toxicological Significance
Xu, L., Sun, Z., Liu, Q. M., Liu, Y. D., Zhong, R. G., & Wu, F. C. (2013). The Influence of Phosphate Buffer on the Formation of N-Nitrosodimethylamine from Dimethylamine Nitrosation. Journal of Chemistry, 9. doi: 10.1155/2013/818943
Yang, L., Chen, Z. L., Shen, J. M., Xu, Z. Z., Liang, H., Tian, J. Y., . . . Li, G. B. (2009). Reinvestigation of the Nitrosamine-Formation Mechanism during Ozonation. Environmental Science & Technology, 43(14), 5481-5487. doi: 10.1021/es900319f
Zhao, Y. Y., Boyd, J., Hrudey, S. E., & Li, X. F. (2006). Characterization of new nitrosamines in drinking water using liquid chromatography tandem mass spectrometry. Environmental Science & Technology, 40(24), 7636-7641. doi: 10.1021/es061332s
Zhao, Y. Y., Boyd, J. M., Woodbeck, M., Andrews, R. C., Qin, F., Hrudey, S. E., & Li, X. F. (2008). Formation of N-nitrosamines from eleven disinfection treatments of seven different surface waters. Environmental Science & Technology, 42(13), 4857-4862. doi: 10.1021/es7031423
Zhou, Q. L., McCraven, S., Garcia, J., Gasca, M., Johnson, T. A., & Motzer, W. E. (2009). Field evidence of biodegradation of N-Nitrosodimethylamine (NDMA) in groundwater with incidental and active recycled water recharge. Water Research, 43(3), 793-805. doi: 10.1016/j.watres.2008.11.011
Zuccato, E., Calamari, D., Natangelo, M., & Fanelli, R. (2000). Presence of therapeutic drugs in the environment. Lancet, 355(9217), 1789-1790. doi: 10.1016/s0140-6736(00)02270-4
中央氣象局. (2013). 有發警報颱風列表.
內政部統計處. (2012). 101年簡易生命表提要分析.
韓佳芸. (2007). 淨水場改善前後對自來水水質及適飲提昇之研究. (博士論文), 國立中山大學.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code