Responsive image
博碩士論文 etd-0630118-142546 詳細資訊
Title page for etd-0630118-142546
論文名稱
Title
八面體結構之氧化亞銅複合催化金屬並應用於過氧化氫感測之研究
Study of Cu2O with Octahedral Structure and Metal Catalyst for Hydrogen Peroxide Sensor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-24
繳交日期
Date of Submission
2018-07-30
關鍵字
Keywords
過氧化氫感測器、光電化學法、非酶感測器、八面體氧化亞銅、銀粒子
nonenzymatic sensor, silver catalyst, photoelectrochemical method, hydrogen peroxide sensor, octahedral cuprous oxide nanoparticles
統計
Statistics
本論文已被瀏覽 5632 次,被下載 0
The thesis/dissertation has been browsed 5632 times, has been downloaded 0 times.
中文摘要
本研究為氧化亞銅之奈米結構複合銀粒子,於ITO玻璃基板上製備過氧化氫(H2O2)感測器。利用溶膠凝膠法合成氧化亞銅奈米粒子,討論不同形狀的奈米結構對於過氧化氫催化能力之影響。將具有最佳感測能力之八面體結構氧化亞銅,分別以光電化學、水熱、靜置、震盪等四種不同方式,複合銀粒子並深入探討其改善差異。
實驗分析結果指出,形貌方面以鹽酸羥胺濃度15mM所製備之八面體結構氧化亞銅具有最佳的感測能力,其感測值為28.0 μAmM-1cm-2。此乃八面體結構與其他形狀相比之下,具有較多的反應位點。再者因為(1 1 1)平面具有更好的電子傳導與化學特性,而有較高的感測值。然而,截角八面體比起方塊雖具有更大的(1 1 1)平面,但其結構較為緊密反而有最低感測結果。金屬複合方面,以光電化學方式複合銀在相同條件下具有最佳複合情況,樣品在室溫下之靈敏度為41.9 μAmM-1cm-2。銀的高導電性及對過氧化氫的催化能力,搭配八面體結構之氧化亞銅達到加乘效果,其感測能力提升49%。
Abstract
In this study, we investigate different nanostructures of cuprous oxide (Cu2O) on ITO/glass substrate with silver catalyst for hydrogen peroxide (H2O2) sensors. We use sol-gel method to grow Cu2O nanoparticles. Different shapes of Cu2O morphology including cubic, truncated octahedron and octahedron are discussed for their effects to H2O2 sensing ability. The octahedral Cu2O nanoparticles are respectively combined with silver catalyst by photoelectrochemical, hydrothermal, settling, and ultrasonic assistance methods. Improvements of metal catalyst to H2O2 sensors are also analyzed.
According to the results, the octahedral Cu2O nanoparticles have the best sensitivity of 28.0 μAmM-1cm-2. Octahedron has more reaction sites than other shapes. Besides, the higher chemical properties and conductivity of (111) plane make the sensor has higher sensitivity. However, although the truncated octahedron has a larger (111) plane than the cubic, the dense structure let it has the lowest sensitivity. Combination of silver catalyst by photoelectrochemical method has the highest sensitivity of 41.9 μAmM-1cm-2. Due to the octahedral nanostructure and metal catalyst, the sensitivity of the H2O2 sensor has improved 49%.
目次 Table of Contents
論文審定書 ............................................................................................................... i
致謝 .......................................................................................................................... ii
摘要 ......................................................................................................................... iii
Abstract .................................................................................................................... iv
目錄 .......................................................................................................................... v
表目錄 ..................................................................................................................... ix
圖目錄 ...................................................................................................................... x
第一章 緒論 ............................................................................................................ 1
1-1 前言 ........................................................................................................... 1
1-2 生醫感測.................................................................................................... 1
1-2-1 生醫感測器 ..................................................................................... 1
1-2-2 感測目標 ......................................................................................... 4
1-2-3 過氧化氫 ......................................................................................... 4
1-2-4 過氧化氫感測 ................................................................................. 5
1-3 材料介紹.................................................................................................... 6
1-3-1 氧化亞銅(Cu2O).............................................................................. 6
1-3-2 銀(Ag) ............................................................................................. 7
1.4 論文架構 .................................................................................................... 7
第二章 理論分析 ..................................................................................................... 8
2-1 材料合成原理 ............................................................................................ 8
2-1-1 溶膠凝膠法(Sol-Gel) ...................................................................... 8
2-1-2 光電化學法(Photoelectrochemical) ............................................... 10
2-1-3 水熱法(Hydrothermal) .................................................................. 10
2-2 材料生長機制 .......................................................................................... 10
2-2-1 Cu2O生長原理 .............................................................................. 10
2-2-2 Ag生長原理 .................................................................................. 12
2-3 元件製作原理 .......................................................................................... 12
2-3-1 滴塗法........................................................................................... 12
2-4 生醫感測原理 .......................................................................................... 13
2-4-1電化學原理 .................................................................................... 13
2-4-2非酶感測器 .................................................................................... 14
2-5 生醫感測電化學分析方法 ....................................................................... 15
2-5-1 循環伏安法 ................................................................................... 15
2-5-2 時變安培法 ................................................................................... 15
2-6 操作電極原理 .......................................................................................... 16
2-6-1 工作電極 ....................................................................................... 16
2-6-2 參考電極 ....................................................................................... 16
2-6-3 相對電極 ....................................................................................... 17
2-7 材料物性分析原理 .................................................................................. 17
2-7-1 掃描式電子顯微鏡(FE-SEM) ....................................................... 17
2-7-2 X光繞射儀(XRD) ...................................................................... 17
2-7-3 能量色散X射線光譜(EDS) ......................................................... 18
2-7-4 穿透式電子顯微鏡(TEM) ............................................................. 18
2-7-5 聚焦離子束(FIB) .......................................................................... 19
2-8 材料感測機制 .......................................................................................... 19
2-8-1 氧化亞銅對過氧化氫感測機制 .................................................... 19
2-8-2 銀對過氧化氫感測機制 ................................................................ 20
第三章 實驗方法與儀器 ........................................................................................21
3-1 實驗材料.................................................................................................. 21
3-1-1 實驗材料 ....................................................................................... 21
3-2 薄膜分析儀器 .......................................................................................... 22
3-2-1 掃描式電子顯微鏡(FE-SEM) ....................................................... 22
3-2-2 X光繞射儀(XRD) ...................................................................... 23
3-2-3 能量色散X射線光譜(EDS) ......................................................... 23
3-2-4 穿透式電子顯微鏡(TEM) ............................................................. 23
3-2-5 聚焦離子束顯微鏡(FIB) ............................................................... 23
3-3 感測分析儀器 .......................................................................................... 24
3-4 製程步驟.................................................................................................. 24
3-4-1 基板清洗 ....................................................................................... 24
3-4-2 溶膠凝膠法合成氧化亞銅 ............................................................ 25
3-4-3 滴塗法複合氧化亞銅層 ................................................................ 25
3-4-4 各式方法複合銀粒子 ................................................................... 26
第四章 結果與討論 ................................................................................................28
4-1 生長參數.................................................................................................. 28
4-1-1 氧化亞銅生長參數 ....................................................................... 28
4-1-2 銀粒子生長參數 ........................................................................... 28
4-2 生長結果選擇 .......................................................................................... 29
4-2-1 氧化亞銅成長結果討論與選擇 .................................................... 29
4-2-2 銀粒子成長結果討論與選擇 ........................................................ 31
4-3 電化學循環伏安法分析 .......................................................................... 32
4-3-1 氧化亞銅感測過氧化氫分析 ........................................................ 32
4-3-2 銀複合氧化亞銅感測過氧化氫分析 ............................................ 33
4-3-3 掃描速率分析 ............................................................................... 34
4-4 電化學時變安培法分析 .......................................................................... 35
4-4-1 氧化亞銅感測過氧化氫靈敏度分析 ............................................ 35
4-4-2 銀氧化亞銅感測過氧化氫靈敏度分析......................................... 36
4-4-3 干擾物測試 ................................................................................... 37
4-5 研究結果比較 .......................................................................................... 37
第五章 結論與未來展望 ........................................................................................38
5-1 實驗結論.................................................................................................. 38
5-2 未來展望.................................................................................................. 39
參考文獻 .................................................................................................................40
附表 .........................................................................................................................47
附圖 .........................................................................................................................52
參考文獻 References
[1] Al-Hardan, N.H.; Abdul Hamid, M.A.; Shamsudin, R.; Othman, N.K.; Kar Keng, L. “Amperometric Non-Enzymatic Hydrogen Peroxide Sensor Based on Aligned Zinc Oxide Naorods”, Sensors 2016, 16, 1004.
[2] FDA,食物中毒防治及宣導,新竹縣午餐教育網
[3] Linmeng Wang,Xiuquan Gu,Yulong Zhao,Yinghuai Qiang,Chunlai Huang,Jian Song,“Preparation of ZnO/ZnS thin films for enhancing the photoelectrochemical performance of ZnO”,Vacuum,Volume 148, February 2018, Pages 201-205.
[4] M.Yousefi,M.Amiri,R.Azimirad,A.Z.Moshfegh,“Enhanced photoelectrochemical activity of Ce doped ZnO nanocomposite thin films under visible light”,Journal of Electroanalytical Chemistry,Volume 661, Issue 1, 1 October 2011, Pages 106-112.
[5] Jun Luo,Yanxiang Wang,Qifeng Zhang.“Progress in perovskite solar cells based on ZnO nanostructures”,Solar Energy,Volume 163, 15 March 2018, Pages 289-306.
[6] Luisa Whittaker-Brooks,Jeffrey M.Mativetsky,Arthur Woll,Detlef Smilgies,Yueh-Lin Loo,“Sputtered ZnO seed layer enhances photovoltaic behavior in hybrid ZnO/P3HT solar cells”,Organic Electronics,Volume 14, Issue 12, December 2013, Pages 3477-3483.
[7] Shengkai Cao,Wen Zeng,He Zhang,Yanqiong Li,“Hydrothermal synthesis of SnO2 nanocubes and nanospheres and their gas sensing properties”,Journal of Materials Science: Materials in Electronics,May 2015, Volume 26 Issue 5, Pages 2871-2878.
[8] Krystyna Schneider, Maria Lubecka, Adam Czapla,“V2O5thin films for gas sensor applications”,Sensors and Actuators B: Chemical,Volume 236, 29 November 2016, Pages 970-977.
[9] Shutao Wang,Cong Wang,Guijuan Wei,Huaqing Xiao,Ning An,Yan Zhou,Changhua An,Jun Zhang,“Non-enzymatic glucose sensor based on facial hydrothermalsynthesized NiO nanosheets loaded on glassy carbon electrode”, Colloids and Surfaces A: Physicochemical and Engineering Aspects,Volume 509, 20 November 2016, Pages 252-258.
[10] Ahmad Umar,Rafiq Ahmad,Rajesh Kumar,Ahmed A.Ibrahim,S. Baskoutas,“Bi2O2CO3 nanoplates: Fabrication and characterization of highly sensitive and selective cholesterol biosensor”,Journal of Alloys and Compounds,Volume 683, 25 October 2016, Pages 433-438.
[11] 藍御維,“氧化鋅摻雜鋁薄膜修飾金電極之電流式葡萄糖生物感測器”,國立雲林科技大學光電工程研究所,碩士論文,2009。
[12] Leland C. Clark jr., Champ Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery” ,Annals NEW YORK Academy of Science, Vol.102, pp.29-45, 1962
[13] Kun Tian,Megan Prestgard,Ashutosh Tiwari,“A review of recent advances in nonenzymatic glucose sensors”,Materials Science and Engineering: C,Volume 41, 1 August 2014, Pages 100-118.
[14] Zhigang Zhu,Luis Garcia-Gancedo,Andrew J. Flewitt,Huaqing Xie,Francis Moussy and William I. Milne,“A Critical Review of Glucose Biosensors Based on Carbon Nanomaterials: Carbon Nanotubes and Graphene”,Sensors ,2012, 12(5), 5996-6022
[15] 王柏欽,“利用修改之水熱法合成出海葵狀氧化鋅奈米結構應用於高敏感度的膽固醇生物感測器”,國立台南大學電機工程學系,碩士論文,2014。
[16] Park S, Boo H, Chung TD,“Electrochemical non-enzymatic glucose sensors,” Anal Chim Acta,Jan 2006,18;556(1),46-57.
[17] P. Bergveld, IEEE Transacations on Bionmedical Engineering, Vol.17, pp.07-71, 1970.
[18] P. Bergveld, IEEE Sensor Conference Toronto, pp.1-26, 2003.
[19] 謝振傑,“光纖生物感測器”,中華民國物理學會物理雙月刊(廿八卷四期),2006,pp.704-710。
[20] M. M. F. Choi, “Progress in Enzyme-Based Biosensors Using Optical Transducers”, Microchimica Acta, Vol.148, pp.107-132, 2004.
[21] 劉盈村,“光纖式表面電漿子共振生醫微感測器”,台灣大學醫學工程研究所,碩士論文,2001。
[22] 李坤易,“高感度葡萄糖生物感測器之研究”,國立雲林科技大學化學工程系碩士班,碩士論文,2006。
[23] K. W. Lin, Y. K. Huang, H. L. Su, and T. Z. Hsieh, “In-channel simplified decoupler with renewable electrochemical detection for microchip capillary electrophoresis”, Analytica Chimica Acta, Vol.619, pp.115-121, 2008.
[24] Aliakbar Tarlani,Mahtab Fallah,Behzad Lotfi,Avideh Khazraei,Sommayeh Golsanamlou,Jacques Muzart, Maryam Mirza-Aghayan,“New ZnO nanostructures as non-enzymatic glucose biosensors”,Biosensors and Bioelectronics,Volume 67, 15 May 2015, Pages 601-607.
[25] Weihua Zheng,Min Zhao,Weifen Liu,Shangmin Yu,Liting Niu,Gengen Li,Haifeng Li,Weilu Liu,“Electrochemical sensor based on molecularly imprinted polymer/reduced graphene oxide composite for simultaneous
determination of uric acid and tyrosine”,Journal of Electroanalytical Chemistry,Volume 813, 15 March 2018, Pages 75-82.
[26] Shi-Chang Tseng,Tong-Yu Wu,Jung-Chuan Chou,Yi-Hung Liao,Chih-Hsien Lai,Jian-Syun Chen,Siao-Jie Yan,Min-Siang Huang,Ting-Wei Tseng,Yu-Hsun Nien,“Research of sensing characteristic and dynamic measurement of graphene oxides modified flexible arrayed RuO2 chlorine ion sensor”, Materials Research Bulletin,Volume 101, May 2018, Pages 155-161.
[27] Tian-Fang Kang,Fei Wang,Li-Ping Lu,Yan Zhang,Tong-Shen Liu,“Methyl parathion sensors based on gold nanoparticles and Nafion film modified glassy carbon electrodes”,Sensors and Actuators B: Chemical,Volume 258, 1 April 2018, Pages 228-237.
[28] 國家環境毒物研究中心。過氧化氫。
[29] Ruizhong Zhang,Shuijian He,Chunmei Zhanga, Wei Chen,“Three-dimensional Fe- and N-incorporated carbon structures as peroxidase mimics for fluorescence detection of hydrogen peroxide and glucose”,J. Mater. Chem. B, 2015,3, 4146.
[30] Mao Deng,Shuangjiao Xu,Funan Chen,“Enhanced chemiluminescence of the luminol hydrogen peroxide system by BSA stabilized Au nanoclusters as a peroxidas mimic and its application”, Anal. Methods, 2014, 6, 3117.
[31] Kritchapon Nitinaivinij,Tewarak Parnklang,Chuchaat Thammacharoen,Sanong Ekgasit,Kanet Wongravee,“Colorimetric determination of hydrogen peroxide by morphological decomposition of silver nanoprisms coupled with chromaticity analysis”, Anal. Methods, 2014, 6, 9816
[32] Y. Shang, L. Guo,“Facet-controlled synthetic strategy of Cu2O-based crystals for catalysis and sensing”, Adv. Sci., 2 (2015), pp. 1500140-1500162
[33] 陳慧英,黃定加, 朱晴億, “溶膠凝膠法在薄膜製備上的應用”, 化工技術,7, 11, 152-167, 1999.
[34] Chun-Hong Kuo,Michael H. Huang,“Facile Synthesis of Cu2O Nanocrystals with Systematic Shape Evolution from Cubic to Octahedral Structures”, J. Phys. Chem. C, 2008, 112 (47), 18355-18360.
[35] Yongming Sui,Wuyou Fu,Haibin Yang,Yi Zeng,Yanyan Zhang,Qiang Zhao,Yangen Li,Xiaoming Zhou,Yan Leng,Minghui Li,Guangtian Zou“Low Temperature Synthesis of Cu2O Crystals: Shape Evolution and Growth Mechanism”, Cryst. Growth Des. 10, 1, 99-108.
[36] Matthew J. Siegfried,Kyoung-Shin Choi,“Directing the Architecture of Cuprous Oxide Crystals during Electrochemical Growth”, Angew. Chem. Int. Ed. 2005, 44, 3218 – 3223.
[37] Wan-Chen Huang,Lian-Ming Lyu,Yu-Chen Yang,Michael H. Huang,“Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity”, J. Am. Chem. Soc. 2012, 134, 1261–1267.
[38] S. Park, T. D. Chung, . C. kim, “Nonenzymatic Glucose Detection Using Mesoporous Platinum” , Anal. Chem, pp.3046-3049, 2003.
[39] T. Bai, Y. Sun, C. Sun, “Pt-Pb Nanowire Array Electrode for Enzyme-Free Glucose DetectionBiosens” , Bioelectron,pp.579-585, 2008.
[40] Shouqiang Wei, Jing Shi, Hongju Ren, Jinqiu Li, Zhongcai Shao,“Fabrication of Ag/Cu2O composite films with a facile method and theirphotocatalytic activity”, Journal of Molecular Catalysis A: Chemical 378 (2013) 109– 114.
[41] Michael Quirk, Julian Serda,“半導體製造技術(羅文雄,蔡榮輝,鄭岫盈譯)”蒼海圖書,(2014)。(原作出版於2001)
[42] Tingting Zhang, Ruo Yuan, Yaqin. Chai, Wenjuan Li, Shujuan Ling, “A Novel Nonenzymatic Hydrogen Peroxide Sensor Based on a Polypyrrole Nanowire-Copper Nanocomposite Modified Gold Electrod”, Sensors 2008, 8(8), 5141-5152.
[43] M. Honda, T. Kodera, H. Kita, “Electrochemical behavior of H2O2 at Ag in HClO4 aqueous solution”, Electrochim. Acta, 31 (1986), pp. 377-383.
[44] A.J. Downard, “Electrochemically assisted covalent modification of carbon electrodes”, Electroanalysis, 12 (2000), pp. 1085-1096.
[45] Chenglong Zhao, Hongfang Zhang, Jianbin Zheng, “A non-enzymatic electrochemical hydrogen peroxide sensor based on Ag decorated boehmite nanotubes/reduced graphene oxide nanocomposites”, Journal of Electroanalytical Chemistry 784 (2017) 55–61.
[46] 郭寶財,“以因子實驗設計分析乙二環戊二烯亞鐵修飾碳糊電極之反應參數對偵測過氧化氫的應答電流之影響及其應用於葡萄糖生醫感測器之研究”,南台科技大學化學工程研究所,碩士論文,2007。
[47] Chun-Hong Kuo, Yu-Chen Yang, Shangjr Gwo,Michael H. Huang ,“Facet-Dependent and Au Nanocrystal-Enhanced Electrical and Photocatalytic Properties of Au-Cu2O Core-Shell Heterostructures”, J. Am. Chem. Soc., 2011, 133 (4), pp 1052–1057.
[48] Xue Wang, Chang Liu, Binjie Zheng, Yaqi Jiang, Lei Zhang, Zhaoxiong Xie,Lansun Zheng,“Controlled synthesis of concave Cu2O microcrystals enclosed by {hhl} high-index facets and enhanced catalytic activity”, J. Mater. Chem. A, 2013, 1,282.
[49] Song Li, Yajie Zheng, Gaowu W. Qin, Yuping Ren, Wenli Pei, Liang Zuo,“Enzyme-free amperometric sensing of hydrogen peroxide and glucose at a hierarchical Cu2O modified electrode”, Talanta 85 (2011) 1260–1264.
[50] A.J.Bard and L.R.Faulkner,“Electrochemical methods :Fundamentals and application”, 2nd Edition, New York :John Wiley&Sons,2000.
[51] J.F. uang, Y. . Zhu, . Zhong, X.L. Yang, C.Z. Li“Dispersed Cu nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection”ACS Appl. Mater. Interfaces, 6 (2014), pp. 7055-7062.
[52] F. Xu, M. Deng, G. Li, S. Chen, L. Wang “Electrochemical behavior of cuprous oxide—reduced graphene oxide nanocomposites and their application in nonenzymatic hydrogen peroxide sensing Electrochim.” Acta, 88 (2013), pp. 59-65.
[53] Li YC, Zhong YM, Zhang YY, Weng W, Li SX,“Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor”,Sensors Actuators B Chem 206:735–743.
[54] Xu.X, Jiang. S, Hu. Z, Liu. S,“Nitrogen-doped Carbon Nanotubes: High Electrocatalytic Activity Toward the Oxidation of Hydrogen Peroxide and Its Application for Biosensing”,ACS Nano 010,4, 4 9 −4 98.
[55] Y. Ye, T. Kong, X. Yu, Y. Wu, K. Zhang, X. Wang,“Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites”,Talanta 89 (2012) 417.
[56] Mahmoudian.M, Alias.Y, Basirun.W, Ebadi.M, “Preparation of Ultra-thin Polypyrrole Nanosheets Decorated with Ag Nanoparticles and Their
Application in ydrogen Peroxide Detection. Electrochim”,Acta 01 , 7 , 46−5 .
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code