Responsive image
博碩士論文 etd-0630118-120045 詳細資訊
Title page for etd-0630118-120045
論文名稱
Title
設計與合成半導體高分子材料及其於可見光催化產氫與仿皮膚光電元件之應用
Design and Synthesis of Semiconducting Polymers and Their Application in Visible Light-Driven Hydrogen Evolution and Skin-inspired Optoelectronics.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
269
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-25
繳交日期
Date of Submission
2018-07-30
關鍵字
Keywords
半導體高分子、可伸縮光電元件、可生物相容、乙二醇、光催化劑、高分子奈米顆粒
Semiconducting polymers, Polymer dots, Photocatalysts, Biocompatible, Ethylene glycol, Stretchable optoelectronics
統計
Statistics
本論文已被瀏覽 5657 次,被下載 0
The thesis/dissertation has been browsed 5657 times, has been downloaded 0 times.
中文摘要
本論文之研究領域涉及可見光催化分解水產氫與可伸縮高分子發光二極體。第二章及第四章皆以二嵌段共軛高分子作為主架構,而共軛高分子具備可撓性、質輕、抗腐蝕、高熱穩定性及製程方法容易等性質,因此在新穎材料領域上具有良好之潛力。
在光催化領域中,透過可見光做為驅動力驅使水分解產生氫氣,是在對環境友善情況下將豐富太陽能轉換為具有較高燃燒效率之氫能的最好方法之一。因此在第二章中,我們設計與合成一系列低能隙環鉑共軛高分子,並成功將其製作成高分子奈米顆粒(polymer dot),而此系列環鉑共軛高分子能隙為2.01~2.03 eV,可有效吸收及利用可見光。透過共價鍵結將鉑金屬錯合物(PtPy-acac與PtIq-acac)連接於半導體高分子主鏈中,能有效提高材料之光催化活性;在相同光催化條件下,鍵結15 mole% PtPy-acac之 PFTFQ-PtPy15 Pdot其產氫速率(HER = 12.7  0.6 mmol h-1 g-1)可高於PFTFQ Pdot (HER = 1.3  0.1 mmol h-1 g-1) 12倍之多;而與混摻相同莫耳數PtPy-acac之Pdot系統(HERmax = 5.46 mmol h-1 g-1)相比,PFTFQ-PtPy15仍具有高於其2倍之產氫速率。此外,以我們環鉑共軛高分子奈米顆粒與其他Pdots系統相比,可觀察到較長的光催化壽命及較高的氫氣總產量,綜合來說,此系列環鉑共軛高分子具有極佳的光催化表現。
另外,將電子元件與人體無縫整合將會是下一世代有機電子領域重要的一環,而為了完美整合電子元件與人體,材料本身需具備與皮膚匹配的拉伸能力及生物相容性,如何開發出兼顧上述兩種特性並保有優良的光電轉換功能之分子,仍具有相當大的挑戰。因此在第四章中,我們設計、引入具光電功能之稠合芳香環(fluorene、benzothia-diazole)及可生物降解之化合物(ethylene glycol、triethylene glycol、hexaethylene glycol)來合成一系列乙二醇衍生物之二嵌段共軛高分子,並利用分子構型來調控其在薄膜中軟、硬相的比例,進而建立一套系統化平台來了解與分析分子結構與機械、光電性質之間的關聯性,此外,我們將製備可伸縮高分子發光二極體來驗證所開發之材料,對於開發軟性電子元件之應用會有重要的影響,透過此跨領域整合的方法,從基礎概念來解決此複雜系統的問題。
Abstract
The research field in this thesis involves the visible light–driven water splitting for hydrogen evolution and stretchable polymer light–emitting diodes (PLED). In chapter two and chapter four, the diblock conjugated copolymer is used as the main structure. The conjugated copolymers have the properties of deformability, light weight, corrosion resistance and semiconducting, so they have favorable potential in the development of novel materials.
In the photocatalysis systems, generating hydrogen through visible light–driven water splitting would be one of the best process to convert abundant solar energy into hydrogen energy with high energy density in an environmentally friendly manner. Therefore, in chapter two, we design and synthesize a series of cycloplatinated polymers with low band gap, and successfully make them into polymer dots. The series of cycloplatinated polymers exhibit energy gap of 2.01~2.03 eV. So that cycloplatinated polymers can effectively absorb and ultilize visible light. The platinum complex unit (PtPy-acac and PtIq-acac) is linked to a conjugated semiconducting polymer backbone through covalent bonding, which can effectively improve the photocatalytic activity of the conjugated semiconducting polymers. Under the same photocatalytic conditions, the hydrogen evolution rate of PFTFQ-PtPy15 Pdot (HER = 12.7  0.6 mmol h-1 g-1), which contain 15 mole% PtPy-acac monomer, can be enhanced 12-times higher than that of PFTFQ Pdot (HER = 1.3  0.1 mmol h-1 g-1). Compared to the blending-counterpart Pdot (HERmax = 5.46 mmol h-1 g-1), which blending with the same molar PtPy-acac monomer, the HER of PFTFQ-PtPy15 still exhibit over 2-times higher than that of physically blended one. In addition, compared with other Pdots systems, the enhancement of the photocatalytic reaction time and the eventual hydrogen productions is observed by utilizing the cycloplatinated Pdots as photocatalysys. In summary, this series of cycloplatinated polymers possess excellent photocatalytic performances.
The other hand, integrating electronics with human is one of the most promising next-generation electronic technologies. Because it aims to seamlessly integrate electronics with the human body, the requirements of materials are stretchability and biocompatibility. The design of suitable materials also performing promising optoelectronic properties remains a big challenge. In chapter four, we design and combine functional fused aromatic rings (fluorene and benzothiadiazole) and biodegradable structures (ethylene glycol, triethylene glycol, and hexaethylene glycol) to create new diblock conjugated copolymers. We also adjusted the ratio of soft and hard phases to establish platform for determining the correlations among the chemical structures and the mechanical and optoelectronic properties. Furthermore, we will fabricate the stretchable polymer light-emitting diodes to verify the functions of our synthesized materials. It will be an important impact on the development of applications for flexible and stretchable electronics. This multidisciplinary approach should enable us to redefine the chemical challenges outside normal boundaries and provide a basis for a fundamental understanding of such a complex system.
目次 Table of Contents
摘要...........................................................................................................iv
Abstract ....................................................................................................vi
目錄...........................................................................................................ix
圖目錄.......................................................................................................xii
表目錄.......................................................................................................xx
第一章 緒論I...............................................................................................1
第一節 潔淨可再生能源-氫能......................................................................2
第二節 光催化分解水系統...........................................................................8
第三節 光催化分解水產氫機制..................................................................15
第四節 影響光催化活性之因素..................................................................18
參考文獻....................................................................................................22
第二章 設計與合成環鉑共軛高分子奈米顆粒及其於可見光催化產氫系統之應用...............................................................................................................28
研究前言與動機.........................................................................................29
第一節 環鉑共軛高分子之合成與鑑定以及高分子奈米顆粒之製作.............40
第二節 環鉑共軛高分子及其奈米顆粒物理性質之探討...............................47
2-1. 光物理性質探討...............................................................................47
2-2. 最高填滿軌域(HOMO)–最低未填滿軌域(LUMO)之量測...................61
2-3. 熱物理性質探討...............................................................................66
2-4. 高分子奈米顆粒之粒徑及組成元素分析...........................................67
第三節 環鉑共軛高分子奈米顆粒於產氫系統之應用..................................73
結論...........................................................................................................86
實驗部分....................................................................................................87
參考文獻..................................................................................................105
第三章 緒論II............................................................................................107
第一節 電子皮膚之發展............................................................................108
第二節 軟性電子之種類............................................................................114
第三節 機械性質之量測與分析方法..........................................................118
第四節 可伸縮之高分子共聚物發光二極體...............................................125
第五節 有機發光二極體之發光原理與元件結構........................................130
參考文獻..................................................................................................133
第四章 設計與合成乙二醇衍生物之半導體高分子及其於仿皮膚光電元件之應用.............................................................................................................139
研究前言與動機........................................................................................140
第一節 乙二醇衍生物之半導體高分子之合成與鑑定.................................149
第二節 乙二醇衍生物之半導體高分子物理性質之探討..............................152
2-1. 結構分析.........................................................................................152
2-2. 光物理性質探討..............................................................................157
2-3. 熱物理性質探討..............................................................................171
2-4. 機械性質探討..................................................................................173
結論...........................................................................................................175
實驗部分...................................................................................................176
參考文獻...................................................................................................190
第五章 未來展望.......................................................................................192
附錄一 量測原理、藥品、儀器與製程方法................................................195
附錄二 第二章核磁共振光譜資料...............................................................201
附錄三 第四章核磁共振光譜資料...............................................................223
參考文獻 References
第一章
[1] https://www.financialsense.com/contributors/robert-rapier/key-running-word-solar-power
[2] M. Balat, Int. J. Hydrogen Energy, 2008, 33, 4013–4029.
[3] M. Wang, Z. Wang, X. Gong, Z. Guo, Renewable Sustainable Energy Rev., 2014, 29, 573–588.
[4] C. G. Luca, H. Myriam, A. E. Selli, J Catal., 2010, 273, 182–190.
[5] J. A. Turner, Science, 1999, 285, 687–689.
[6] J. E. Trancik, Nature, 2014, 507, 300–302.
[7] Q. Xie, Y. Wang, B. Pan, H. Wang, W. Su, X. Wang, Catal. Commun., 2012, 27, 5–21.
[8] N. Wu, M. Lee, Int. J Hydrogen Energy, 2004, 29, 1601–1605.
[9] C. Liao, C. Huang, J. Wu, Catalysts, 2012, 2, 490–516.
[10] A. Fujishima, K. Honda, Nature, 1972, 238, 37–38.
[11] V. Artero, M. Chavarot-Kerlidou, M. Fontecave, Angew. Chem., Int. Ed., 2011, 50, 7238–7266.
[12] A. Marshall, B. B.rresen, G. Hagen, M. Tsypkin, R. Tunold, Energy, 2007, 32, 431–436.
[13] M. Wang, L. Chen, L. Sun, Energy Environ. Sci., 2012, 5, 6763–6778.
[14] V. S. Thoi, Y. Sun, J. R. Long, C. J. Chang, Chem. Soc. Rev., 2013, 42, 2388–2400.
[15] Z. Chen, D. Higggins, A. Yu, L. Zhang, J. Zhang, Energy Environ. Sci., 2011, 4, 3167–3192.
[16] https://www.energy.gov/eere/fuelcells/hydrogen-production
[17] L. Liao, Q. Zhang, Z. Su, Z. Zhao, Y. Wang, Y. Li, X. Lu, D. Wei, G. Feng, Q. Yu, X. Cai, J. Zhao, Z. Ren, H. Fang, F. Robles-Hernandez, S. Baldelli, J. Bao, Nat. Nanotechnol., 2014, 9, 69–73.
[18] A. Kudo, Y. Miseki, Chem. Soc. Rev., 2009, 38, 253–278.
[19] J. Ran, J. Zhang, J. Yu, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev., 2014, 43, 7787–7812.
[20] Z. Huang, C. Wang, L. Pan, F. Tian, X. Zhang and C. Zhang, Nano Energy, 2013, 2, 1337–1346.
[21] C. Lin, D. Mersch, D. A. Jefferson, E. Reisner, Chem. Sci., 2014, 5, 4906–4913.
[22] P. D. Tran, S. S. Pramana, V. S. Kale, M. Nguyen, S. Y. Chiam, S. K. Batabyal, L. H. Wong, J. Barber, J. Loo, Chem. Eur. J., 2012, 18, 13994–13999.
[23] B. Seger, A. B. Laursen, P. C. K. Vesborg, T. Pedersen, O. Hansen, S. DahI, I. Chorkendorff, Angew. Chem., Int. Ed., 2012, 51, 9128–9131.
[24] Q. Ding, F. Meng, C. R. English, M. CabaÅLn-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, S. Jin, J. Am. Chem. Soc., 2014, 136, 8504–8507.
[25] L. Gao, Y. Cui, J. Wang, A. Cavalli, A. Standing, T. T. T. Vu, M. A. Verheijen, J. E. M. Haverkort, E. P. A. M. Bakkers, P. H. L. Notten, Nano Lett., 2014, 14, 3715–3719.
[26] C. G. Morales-Guio, S. D. Tilley, H. Vrubel, M. GraÅNtzel, X. Hu, Nat. Commun., 2014, 5, 3059–3062.
[27] S. P. Berglund, H. He, W. D. Chemelewski, H. Celio, A. Dolocan, C. B. Mullins, J. Am. Chem. Soc., 2014, 136, 1535–1544.
[28] X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, J. Am. Chem. Soc., 2008, 130, 7176–7177.
[29] X. Zong, J. Han, G. Ma, H. Yan, G. Wu, C. Li, J. Phys. Chem. C, 2011, 115, 12202–12208.
[30] J. Zhang, Z. Zhu, X. Feng, Chem. Eur. J., 2014, 20, 10632–10635.
[31] K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouang, J. Ye, ACS Nano, 2014, 8, 7078–7087.
[32] M. Liu, F. Li, Z. Sun, L. Ma, L. Xu, Y. Wang, Chem. Commun., 2014, 50, 11004–11007.
[33] B. Zhu, B. Lin, Y. Zhou, P. Sun, Q. Yao, Y. Chen, B. Gao, J. Mater. Chem. A, 2014, 2, 3819–3827.
[34] M. Nguyen, P. D. Tran, S. S. Pramana, R. L. Lee, S. K. Batabyal, N. Mathews, L. H. Wong, M. Graetzel, Nanoscale, 2013, 5, 1479–1482.
[35] F. A. Frame, F. E. Osterloh, J. Phys. Chem. C, 2010, 114, 10628–10633.
[36] G. Tian, Y. Chen, Z. Ren, C. Tian, K. Pan, W. Zhou, J. Wang, H. Fu, Chem. Asian J., 2014, 9, 1291–1297.
[37] C. Liu, L. Wang, Y. Tang, S. Luo, Y. Liu, S. Zhang, Y. Zeng, Y. Xu, Appl. Catal. B, 2015, 164, 1–9.
[38] Y. Zhao, Z. Yang, Y. Zhang, L. Jing, X. Guo, Z. Ke, P. Hu, G. Wang, Y. Yan, K. Sun, J. Phys. Chem. C, 2014, 118, 14238–14245.
[39] K. Nakagawa, T. Jia, W. Zheng, S. M. Fairclough, M. Katoh, S. Sugiyama and S. C. E. Tsang, Chem. Commun., 2014, 50, 13702–13705.
[40] Y. Hou, A. B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. DahI, I. Chorkendorff, Angew. Chem., Int. Ed., 2013, 52, 3621–3625.
[41] N. Li, B. Zhou, P. Guo, J. Zhou, D. Jing, Int. J. Hydrogen Energy, 2013, 38, 11268–11277.
[42] L. Yin, Y. Yuan, S. Cao, Z. Zhang, C. Xue, RSC Adv., 2014, 4, 6127–6132.
[43] W. Zhang, Y. Wang, Z. Wang, Z. Zhong, R. Xu, Chem. Commun., 2010, 46, 7631–7633.
[44] A. T. Garcia-Esparza, D. Cha, Y. Ou, J. Kubota, K. Domen, K. Takanabe, Chem. Sus. Chem., 2013, 6, 168–181.
[45] J. F. Callejas, J. M. McEnaney, C. G. Read, J. C. Crompton, A. J. Biacchi, E. J. Popczun, T. R. Gordon, N. S. Lewis, R. E. Schaak, ACS Nano, 2014, 8, 11101–11107.
[46] S. Yanagida, A. Kabumoto, K. Mizumoto, C. Pac, K. Yoshino, J. Chem. Soc., Chem. Commun., 1985, 474−475.
[47] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater., 2009, 8, 76−80.
[48] M. G. Schwab, M. Hamburger, X. Feng, J. Shu, H. W. Spiess, X. Wang, M. Antonietti, K. Mullen, Chem. Commun., 2010, 46, 8932−8934.
[49] T. Yamamoto, Y. Yoneda, T. Maruyama, J. Chem. Soc., Chem. Commun., 1992, 0, 1652−1654.
[50] T. Maruyama, T. Yamamoto, J. Phys. Chem. B, 1997, 101, 3806−3810.
[51] Z. Zhang, J. Long, L. Yang, W. Chen, W. Dai, X. Fu, X. Wang, Chem. Sci., 2011, 2, 1826−1830.
[52] K. Kailasam, J. Schmidt, H. Bildirir, G. Zhang, S. Blechert, X. Wang, A. Thomas, Macromol. Rapid Commun., 2013, 34, 1008−1013.
[53] K. Kailasam, M. B. Mesch, L. Möhlmann, M. Baar, S. Blechert, M. Schwarze, M. Schröder, R. Schomäcker, J. Senker, A. Thomas, Energy Technol., 2016, 4, 744−750.
[54] L. Stegbauer, K. Schwinghammer, B. V. Lotsch, Chem. Sci., 2014, 5, 2789−2793.
[55] R. S. Sprick, J. X. Jiang, B. Bonillo, S. Ren, T. Ratvijitvech, P. Guiglion, M. A. Zwijnenburg, D. J. Adams, A. I. Cooper, J. Am. Chem. Soc., 2015, 137, 3265−3270.
[56] C. Yang, B. C. Ma, L. Zhang, S. Lin, S. Ghasimi, K. Landfester, K. A. I. Zhang, X. Wang, Angew. Chem. Int. Ed., 2016, 55, 9202−9276.
[57] R. Li, J. Byun, W. Huang, C. Ayed, L. Wang, K. A. I. Zhang, ACS Catal., 2018, 8, 4735−4750.
[58] D. J. Woods, R. S. Sprick, C. L. Smith, A. J. Cowan, A. I. Cooper, Adv. Energy Mater., 2017, 7, 1700479.
[59] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater., 2012, 24, 229–251.
[60] X. Chen, S. Shen, L. S. Guo, S. Mao, Chem. Rev., 2010, 110, 6503–6570.
[61] A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev., 1995, 95, 735–758.
[62] R. I. Bickley, T. Gonzalez-Carreno, J. S. Lee, L. Palmisano, R. J. D. Tilley, J. Solid State Chem., 1991, 92, 178.
[63] S. P. Meshram, P. V. Adhayak, U. P. Mulik, D. P. Amalnerkar, Chem. Eng. J., 2012, 68, 204–206.
[64] Z. Zhang, C. C. Wang, R. Zakaria, J. Y. Ying, J. Phys. Chem. B, 1998, 102, 10871.
[65] W. Sun, S. Zhang, Z. Liu, C. Wang, Z. Mao, Int. J. Hydrogen Energy, 2008, 33, 1112.
[66] R. M. Navarro, F. delValle, M. J. A. Villoriadela, A. M. C. lvarez-Galva´n, J. L. G. Fierro, Netherlands Elsevier Inc., 2009, 36, 111–141.
[67] Z. Zhang, P. A. Maggard, Chem. Commun., 2007, 186, 8–13.
[68] E. T. Soares, M. A. Lansarin, C. C. Moro, J. Chem. Eng., 2007, 24, 29–36.
[69] L. B. Reutergardh, M. Iangphasuk, Chemosphere, 1997, 35, 585–596.
[70] D. Jiang, H. Zhao, Z. Jia, J. L. Cao, R. John. J Photochem Photobiol A, 2001, 144, 197–204.
[71] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev., 1995, 95, 69–96.
[72] A. A. Nada, H. A. Hamed, M. H. Barakat, N. R. Mohamed, T. N. Veziroglu, Int. J. Hydrogen Energy, 2008, 33, 3264–3269.
第二章
[1] S. Yanagida, A. Kabumoto, K. Mizumoto, C. Pac, K. Yoshino, J. Chem. Soc., Chem. Commun., 1985, 474−475.
[2] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater., 2009, 8, 76−80.
[3] M. G. Schwab, M. Hamburger, X. Feng, J. Shu, H. W. Spiess, X. Wang, M. Antonietti, K. Mullen, Chem. Commun., 2010, 46, 8932−8934.
[4] Z. Zhang, J. Long, L. Yang, W. Chen, W. Dai, X. Fu, X. Wang, Chem. Sci., 2011, 2, 1826−1830.
[5] K. Kailasam, J. Schmidt, H. Bildirir, G. Zhang, S. Blechert, X. Wang, A. Thomas, Macromol. Rapid Commun., 2013, 34, 1008−1013.
[6] L. Stegbauer, K. Schwinghammer, B. V. Lotsch, Chem. Sci., 2014, 5, 2789−2793.
[7] R. S. Sprick, J. X. Jiang, B. Bonillo, S. Ren, T. Ratvijitvech, P. Guiglion, M. A. Zwijnenburg, D. J. Adams, A. I. Cooper, J. Am. Chem. Soc., 2015, 137, 3265−3270.
[8] R. S. Sprick, B. Bonillo, R. Clowes, P. Guiglion, N. J. Brownbill, B. J. Slater, F. Blanc, M. A. Zwijnenburg, D. J. Adams, A. I. Cooper, Angew. Chem., 2016, 128, 1824–1828.
[9] L. Li, W. Lo, Z. Cai, N. Zhang, L. Yu, Macromolecules, 2016, 49, 6903–6909.
[10] L. Li, R. G. Hadt S. Yao, W. Lo, Z. Cai, Q. Wu, B. Pandit, L. X. Chen, L. Yu, Chem. Mater., 2016, 28, 5394−5399.
[11] L. Wang, R. Fernandez-Teran, L. Zhang, D. L. A. Fernandes, L. Tian, H. Chen, H. Tian, Angew. Chem. Int. Ed., 2016, 55, 12306–12310.
[12] P. B. Pati, G. Damas, L. Tian, D. L. A. Fernandes, L. Zhang, I. B. Pehlivan, T. Edvinsson, C. M. Araujo, H. Tian, Energy Environ. Sci., 2017, 10, 1372–1376.
[13] C. Schwarz, H. Bassler, I. Bauer, J. M. Koenen, E. Preis, U. Scherf, A. Köçhler, Adv. Mater., 2012, 24, 922–925.
[14] W. Zhang, J. Smith, R. Hamilton, M. Heeney, J. Kirkpatrick, K. Song, S. E. Watkins, T. Anthopoulos, I. McCulloch, J. Am. Chem. Soc., 2009, 131, 10814–10815.
[15] R. S. Sprick, M. Hoyos, M. S. Wrackmeyer, A. V. S. Parry, I. M. Grace, C. Lambert, O. Navarro, M. L. Turner, J. Mater. Chem. C, 2014, 2, 6520–6528.
[16] D. Liu, J. Wang, X. Bai, R. Zong, Y. Zhu, Adv. Mater., 2016, 28, 7284–7290.
[17] K. Li, B. Liu, J. Mater. Chem., 2012, 22, 1257–1264.
[18] K. Li, B. Liu, Adv. Funct. Mater., 2011, 21, 3408–3423.
第三章
[1] E. M. Hume, N. S. Lucas, H. H. Smith, Biochem. J., 1927, 21, 362–367.
[2] F. L. Rice, P. J. Albrecht, in The Senses: A Comprehensive Reference, The Senses: A Comprehensive Reference, Vol. 6.01: (Eds.: A. I. Basbaum, A. Kaneko, G. M. Shepherd, G. Westheimer, T. D. Albright, R. H. Maslan, P. Dallos, D. Oertel, S. Firestein, G. K. Beauchamp, M. C. Buchnell, J. H. Kaas, E. Gardner), Academic Press, 2007, Ch. 1.
[3] J. Tegin, J. Wikander, Ind. Rob., 2005, 32, 64.
[4] Kershner, Star Wars Episode V: The Empire Strikes Back 1980, 20th Century Fox .
[5] F. W. Clippinger, R. Avery, B. R. Titus, Bull. Prosthetics Res., 1974, 36, 247.
[6] L. M. Hammock, A. Chortos, B. C. Tee, J. B. Tok, Z. Bao, Adv. Mater., 2013, 25, 5997.
[7] V. J. Lumelsky, M. S. Shur, S. Wagner, IEEE Sensors J., 2001, 1, 41.
[8] Vintage Computing and Gaming homepage, www.vintagecompu-ting.com, accessed: September 2013.
[9] F. K. Jiang, Y. C. Tai, K. Walsh, T. Tsao, G. B. Lee, C. M. Ho, in Proc. IEEE Tenth Annu. Int. Workshop on Micro. Electro. Mech. Syst., Nagoya, Japan , 1997, 465.
[10] B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, W. Li, Nature, 2000, 403, 521.
[11] S. Wagner, S. P. Lacour, J. Jones, P. H. I. Hsu, J. C. Sturm, T. Li, Z. G. Suo, Phys. E, 2004, 25, 326.
[12] D. Kim, J. Xiao, J. Song, Y. Huang, J. A. Rogers, Adv. Mater., 2010, 22, 2108.
[13] T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, T. Someya, Science, 2009, 326, 1516.
[14] S. C. B. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, Z. Bao, Nat. Mater., 2010, 9, 859.
[15] B. C. Tee, C. Wang, R. Allen, Z. Bao, Nat. Nanotech., 2012, 7, 825.
[16] Z. Yu, X. Niu, Z. Liu, Q. Pei, Adv. Mater., 2011, 23, 3989.
[17] M. Kaltenbrunner, M. S. White, E. D. Glowacki, T. Sekitani, T. Someya, N. S. Sariciftc, S. Bauer , Nat. Commun., 2012, 3, 770.
[18] T. Sekitani, U. Zschieschang, H. Klauk, T. Someya, Nat. Mater., 2010, 9, 1015.
[19] J. A. Rogers, T. Someya, Y. Huang, Science, 2010, 327, 1603.
[20] K. Park, D. Lee, B. Kim, H. Jeon, N. Lee, D. Whang, H. Lee, Y. J. Kim, J. Ahn, Adv. Funct. Mater., 2010, 20, 3577.
[21] D. Khang, H. Jiang, Y. Huang, J. A. Rogers, Science, 2006, 311, 208.
[22] H. Wu, S. Kustra, E. M. Gates, C. J. Bettinger, Org. Electron., 2013, 14, 1636.
[23] D. Kim, J. Ahn, W. M. Choi, H. Kim, T. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, Science, 2008, 320, 507.
[24] D. J. Lipomi, B. C. K. Tee, M. Vosgueritchian, Z. Bao, Adv. Mater., 2011, 23, 1771.
[25] D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J. E. Lee, C. Song, S. J. Kim, D. J. Lee, S. W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C. S. Hwang, N. Lu, T. Hyeon, D. Kim, Nat. Nanotechnol., 2014, 9, 397.
[26] R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y. Kim, W. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, J. A. Rogers, Nat. Mater., 2013, 12, 938.
[27] N. Kang, W. Choi, H. Kim, C. S. Kim, S. Jo, ECS Solid State Lett., 2015, 4, 88.
[28] C. Dagdeviren, Y. Su, P. Joe, R. Yona, Y. Liu, Y. Kim, Y. Huang, A. R. Damadoran, J. Xia, L. W. Martin, Y. Huang, J. A. Rogers, Nat. Commun., 2014, 5, 4496.
[29] T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, T. Sakurai, Proc. Natl. Acad. Sci. USA, 2005, 102, 12321.
[30] T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, Science, 2008, 321, 1468.
[31] J. Yoon, S. Y. Hong, Y. Lim, S. Lee, G. Zi, J. S. Ha, Adv. Mater., 2014, 26, 6580.
[32] N. Matsuhisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara, T. Sekitani, T. Someya, Nat. Commun., 2015, 6, 7461.
[33] S. Kim, J. Byun, S. Choi, D. Kim, T. Kim, S. Chung, Y. Hong, Adv. Mater., 2014, 26, 3094.
[34] F. Xu, Y. Zhu, Adv. Mater., 2012, 24, 5117.
[35] D. Wang, H. Li, M. Li, H. Jiang, M. Xia, Z. Zhou, J. Mater. Chem. C, 2013, 1, 2744.
[36] Y. Zhang, C. J. Sheehan, J. Zhai, G. Zou, H. Luo, J. Xiong, Y. T. Zhu, Q. X. Jia, Adv. Mater., 2010, 22, 3027.
[37] Y. Lee, H. Kang, S. H. Gwon, G. M. Choi, S. Lim, J. Sun, Y. Joo, Adv. Mater., 2016, 28, 1636.
[38] D. J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C. K. Tee, J. A. Bolander, Z. Bao, Chem. Mater., 2012, 24, 373.
[39] P. Li, K. Sun, J. Ouyang, ACS Appl. Mater. Interfaces, 2015, 7, 18415.
[40] D. J. Lipomi, Adv. Mater., 2016, 28, 4180.
[41] G. J. N. Wang, A. Gasperini, Z. Bao, Adv. Electron. Mater., 2018, 4, 1700429.
[42] J. Lee, J. Y. Chung, C. M. Stafford, ACS Macro. Lett., 2012, 1, 122.
[43] M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, J. A. Rogers, Nat. Mater., 2006, 5, 33.
[44] C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. Kim, W. Volksen, R. D. Miller, E. E. Simonyi, Nat. Mater., 2004, 3, 545.
[45] C. M. Stafford, S. Guo, C. Harrison, M. Y. M. Chiang, Rev. Sci. Instrum., 2005, 76, 062207.
[46] D. Rodriquez, J. Kim, S. E. Root, Z. P. Fei, P. Boufflet, M. Heeney, T. Kim, D. J. Lipomi, ACS Appl. Mater. Interfaces, 2017, 9, 8855.
[47] S. I. Park, J. H. Ahn, X. Feng, S. Wang, Y. Huang, J. A. Rogers, Adv. Funct. Mater., 2008, 18, 2673.
[48] T. F. O’Connor, A. V. Zaretski, S. Savagatrup, A. D. Printz, C. D. Wilkes, M. I. Diaz, D. J. Lipomi, Sol. Energy Mater. Sol. Cells, 2016, 144, 438.
[49] T. F. O’Connor, A. V. Zaretski, B. A. Shiravi, S. Savagatrup, A. D. Printz, M. I. Diaz, D. J. Lipomi, Energy Environ. Sci., 2014, 7, 370.
[50] O. Awartani, M. W. Kudenov, B. T. O’Connor, Appl. Phys. Lett., 2014, 104, 93306.
[51] D. Gargi, R. J. Kline, D. M. DeLongchamp, D. A. Fischer, M. F. Toney, B. T. O’Connor, J. Phys. Chem. C, 2013, 117, 17421.
[52] A. D. Printz, A. V. Zaretski, S. Savagatrup, A. S. Chiang, D. J. Lipomi, ACS Appl. Mater. Interfaces, 2015, 7, 23257.
[53] F. Macionczyk, W. Brückner, J. Appl. Phys., 1999, 86, 4922.
[54] S. Park, Y. Xiong, R. Kim, P. Elvikis, M. Meitl, D. Kim, J. Wu, J. Yoon, C. Yu, Z. Liu, Y. Huang, K. Hwang, P. Ferreira, X. Li, K. Choquette, J. A. Rogers, Science, 2009, 325, 977.
[55] T. Sekitani, T. Someya, Adv. Mater., 2010, 22, 2228.
[56] D. J. Lipomi1, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox1, Z. Bao, Nat. Nanotechnol., 2011, 6, 788.
[57] C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park, T. Chen, B. Ma, A. Javey, Nat. Mater., 2013, 12, 899.
[58] D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J. E. Lee, C. Song, S. J. Kim, D. J. Lee, S. W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C. S. Hwang, N. Lu, T. Hyeon, D. Kim, Nat. Nanotechnol., 2014, 9, 397.
[59] R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y. Kim, W. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, J. A. Rogers, Nat. Mater., 2013, 12, 938.
[60] T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, T. Someya, Nat. Mater., 2009, 8, 494.
[61] H. Sasabe, J. Kido, Chem. Mater., 2011, 23, 621.
[62] J. Liang, L. Li, X. Niu, Z. Yu, Q. Pei, Nat. Photonics, 2013, 7, 817.
[63] Z. Yu, X. Niu, Z. Liu, Q. Pei, Adv. Mater., 2011, 23, 3989.
[64] M. S. White1, M. Kaltenbrunner, E. D. Głowacki1, K. Gutnichenkol, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D. A. M. Egbel, M. C. Miron, Z. Major, M. C. Scharber, T. Sekitani, T. Someya, S. Bauer, N. S. Sariciftci, Nat. Photon., 2013, 7, 812.
[65] 陳金鑫,黃孝文,有機電激發光材料與元件,1st, ed.,五南圖書出版股份有限公司,台灣,2007。
第四章
[1] B. O’Connor, E. P. Chan, C. Chan, B. R. Conrad, L. J. Richter, R. J. Kline, M. Heeney, I. McCulloch, C. L. Soles, D. M. DeLongchamp, ACS Nano, 2010, 4, 7538.
[2] S. Y. Son, Y. Kim, J. Lee, G. Y. Lee, W. T. Park, Y. Y. Noh, C. E. Park, T. Park, J. Am. Chem. Soc., 2016, 138, 8096.
[3] C. Müller, S. Goffri, D. W. Breiby, J. W. Andreasen, H. D. Chanzy, R. A. J. Janssen, M. M. Nielsen, C. P. Radano, H. Sirringhaus, P. Smith, N. Stingelin-Stutzmann, Adv. Funct. Mater., 2007, 17, 2674.
[4] C. P. Radano, O. A. Scherman, N. Stingelin-Stutzmann, C. Müller, D. W. Breiby, P. Smith, R. A. J. Janssen, E. W. Meijer, J. Am. Chem. Soc., 2005, 127, 12502.
[5] A. D. Printz, S. Savagatrup, D. J. Burke, T. N. Purdy, D. J. Lipomi, RSC Adv., 2014, 4, 13635.
[6] R. Peng, B. Pang, D. Hu, M. Chen, G. Zhang, J. Mater. Chem. C, 2015, 3, 3599.
[7] Z. C. Smith, Z. M. Wright, A. M. Arnold, G. Sauv., R. D. McCullough, S. A. Sydlik, Adv. Electron. Mater., 2017, 3, 1600316.
[8] Y. Zhao, X. Zhao, Y. Zang, C. Di, Y. Diao, J. Mei, Macromolecules, 2015, 48, 2048.
[9] B. C. Schroeder, Y.-C. Chiu, X. Gu, Y. Zhou, J. Xu, J. Lopez, C. Lu, M. F. Toney, Z. Bao, Adv. Electron. Mater., 2016, 2, 1600104.
[10] S. Savagatrup, X. Zhao, E. Chan, J. Mei, D. J. Lipomi, Macromol. Rapid Commun., 2016, 37, 1623.
[11] J. Y. Oh, S. Rondeau-Gagné, Y. Chiu, A. Chortos, F. Lissel, G. N. Wang, B. C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. Zhu, X. Gu, W. Bae, Y. Kim, L. Jin, J. W. Chung, J. B. Tok, Z. Bao, Nature, 2016, 539, 411.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.189.180.76
論文開放下載的時間是 校外不公開

Your IP address is 18.189.180.76
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code