Responsive image
博碩士論文 etd-0630116-090831 詳細資訊
Title page for etd-0630116-090831
論文名稱
Title
多道雷射表面熱處理之回火效應研究
The Tempering Effect on Multi-track Laser Surface Heat Treatment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
173
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-17
繳交日期
Date of Submission
2016-09-07
關鍵字
Keywords
硬化寬度、回火效應、雷射表面熱處理、硬化層深度
Hardening depth, Tempering effect, Hardening width, Laser surface heat treatment
統計
Statistics
本論文已被瀏覽 5711 次,被下載 83
The thesis/dissertation has been browsed 5711 times, has been downloaded 83 times.
中文摘要
本論文主要利用熱-彈-塑有限元素模式,模擬、分析高功率雷射加工參數對於AISI 1045及AISI 4140兩種鋼材表面熱處理製程之影響。希利用雷射高功率密度特性,使鋼材表面於雷射熱源照射下,迅速升溫至沃斯田鐵變化溫度,且於極短的時間內降回室溫,達成工件自體淬火之表面硬化程序。文中採用熱-彈塑耦合有限元素模型,配合隨溫度變化之材料參數,針對兩種鋼材,探討單道雷射及多道雷射熱處理過程中,各加工參數,如:功率大小、雷射進給速率、光斑大小對其表面硬化及回火軟化之影響。
論文中首就單道雷射熱處理之雷射功率、進給速率及光斑大小等基本加工參數對兩鋼材溫度、硬化寬度及應化層深度的影響進行分析,比較兩鋼材對於上述各加工參數的敏感度,並且將數值結果進行曲線擬合,提出最佳的加工參數範圍。文中亦進一步對多道雷射熱處理進行數值模擬,探討雷射進給路徑、雷射覆蓋率、雷射加工參數對於兩鋼材硬化面之可能之回火效應,並且推估鋼材表面的硬化程度分布情況。
數值模擬結果顯示本文所提出之有限元素分析模式,可成功分析雷射加工應用於鋼材表面熱處理製程,達成快速升溫、降溫之特性,並可將此模式用於分析鋼材回火效應所造成的鋼材硬度下降之可能性。
Abstract
The thermal-elastic-plastic finite element model has been employed to simulate the possible effects of laser scanning parameters on the surface hardening process for AISI 1045 and AISI 4140 steels. The advantage of high power density of laser beam is used to heat the work piece surface quickly to achieve self-quenching effect. The thermal-elastic-plastic finite element models in company with temperature dependent material properties are applied to characterize the possible quench and tempering effects during the single-track and multi-track laser surface heat treatment.
The effects of laser surface hardening parameters, e.g. power variation, scanning speed, and the laser spot size, on the surface temperature distribution, hardening width, and hardening depth variation during the single-track surface laser treatment process has investigated. The ranges of proper parameters in the surface treatment has been proposed. The effects of parameters, e.g. the overlap of laser track, laser scanning path, power variation, scanning speed, and the laser spot size have also been explored on the study tempering effect in the multi-track laser surface heat treatment. Numerical results reveal that the proposed finite element models are feasible to simulate the laser surface heat treatment process and tempering effect of steel.
目次 Table of Contents
謝誌 p.i
摘要 p.ii
Abstract p.iii
目錄 p.iv
圖目錄 p.vii
表目錄 p.xi
符號說明 p.xiii
第一章 緒論 p.1
1.1 研究背景與動機 p.1
1.2 文獻回顧 p.2
1.3 組織章節 p.5
第二章 研究理論與數值方法 p.6
2.1熱處理原理 p.6
2.1.1 鐵-碳平衡圖 p.6
2.1.2 淬火理論 p.8
2.1.3 回火理論 p.9
2.2 雷射表面熱處理原理 p.10
2.2.1 鋼材表面硬化 p.10
2.2.2 雷射表面硬化處理 p.10
2.3 熱-力耦合分析模式 p.14
2.4 熱傳分析理論 p.17
2.5 力學分析理論 p.18
2.6 牛頓-拉弗森法 p.19
第三章 有限元素模型與分析方法 p.25
3.1 研究流程 p.25
3.2 移動式熱源設定 p.28
3.3 有限元素模型建立 p.32
3.3.1 幾何模型與材料性質 p.32
3.3.2 邊界條件設定 p.41
3.3.3 收斂性分析與模型網格切割 p.44
第四章 結果與討論 p.52
4.1 參數規劃 p.52
4.2 單道雷射熱處理 p.55
4.2.1 單道雷射熱處理模型簡介 p.55
4.2.2 雷射功率 p.58
4.2.3 雷射進給速率 p.63
4.2.4 雷射光斑大小 p.70
4.3 多道雷射熱處理 p.75
4.3.1 多道雷射熱處理模型簡介 p.75
4.3.2 雷射進給路徑對回火效應之影響 p.80
4.3.3 雷射覆蓋率對回火效應之影響 p.94
4.3.4 雷射功率對回火效應之影響 p.102
4.3.5 雷射進給速率對回火效應之影響 p.108
4.3.6 雷射光斑大小對回火效應之影響 p.114
第五章 結論與未來工作 p.120
5.1 結論 p.120
5.2未來工作 p.121
參考文獻 p.122
附錄 A p.128
附錄 B p.135
參考文獻 References
[1] Golovin, A.F., “The Centennial of D. K. Chernov's Discovery of Polymorphous Transformations in Steel (1868–1968),” Metal Science and Heat Treatment, 10, 5, 1968.
[2] 黃得晉、洪炎星,金屬二次加工技術Roadmap-鑄造、熱處理,金屬中心,2005年。
[3] Grum, J., “Modeling of Laser Surface Hardening,” Taylor & Francis Group, 2008.
[4] 邱姵茹,雙雷射束畫線製程應用於薄膜太陽能電池之研究,碩士論文,國立中山大學機械與機電工程研究所,高雄,2013。
[5] Wissenbach, K., Gillner, A., Dausinger, F., Beyer, E., and Wissenbach, K., “Oberflächenbehandlung mit Laserstrahlung,” Allgemaine Grundlagen, Springer-Verlag, Berlin, 1998.
[6] 黃振賢,金屬熱處理,文京圖書有限公司,1985。
[7] 李正國、李志偉、林本源、邱錫榮、陳文嘉、溫炯亮、傅豪、蔡履文,熱處理,高立圖書公司,1991。
[8] 楊義雄,熱處理導論-應用篇,全華科技圖書股份有限公司(1994)
[9] Osmond, F., “Microscopic Analysis of Metals,” Charles Griffin & Company, 1904.
[10] Maiman, T., “Optical and Microwave-optical Experiments in Ruby,” Physical Review Letters, 4(11), 564-566, 1960.
[11] Maiman, T., “Stimulated Optical Radiation in Ruby,” Nature, 187, 493-494, 1960.
[12] Klauminzer, G.K., “Twenty Years of Commercial Lasers-a Capsule History,” Laser Focus/Electro-optics, 20, 54-79, 1984.
[13] Javan, A., Bennett, W.R.Jr., and Herriott, D.R., “Population Inversion and Continuous Optical Maser Oscillation in a Gas Discharge Containing a He-Ne Mixture,” Physical Review Letters, 6(3), 106-110, 1961.
[14] Platte, W.N., and Smith, J.F., “Laser Techniques for Metals Joining,” Welding Journal Research Supplement, 42(11), 481-489, 1963.
[15] Belforte, D., “Laser welding : a Technology in Transition,” Industrial Laser Review Buyers Guide, Nashua:Penn Well, p.5, 1993.
[16] Moorhead, A.J., “Laser Welding and Drilling Applications,” Welding Journal, 50 (2), 97-106, 1971.
[17] Loeffer, J.R., “Numerically Controlled Laser Soldering-fast, Low Cost, No Rejects,” Assembly Engineering, 20 (3), 32-34, 1977.
[18] Sullivan, A.B.J. and Houldcroft, P.T., “Gas-jet Laser Cutting,” British Welding Journal, 14 (8), 443-445, 1967.
[19] Bod, D., Brasier, R.E., and Parks, J., “A Powerful CO2 Laser Cutting Tool,” Laser Focus, August, 36-38, 1969.
[20] DeMichelis, C., “Laser Interaction with Solids – a Bibliographical Review,” IEEE Journal of Quantum Electronics, QE-6 (10), 630-641, 1970.
[21] Lichtman, D. and Ready, J.F., “Laser Beam Induced Electron Emission,” Physical Review Letters, 10 (8), 342-345, 1963.
[22] Speich, G.R. and Szirmae, A., “Formation of Austenite Form Ferrite and Ferrite-Carbide Aggregates,” Transformation of the Metallurgical Society of AIME, 245, 1063-1074, 1969.
[23] Namba, S.Kim,P.H., Nakayama, S., and Ida, I., “The Surface Temperature of Metals Heated with Laser,” Japanese Journal of Applied Physics, 4, 153-154, 1965.
[24] Wick, C., “Laser Hardening,” Manufacturing Engineering, 76 (6), 35-37, 1976.
[25] Miller, J.E. and Wineman, J.A., “Laser Hardening at Saginaw Steering Gear,” Metal Progress, 111 (5), 38-43, 1977.
[26] Fuerschbach, P.W. and MacCallum, D.O., “Variation of Laser Energy Transfer Efficiency with Weld Pool Depth,” Sandia National Laboratories, New Mexico, 1995.
[27] Lakhkar, R.S., Shin, Y.C., and Krane, J.M., “Predictive Modeling of Muti-track Laser Hardening of AISI 4140 Steel,” Materials Science and Engineering, 2008.
[28] Kusuhara, T., Morimoto, J., Abe, N., and Tsukamoto, M., “3-D Finite Element Temperature Field Modeling for Direct Diode Laser Hardening of Carbon Steel,” IEEE Modeling, Simulation and Applied Optimization, 2011.
[29] 陳錫卿,雷射原理與光電檢測,全華科技圖書股份有限公司,2004。
[30] Turnes, M.J., Clough, R.W., Martin, H.C., and Topp, J.L., “Stiffness and Deflection Analysis of Complex Structures,” Journal of Aeronautical Science, 23(9), pp.805-824, 1956.
[31] Chandrupatla, T.R. and Belegundu, A.D., “Introduction to Finite Elements in Engineering,” 3rd edition, Prentice Hall, New Jersey, 2002.
[32] MSC. Software Corporation, “MSC.Marc Product Documentation Volume A: Theory and User Information,” MSC.Software Corporation, 2010.
[33] Dawes, C., “Laser Welding,” Ablington Publishing and Woodhead Publishing in Association with the Welding Institute, Cambridge, pp.1-95, 1992.
[34] Zacharia, T., David, S.A., Vitek, J.M., and Debroy, T., “Weld Pool Development During GTA and Laser Beam Welding of Type 304 Stainless Steel Part I. Theoretical Analysis,” Welding Journal, 68, pp.499-509, 1989.
[35] Zacharia, T., David, S.A., Vitek, J.M., and Debroy T., “Weld Pool Development During GTA and Laser Beam Welding of Type 304 Stainless Steel Part II. Experimental Correlation,” Welding Journal, 68, pp.510-519, 1989.
[36] Zacharia, T., David, S.A., Vitek, J.M., and Debroy T., “Heat Transfer During Nd:YAG Pulsed Laser Welding and Its Effect on Solidification Structure of Austenitic Stainless Steels,” Metallurgical Transactions A, 20A, pp.957-967, 1989.
[37] DeKock J., “Laser Heat Treating Advances for the Gear Industry,” GearSolution Online, 2004.
[38] Ding, H.T., and Yung, C.S., “A Metallo-Thermomechanically Coupled Analysis of Orthogonal Cutting of AISI 1045 Steel,” ASME, vol. 134, October, 2012.
[39] Gustavo, S.S., Joaquin, F.B., Lauralice, C.F.C., Rosamel, M.M.R., Rafael, A.M., George, E.T, and Antonio, C.C., “Modeling Quenching Performance by the Kuyucak Method”, Materials Science and Engineering A, 459, pp.383-389, 2007.
[40] Edwan, A.A., Marcelo, A.M., Nelson, B.D.L., and Andre, P.T., “Numerical Simulation with Thorough Experimental Validation to Predict the Build-up of Residual Stresses During Quenching of Carbon and Low-Alloy Steels,” ISIJ International, vol.54, pp.1396-1045, 2014.
[41] MSC.Software Corporation, “MSC.MARC Product Documentation Volume B : Element Library,” MSC.Software Corporation, 2010.
[42] MSC.Software Corporation, “MSC. MARC Product Documentation Volume D : User Subroutines and Special Routines,” MSC. Software Corporation, 2010.
[43] Ion, J.C., “Laser Processing of Engineering Materials,” Elsevier Ltd., 2005.
[44] 林君彥,工具鋼之雷射表面硬化處理研究,碩士論文,中華科技大學機電光工程研究所碩士學位論文,臺北,2006。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code