Responsive image
博碩士論文 etd-0630115-092527 詳細資訊
Title page for etd-0630115-092527
論文名稱
Title
液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於水樣與食品中鉻與銻物種之分析應用
Determination of chromium and antimony species in water and food samples by HPLC-ICP-MS and ESI-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-22
繳交日期
Date of Submission
2015-07-31
關鍵字
Keywords
物種分析、液相層析、銻物種、瓶裝果汁、鉻物種、食用油、感應耦合電漿質譜儀
Antimony, Edible oil, HPLC-ICP-MS, Bottled juice, Chromium
統計
Statistics
本論文已被瀏覽 5693 次,被下載 852
The thesis/dissertation has been browsed 5693 times, has been downloaded 852 times.
中文摘要
第一部分研究:利用離子對逆相層析法(Ion-pair reversed-phase chromatography)結合感應耦合電漿質譜儀(Inductively coupled plasma mass spectroscopy)對食用油中之鉻物種進行分析。以C8逆相層析管柱,搭配離子對試劑─四丁基磷酸銨,以等比例沖提的方式分離Cr(III)以及Cr(VI)。為了減輕來自40Ar12C+、40Ar12CH+、37Cl16O+的多原子離子光譜干擾,使用動態反應槽(Dynamic reaction cell)搭配NH3作為反應氣體,將上述干擾離子反應轉換成中性。於最適化條件下,Cr(III)與Cr(VI)可於3分鐘內分離,偵測極限分別為0.045 與0.052 ng mL-1,訊號再現性之RSD小於3.7%。食用油樣品分析時,在動相溶液(0.5 mM TBAP,0.3 mM EDTA,1% MeOH)添加0.4% v/v HF以及2% m/v Triton X-100作為萃取試劑,以微波輔助之方式,於90℃下萃取樣品45分鐘,萃取回收率約70%。最後將本方法應用於食用油樣品之鉻物種分析。
第二部分研究:利用陰離子交換層析法(Anion-exchange chromatography)結合ICP-MS對PET瓶裝飲品中之銻物種進行分析。藉由鹽類濃度(EDTA、KHP、(NH4)2CO3)與pH值之調控,以梯度沖提的方式依序分離Sb(V)、Sb(III) 與TMeSb。在最適化條件下,三個物種可於8分鐘內分離,偵測極限依序為0.012、0.032與0.028 ng mL-1,訊號再現性之RSD小於4.6%,並選取標準參考樣品SLRS-3 Riverine Water進行法方法準確度之驗證。市售PET瓶裝果汁樣品以Sb(V)、TMeSb以及未知物種為主要組成。對於未知銻物種的檢測,嘗試在柳橙汁中添加Sb(V)以及Sb(V)-citrate,皆發現未知物種訊號的提升,推測該未知物種為Sb(V)與柳橙汁中的citric acid螯合所致。
Abstract
First parts presents a method based on HPLC-ICP-MS for the simultaneous determination of Cr(III) and Cr(VI) in edible oils. The separation was performed using ion-pair reversed-phase liquid chromatography on a C8 column with 0.5 mM tetrabutylammonium phosphate (TBAP), 0.3 mM EDTA, and 1% (v/v) MeOH at pH 6.9 as mobile phase. For detection of chromium, an ICP-MS equipped with a dynamic reaction cell (DRC) was used. The interfering 40Ar12C+, 40Ar12CH+ and 37Cl16O+ ions at masses 52 and 53 were reduced by using NH3 as reaction cell gas. Separation of the chromium species was carried out in less than 3 min. The detection limits for Cr(III) and Cr(VI) were 0.045 and 0.052 ng mL-1, respectively. Reproducibility was 3.7% RSD for 5 replicate injections. Chromium species were extracted from edible oils using a mixture of mobile phase (0.5 mM TBAP, 0.3 mM EDTA, and 1% (v/v) MeOH at pH 6.9), 0.4% (v/v) HF, and 2% (m/v) Triton X-100 using microwave assisted extraction procedure. The extraction efficiency of chromium were about 70% for 45 minutes at 90℃. Methodology developed here was applied to investigate chromium speciation in edible oils.
Second parts presents a method based on HPLC-ICP-MS for the simultaneous determination of Sb(V), Sb(III) and TMeSb in PET bottled juice. The separation was performed on an anion exchange column PRP-X100 using a gradient elution program between EDTA/KHP/MeOH as first mobile phase and EDTA/KHP/(NH4)2CO3/MeOH as the second one. Separation of the antimony species was carried out in less than 8 min. The detection limits for Sb(V), Sb(III) and TMeSb were 0.012, 0.032, and 0.028 ng mL-1, respectively. Reproducibility was 4.6% RSD for 5 replicate injections. The accuracy of the method was validated using reference materials SLRS-3 Riverine Water. Methodology developed here was applied to investigate antimony speciation in bottled juices. Results showed that Sb(V), TMeSb were the main antimony species present in orange juice. An unknown compound had also been measured. In order to identify the unknown compound, juice sample was spiked with Sb(V) and Sb(V)-citrate. Results showed that signal of unknown was obviously increased when spiked with Sb(V) standard. Besides, positive co-elution of unknown compound with Sb(V)-citrate was found. Thus, unknown compound was suggested to be Sb(V) complexe with citric acid.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
縮寫表 x

第一章 液相層析結合感應耦合電漿質譜儀於食用油中鉻物種之分析應用 1
壹、前言 1
貳、實驗部分 4
一、儀器裝置 4
二、藥品及溶液的配製 5
參、實驗過程 6
一、液相層析條件最適化探討 6
二、DRC-ICP-MS系統最適化探討 7
三、再現性 8
四、校正曲線與偵測極限 8
五、萃取條件最適化 9
六、真實樣品分析 9
肆、結果與討論 12
一、液相層析條件最適化探討 12
二、DRC-ICP-MS系統最適化探討 14
三、再現性 24
四、校正曲線與偵測極限 24
五、萃取條件最適化 24
六、真實樣品分析 31
伍、結論 46
陸、參考文獻 47

第二章 液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於瓶裝果汁中銻物種之分析應用
壹、前言 51
貳、實驗部分 54
一、儀器裝置 54
二、藥品及溶液的配製 54
參、實驗過程 56
一、液相層析條件最適化探討 56
二、再現性 57
三、校正曲線與偵測極限 57
四、真實樣品分析 57
肆、結果討論 60
一、液相層析條件最適化探討 60
二、再現性 65
三、校正曲線與偵測極限 65
四、真實樣品分析 70
伍、結論 87
陸、參考文獻 88
參考文獻 References
1. Robaina, N. F.; Brum, D. M.; Cassella, R. J. Application of the extraction induced by emulsion breaking for the determination of chromium and manganese in edible oils by electrothermal atomic absorption spectrometry. Talanta 2012, 99, 104–112
2. Castillo, J. R.; Jime´nez, M. S.; Ebdon, L. Semiquantitative simultaneous determination of metals in olive oil using direct emulsion nebulization. J. Anal. At. Spectrom. 1999, 14, 1515–1518
3. Savio, M.; Ortiz, M. S.; Almeida, C. A.; Olsina, R. A.; Martinez, L. D. Gil, R. A. Multielemental analysis in vegetable edible oils by inductively coupled plasma mass spectrometry after solubilisation with tetramethylammonium hydroxide. Food Chem. 2014, 159, 433–438
4. IOC, 2015. Trade standards applying to olive oils and olive-pomace oils. In, vol. COI/T.15/NC No 3/Rev. 8). Madrid, Spain: International Olive Council, 2004.
5. 中華民國102年08月20日部授食字第1021350146號令修正 食用油脂類衛生標準
6. Markiewicz, B.; Komorowicz, I.; Sajnóg, A.; Belter, M.; Barałkiewicz, D. Chromium and its speciation in water samples by HPLC/ICP-MS – technique establishing metrological traceability: A review since 2000. Talanta 2015, 132, 814–828
7. Wolf, R. E.; Morrison, J. M.; Goldhaber, M. B. Simultaneous determination of Cr(III) and Cr(VI) using reversed-phased ion-pairing liquid chromatography with dynamic reaction cell inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2007, 22, 1051–1060
8. Wolf, R. E.; Morman, S. A.; Hageman, P. L.; Hoefen, T. M.; Plumlee, G. S. Simultaneous speciation of arsenic, selenium, and chromium: species stability, sample preservation, and analysis of ash and soil leachates. Anal. Bioanal. Chem. 2011, 401, 2733-2745
9. Popp, M.; Hann, S.; Koellensperger, G. Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to inductively coupled plasma mass spectrometry—A review. Anal. Chim. Acta, 2010, 668, 114–129
10. Wahdat, F.; Hinkel, S.; Neeb, R. Direct inverse voltammetric determination of Pb, Cu and Cd in some edible oils after solubilization. Fresenius J. Anal. Chem. 1995, 352, 393-394
11. Hendrikse, P. W.; Slikkerveer, F. J.; Folkersma, A. Dieffenbacher, A.; Determination of lead in oils and fats by direct graphite furnace atomic absorption spectrometry. Pure Appl. Chem. 1991, 63, 1183-1190
12. Ibrahim, H. Determination of lead in frying oils by direct current plasma atomic emission spectrometry. J. Am. Oil Chem. Soc. 1991, 68, 678-679
13. He, Y. M.; Chen, J. J.; Zhou, Y.; Wang, X. J.; Liu, X. Y. Extraction induced by emulsion breaking for trace multi-element determination in edible vegetable oils by ICP-MS. Anal. Methods 2014, 6, 5105–5111
14. Kara, D.; Fisher, A.; Hill, S. Extraction of trace elements by ultrasound-assisted emulsification from edible oils producing detergentless microemulsions. Food Chem. 2015, 188, 143–148
15. López-García, I.; Vicente-Martínez, Y.; Hernández-Córdoba, M. Determination of cadmium and lead in edible oils by electrothermal atomic absorption spectrometry after reverse dispersive liquid–liquid microextraction. Talanta 2014, 124, 106–110
16. 張尤子. 泥漿進樣及乳化法進樣結合蒸氣生成感應耦合電漿質譜儀於葉子及食用油中砷、銻、鉍、汞及鎘之分析應用. 國立中山大學, 高雄市, 2007
17. Grassino, A. N.; Grabaric´, Z.; Pezzani, A.; Fasanaro, G.; Voi, A. L. Influence of essential onion oil on tin and chromium dissolution from tinplate. Food Chem. Toxicol. 2009, 47, 1556–1561
18. Ni, Z.; Tang, F.; Liu, Y.; Shen, D.; Mo, R. Multielemental analysis of camella oil by microwave dry ashing and inductively coupled plasma mass spectrometry. Anal. Lett. 2015, 48, 1777–1786
19. Chen, Z.; Naidu, R.; Subramanian, A. Separation of chromium (III) and chromium (VI) by capillary electrophoresis using 2,6-pyridinedicarboxylic acid as a pre-column complexation agent. J. Chromatogr. A 2001, 927, 219–227
20. Chen, Y. Q.; Chen, J. F.; Xi, Z.; Yang, G.; Wu, Z.; Li, J. R.; Fu, F. F. Simultaneous analysis of Cr(III), Cr(VI), and chromium picolinate in foods using capillary electrophoresis-inductively coupled plasma mass spectrometry. Electrophoresis 2015, 36, 1208–1215
21. Guo, X.; Liu, W.; Bai, X.; He, X.; Zhang, B. Speciation of chromium in chromium yeast. World J. Microbiol. Biotechnol. 2014, 30, 3245–3250
22. Petrucci, F.; Senofonte, O Determination of Cr(VI) in cosmetic products using ion chromatography with dynamic reaction cell inductively coupled plasma-mass spectrometry (DRC-ICP-MS). Anal. Methods 2015, 7, 5269–5274
23. Hagendorfer, H.; Goessler, W. Separation of chromium(III) and chromium(VI) by ion chromatography and an inductively coupled plasma mass spectrometer as element-selective detector. Talanta 2008, 76, 656–661
24. Gurleyuk, H.; Wallschlager, D. Determination of chromium(III) and chromium(VI) using suppressed ion chromatography inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2001, 16, 926–930
25. Wang, H. J.; Du, X. M.; Wang, M.; Wang, T. C.; Ou-Yang, H.; Wang, B.; Zhu, M. T.; Wang, Y.; Jia, G.; Feng, W. Y. Using ion-pair reversed-phase HPLC ICP-MS to simultaneously determine Cr(III) and Cr(VI) in urine of chromate workers. Talanta 2010, 81, 1856–1860
26. Scancar, J.; Milaci, R. A critical overview of Cr speciation analysis based on high performance liquid chromatography and spectrometric techniques. J. Anal. At. Spectrom. 2014, 29, 427–443
27. 劉殷孝. 液相層析結合感應耦合電漿質譜儀於海藻中含砷化合物及對含鉻化合物之分析應用. 國立中山大學, 高雄市, 2014.
28. Ma, H. L.; Tanner, P. A. Determination of chromium in airborne particulate matter by inductively coupled plasma dynamic reaction cell mass spectrometry. J. Environ. Monit. 2008, 10, 1217
29. Kuo, C. Y.; Jiang, S. J.; Sahayam, A. C. Speciation of chromium and vanadium in environmental samples using HPLC-DRC-ICP-MS. J. Anal. At. Spectrom. 2007, 22, 636–641
30. Guerrero, M. M. L.; Alonso, E. V.; Pavon, J. M. C.; Cordero, M. T. S.; Torres, A. G. On-line preconcentration using chelating and ion-exchange minicolumns for the speciation of chromium(III) and chromium(VI) and their quantitative determination in natural waters by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2012, 27, 682–688
31. D’Ilio, S.; Violante, N.; Majorani, C.; Petrucci, F. Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and V in complex matrices: Still a challenge? A review. Anal. Chim. Acta 2011, 698, 6–13
32. Chang, Y. L.; Jiang, S. J. Determination of chromium in water and urine by reaction cell inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2001, 16, 1434–1438
33. Sun, J.; Ma, L.; Yang, Z.; Wang, L. Optimization of species stability and interconversion during the complexing reaction for chromium speciation by high-performance liquid chromatography with inductively coupled plasma mass spectrometry. J. Sep. Sci. 2014, 37, 1944–1950
34. Xing, L.; Beauchemin, D. Chromium speciation at trace level in potable water using hyphenated ion exchange chromatography and inductively coupled plasma mass spectrometry with collision/reaction interface. J. Anal. At. Spectrom. 2010, 25, 1046–1055
35. Tsoi, Y. K.; Leung, K. S. Y. Simultaneous determination of seven elemental species in estuarine waters by LC-ICP-DRC-MS. J. Anal. At. Spectrom. 2010, 25, 880–885
36. Pehlivan, E.; Arslan, G.; Gode, F.; Altun, T.; Özcan, M. M. Determination of some inorganic metals in edible vegetable oils by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Grasas Aceites 2008, 59, 239–244.
37. Yang, Y. K.; Yoon, S. W.; Hwang, Y. T.; Song, B. G. New titanium-based catalysts for the synthesis of poly(ethylene terephthalate). Bull. Korean Chem. Soc. 2012, 33, 3445-3447
38. Thiele, U. K. Chem. Fibers Int. 2004, 54, 162.
39. Hansen, C.; Tsirigotaki, A.; Bak, S. A.; Pergantis, S. A.; Sturup, S.; Gammelgaard, B.; Hansen, H. R. Elevated antimony concentrations in commercial juices. J. Environ. Monit. 2010, 12, 822–824
40. Ferreira, S. L. C.; Santos, W. N. L.; Santos, I. F.; Junior, M. M. S.; Silva, L. O. B.; Barbosa, U. A.; Santana, F. A.; Queiroz, A. F. S. Strategies of sample preparation for speciation analysis of inorganic antimony using hydride generation atomic spectrometry. Microchem. J. 2014, 114, 22-31
41. World Health Organization, Antimony in drinking-water, Geneva, 2003.
42. US EPA 2009 National primary drinking water regulations, United States Environmental Protection Agency, 2009.
43. 行政院環境保護署“飲用水水質標準”,民國103年1月
44. Hansen, H. R.; Pergantis, S. A. Detection of antimony species in citrus juices and drinking water stored in PET containers. J. Anal. At. Spectrom. 2006, 21, 731–733
45. Tukur, A.; Sharp, L.; Stern, B.; Tizaouic, C.; Benkreira, H. PET bottle use patterns and antimony migration into bottled water and soft drinks: the case of British and Nigerian bottles. J. Environ. Monit. 2012, 14, 1237–1247
46. Sánchez-Martínez, M.; Pérez-Corona, T.; Cámara, C.; Madrid, Y. Migration of antimony from PET containers into regulated EU food simulants. Food Chem. 2013, 141, 816–822
47. Shotyk, W.; Krachler, M. Contamination of bottled waters with antimony leaching from polyethylene terephthalate (PET) increases upon storage. Environ. Sci. Technol. 2007, 41, 1560-1563
48. Westerhoff, P.; Prapaipongb, P.; Shock, E.; Hillaireaud, A. Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water. Water Res. 2008, 42, 551-556
49. Keresztes, S.; Tatár, E.; Mihucz, V. G.; Virág, I.; Majdik, C.; Záray, G. Leaching of antimony from polyethylene terephthalate (PET) bottles into mineral water. Sci. Total Environ. 2009, 407, 4731-4735
50. Fan, Y. Y.; Zheng, J. L.; Ren, J. H.; Luo, J.; Cui, X. Y.; Ma, L. Q. Effects of storage temperature and duration on release of antimony and bisphenol A from polyethylene terephthalate drinking water bottles of China. Environ. Pollut. 2014, 192, 113-120
51. Shotyk, W.; Krachler, M.; Chen, B. Contamination of Canadian and European bottled waters with antimony from PET containers. J. Environ. Monit. 2006, 8, 288–292
52. Hansen, H. R.; Pergantis, S. A. Identification of Sb(V) cmplexes in bological and food matrixes and their stibine formation efficiency during hydride generation with ICPMS detection. Anal. Chem. 2007, 79, 5304-5311
53. Ouellette, M.; Drummelsmith, J.; Papadopoulou, B. Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resistance Updates 2004, 7, 257-266
54. Séby, F.; Gleyzes, C.; Grosso, O.; Plau, B.; Donard, O. F. X. Speciation of antimony in injectable drugs used for leishmaniasis treatment (Glucantime®) by HPLC-ICP-MS and DPP. Anal. Bioanal. Chem. 2012, 404, 2939-2948
55. Hansen, C.; Schmidt, B.; Larsen, E. H.; Gammelgaard, B.; Sturup, S.; Hansen, H. R. Quantitative HPLC-ICP-MS analysis of antimony redox speciation in complex sample matrices: new insights into the Sb-chemistry causing poor chromatographic recoveries. Analyst 2011, 136, 996-1002
56. Wehmeier, S.; Feldmann, J. Investigation into antimony mobility in sewage sludge fermentation. J. Environ. Monit. 2005, 7, 1194-1199
57. Duester, L.; Diaz-Bone, R. A.; Kosters, J.; Hirner, A. V. Methylated arsenic, antimony and tin species in soils. J. Environ. Monit. 2005, 7 , 1186–1193
58. Michalke, B.; Schramel, P. Antimony speciation in environmental samples by interfacing capillary electrophoresis on-line to an inductively coupled plasma mass spectrometer. J. Chromatogr. A 1999, 834, 341-348
59. Casiot, C.; Donard, O. F.; Potin-Gautier, M. Optimization of the hyphenation between capillary zone electrophoresis and inductively coupled plasma mass spectrometry for the measurement of As-, Sb-, Se-, and Te-species, applicable to soil extracts. Spectrochim. Acta, Part B 2002, 57, 173-187
60. 蔡瑤璇. 液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於食用藻類中砷物種與水樣及果汁中銻物種之分析應用. 國立中山大學, 高雄市, 2013.
61. Lintschinger, J.; Koch, I.; Serves, S.; Feldmann, J.; Cullen, W. R. Determination of antimony species with high-performance liquid chromatography using element specific detection. Fresenius J. Anal. Chem. 1997, 359, 484-491
62. Ulrich, N. Study of ion chromatographic behavior of inorganic and organic antimony species by using inductively coupled plasma mass spectrometric (ICP-MS) detection. Fresenius J. Anal. Chem. 1998, 360, 797–800
63. Nash, M. J.; Maskall, J. E.; Hill, S. J. Developments with anion exchange stationary phases for HPLC-ICP-MS analysis of antimony species. Analyst 2006, 131, 724–730
64. Krachler, M.; Emons, H. Speciation analysis of antimony by high-performance liquid chromatography inductively coupled plasma mass spectrometry using ultrasonic nebulization. Anal. Chim. Acta 2001, 429, 125–133
65. Gregori, I. D.; Quiroz, W.; Pinochet, H.; Pannier, F.; Potin-Gautier, M. Simultaneous speciation analysis of Sb(III), Sb(V) and (CH3)3SbCl2 by high performance liquid chromatography-hydride generation-atomic fluorescence spectrometry detection (HPLC-HG-AFS): Application to antimony speciation in sea water. J. Chromatogr. A 2005, 1091, 94-101
66. Ge1, Z.; Wei, C. Simultaneous analysis of SbIII, SbV and TMSb by high performance liquid chromatography–inductively coupled plasma–mass spectrometry detection: application to antimony speciation in soil samples. J. Chromatogr. Sci. 2013, 51, 391–399
67. Smichowski, P. Separation and determination of antimony(III) and antimony(v) species by high-performance liquid chromatography with hydride generation atomic absorption spectrometric and inductively coupled plasma mass spectrometric detection. J. Anal. At. Spectrom. 1995, 10, 815-821
68. Miravet, R.; Lopez-Sanchez, J. F.; Rubio, R. New considerations about the separation and quantification of antimony species by ion chromatography–hydride generation atomic fluorescence spectrometry. J. Chromatogr. A 2004, 1052, 121-129
69. Morita, Y.; Kobayashi, T.; Kuroiwa, T.; Narukawa, T. Study on simultaneous speciation of arsenic and antimony by HPLC–ICP-MS. Talanta 2007, 73, 81–86
70. Zheng, J.; Iijima, A.; Furuta, N. Complexation effect of antimony compounds with citric acid and its application to the speciation of antimony(III) and antimony(V) using HPLC-ICP-MS. J. Anal. At. Spectrom. 2001, 16, 812–818
71. Miravet, R.; López-Sánchez, J. F.; Rubio, R.; Smichowski, P.; Polla, G. Speciation analysis of antimony in extracts of size-classified volcanic ash by HPLC–ICP-MS. Anal. Bioanal. Chem. 2007, 387, 1949–1954
72. Wei, C.; Ge, Z.; Chu, W.; Feng, R. Speciation of antimony and arsenic in the soils and plants in an old antimony mine. Environ. Exp. Bot. 2015, 109, 31–39
73. Jabłońska-Czapla, M.; Szopa, S.; Grygoyć, K.; Łyko, A.; Michalski, R. Development and validation of HPLC–ICP-MS method for the determination in organic Cr, As and Sb speciation forms and its application for Pławniowice reservoir (Poland) water and bottom sediments variability study. Talanta 2014, 120, 475–483
74. Niedzielski, P.; Siepak, M. The occurrence and speciation of arsenic, antimony, and selenium in ground water of Pozna´n city (Poland). Chemistry and Ecology 2005, 21, 241–253
75. Niedzielski, P.; Siepak, M.; Grabowski, K. Microtrace level speciation of arsenic, antimony and selenium in lake waters of the Pszczewski Landscape Park, Poland. Polish Journal of Environmental Studies 2003, 12, 213-219
76. Deng, T. L.; Chen, Y. W.; Belzile, N. Antimony speciation at ultra trace levels using hydride generation atomic fluorescence spectrometry and 8-hydroxyquinoline as an efficient masking agent. Anal. Chim. Acta 2001, 432, 293–302
77. Ceriotti, G.; Amarasiriwardena, D. A study of antimony complexed to soil-derived humic acids and inorganic antimony species along a Massachusetts highway. Microchem. J. 2009, 91, 85–93
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code