Responsive image
博碩士論文 etd-0630118-175002 詳細資訊
Title page for etd-0630118-175002
論文名稱
Title
以蝕刻斜角多模光纖製作開放式共振腔法布里-培諾光纖干涉儀感測器
Side-open Fiber-optic Fabry-Pérot Interferometer Sensor Based on Etched Beveled Multi-mode Fiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-26
繳交日期
Date of Submission
2018-08-07
關鍵字
Keywords
化學蝕刻、光纖感測器、開放式共振腔、斜角多模光纖、Fabry-Pérot光纖干涉儀
fiber sensor, chemical etching, open-cavity, beveled multi-mode fiber, Fiber-optic Fabry-Pérot interferometer
統計
Statistics
本論文已被瀏覽 5697 次,被下載 0
The thesis/dissertation has been browsed 5697 times, has been downloaded 0 times.
中文摘要
Fabry-Pérot光纖干涉儀具有體積微小、結構簡單以及可以進行探針式感測等優點,近年來被廣泛研究於許多領域,而開放式共振腔Fabry-Pérot光纖干涉儀具有較高的折射率靈敏度,因此適合應用於環境折射率的感測。有研究團隊提出利用飛秒雷射進行加工或利用錯位熔接法製作開放式共振腔,但有製作成本昂貴或製作過程困難的問題。本論文利用蝕刻後之斜角多模光纖與切平的單模光纖進行熔接來製作開放式共振腔Fabry-Pérot光纖干涉儀。相較於錯位熔接法,我們提出的方法能降低製程難度,且不需使用飛秒雷射,可以有效降低製作成本。
我們利用所製作之開放式共振腔Fabry-Pérot光纖干涉儀對環境折射率、溫度以及氣壓進行實驗量測。在折射率1.333至1.3463之間,元件的折射率靈敏度達到1219.6nm/RIU,對於折射率量測的最大誤差值僅為5.15×10-5 RIU,代表元件對於折射率量測具有高敏度以及高穩定性。在溫度量測範圍100℃至500℃之間,其溫度靈敏度只有-6.73pm/°C,說明元件在進行外在環境參數感測時,不易受到溫度擾動的影響。而在氣壓10至100psi之間,元件的靈敏度為28.2pm/psi,比起其他文獻所提出全光纖Fabry-Pérot光纖干涉儀氣壓感測器具有更高的靈敏度。根據上述的實驗結果,我們所提出的開放式共振腔Fabry-Pérot光纖干涉儀在環境感測上具有很高的應用潛力。
Abstract
In recent years, fiber-optic Fabry-Pérot interferometers (FFPIs) have been widely explored in many fields due to their advantages such as small size, simple structure, and the ability of probe sensing. In addition, due to their high sensitives, FFPIs with open cavities have high potential in environmental refractive index (RI) monitoring. Previous studies have proposed open-cavity FFPIs formed by femtosecond lasers or offset fusing method, which results in high cost or enhances the fabrication difficulty. In this thesis, we simply splice an etched beveled multi-mode fiber with a cleaved single-mode fiber to fabricate an open-cavity FFPI. The proposed method can reduce the fabrication difficulty, and no high-cost femtosecond lasers are required.
We employ the fabricated open-cavity FFPI sensor to perform the RI, thermal, and pressure sensing. The RI sensitivity of the FFPI is 1219.6nm/RIU as the RI ranged from 1.3330 to 1.3463. The maximum deviation is only 5.15×10-5 RIU, which shows the high sensitivity and great stability of our FFPI. We have also measured the pressure response of our FPI sensor, and the sensitivity is 28.2 pm/psi as the pressure is from 10 psi to 100 psi. Compared with other all-fiber pressure sensors, our fabricated open-cavity FFPI sensor has a higher pressure sensitivity. From the experimental results, our fabricated FFPI sensor indeed has good potentials in the environmental monitoring.
目次 Table of Contents
第一章 緒論.....................................................................................................................1
1-1 光纖干涉儀的發展......................................................................................1
1-2 光纖干涉儀感測器的種類介紹..................................................................3
1-2.1 麥克森光纖干涉儀...................................................................5
1-2.2 馬赫桑德光纖干涉儀...............................................................6
1-2.3 法布里培諾光纖干涉儀...........................................................8
1-3 研究動機....................................................................................................11
第二章 Fabry-Pérot光纖干涉儀....................................................................................12
2-1 Fabry-Pérot干涉儀原理..........................................................................12
2-2 Fabry-Pérot光纖干涉儀原理..................................................................19
第三章 開放式共振腔Fabry-Pérot光纖干涉儀的製作...............................................22
3-1 元件設計....................................................................................................22
3-2 元件製作步驟............................................................................................25
3-2.1 光纖介紹.................................................................................25
3-2.2 製作步驟.................................................................................26
3-3 元件結構確認............................................................................................31
第四章 開放式共振腔Fabry-Pérot光纖干涉儀的基本特性.......................................33
4-1 實驗架設....................................................................................................33
4-2 研磨程度對於干涉特性的影響................................................................36
4-3 不同開放式共振腔長之干涉特性............................................................38
第五章 開放式共振腔Fabry-Pérot光纖干涉儀的感測...............................................42
5-1 折射率感測................................................................................................42
5-1.1 量測架設...................................................................................42
5-1.2 折射率量測…...........................................................................43
5-1.3 穩定度量測...............................................................................48
5-1.4 反應時間量測...........................................................................49
5-2 溫度感測....................................................................................................51
5-2.1 量測架設...................................................................................51
5-2.2 溫度量測原理...........................................................................52
5-2.3 熱退火處理及溫度量測結果...................................................53
5-3 氣壓感測....................................................................................................55
5-3.1 氣壓量測架設...........................................................................55
5-3.2 氣壓量測...................................................................................57
5-3.3 文獻比較...................................................................................60
第六章 結論...................................................................................................................61
參考文獻.........................................................................................................................62
參考文獻 References
[1] J. Hecht, “A Short history of laser development,” Appl. Opt., vol. 49, pp. 091002-091002-23, 2010.
[2] M. Deng, L. Liu, Y. Zhao, G. Yin, and T. Zhu, “Highly sensitive temperature sensor based on an ultra-compact Mach-Zehnder interferometer with side-opened channels,” Opt. Lett., vol. 42, pp. 3549-3552, 2017.
[3] Y. Liang, C. Liao, and Y. Lo, “Abrupt taper Michelson interferometer using heterodyne for measuring refractive index,” IEEE Photon. Technol. Lett., vol. 26, pp. 2330-2333, 2014
[4] S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett., vol. 37, pp. 4480-4482, 2012.
[5] C. Zhang, T. Ning, J. Li, J. Zheng, X. Gao, and L. Pei, “Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper,” Opt. and Laser Technol., vol. 102, pp. 12-16, 2018.
[6] Y. Bai, Y. Qi, Y. Dong, and S. Jian, “Highly sensitive temperature and pressure sensor based on Fabry-Pérot interference,” IEEE Photon. Technol. Lett., vol. 28, pp. 2471-2474, 2016.
[7] Y. Xu, P. Lu, Z. Qin, J. Harris, F. Baset, P. Lu, V. Bhardwaj, and X. Bao, “Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer,” Opt., Express, vol. 21, pp. 3031-3042, 2013.
[8] H. Sun, X. Zhang, L. Yuan, L. Zhou, X. Qiao, and M. Hu, “An optical fiber Fabry-Pérot interferometer sensor for simultaneous measurement of relative humidity and temperature,” IEEE sensors journal, vol. 15, pp. 2891-2897, 2015.
[9] Y. Zhao, R. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry-Pérot sensor for magnetic field measurement based on magnetic fluid,” Opt. and Laser Technol., vol. 44, pp. 899-902, 2012.
[10] Z. Feng, T. Gang, M. Hu, X. Qiao, N. Liu, and Q. Rongn, “A fiber inclinometer using a fiber microtaper with an air-gap microcavity fiber interferometer,” Opt. Comm., vol. 364, pp. 134-138, 2016.
[11] Y. J. Rao and D. A. Jackson, “Principles of fiber-optic interferometry,” Opt. Fiber
Sensor Technol., vol. 5, pp. 167-191, 2000.
[12] Z. Tian, S. S-H. Yam, and H. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett., vol. 33, pp. 1105-1107, 2008.
[13] X. Hua, T. Chuanb, Y. Wangc, and T. Fangc, “Mach-Zehnder interferometer sensor based on the U-shaped probe for concentration sensing, ”Optik, vol. 127, pp.2183-2186, 2016.
[14] R. Huang, K. Nin, Q. Ma, and X. Wu, “Refractometer based on a tapered Mach-Zehnder interferometer with peanut-shape structure,” Opt. and Laser in Engineering., vol. 83, pp. 80-82, 2016.
[15] D. Duana, Y. Raoa, L. Xua, T. Zhua, D. Wua, and J. Yaoa, “In-fiber Mach-Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sensors and Actuators B, vol. 160, pp. 1198-1202, 2011.
[16] Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett., vol. 20, pp. 626-628, 2008.
[17] Z. Cao, L. Jiang, S. Wang, M. Wang, D. Liu, P. Wang, F. Zhang, and Y. Lu, “All-glass extrinsic Fabry-Pérot interferometer thermo-optic coefficient sensor based on a capillary bridged two fiber ends,” Appl. Opt., vol. 54, pp. 2371-2375, 2015.
[18] S. H. Aref, H. Latifi, M. I. Zibaii, and M. Afshari, “Fiber optic Fabry-Pérot pressure sensor with low sensitivity to temperature changes for downhole application,” Optics Comm., vol. 269, pp. 322-330, 2007.
[19] P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Pérot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE photonics journal, vol. 7, 7100210-1-7100210-11, 2015.
[20] Y. Wang, D. N. Wang, C. R. Liao, T. Hu, J. Guo, and H. Wei, “Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber,” Opt. Lett., vol. 38, pp. 269-271, 2017.
[21] R. M. André, S. C. Warren-Smith, M. Becker, J. Dellith, M. Rothhardt, M. I. Zibaii, H. Latifi, M. B. Marques, H. Bartelt, and O. Frazão, “Simultaneous measurement of temperature and refractive index using focusedion beam milled Fabry-Pérot cavities in optical fiber micro-tips,” Opt. Express, vol. 24, pp. 14053-14065, 2016.
[22] V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry-Pérot sensors in silica fibres using hydrofluoric acid etching,” Sensors and Actuators A, vol. 138, pp. 248-260, 2007.
[23] D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry-Pérot interferometer high temperature sensor formed by large lateral offset splicing,” Electronics Letters, vol. 47, pp. 7236-1-7236-2, 2011.
[24] J. Tang, G. Yin, C. Liao, S. Liu, Z. Li, X. Zhong, Q. Wang, J. Zhao, K. Yang, and Y. Wang, “High-sensitivity gas pressure sensor based on Fabry-Pérot interferometer with a side-opened channel in hollow-core photonic bandgap fiber,” IEEE photonics journal, vol. 7, 2015.
[25] D. Duan, Y. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry-Pérot interferometer formed by large lateral offset splicing,” Opt. Soc. Am. B, vol. 29, pp. 912-915, 2012.
[26] G. Hernandez, “Fabry-Pérot Interferometers. Cambridge: Cambridge University Press, ” 1986.
[27] F. A. Jenkins, and H. E. White, Fundamentals of Optics., McGraw-Hill, New York, pp. 286-314, 1957.
[28] A. Yariv and P. Yeh, Photonics: Optical electrons in modern communications., 6th ed, Oxford University Press, 2007.
[29] M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics., 3rd ed., Mcgraw-Hill, New York, 2009.
[30] S. Wu, G. Yan, B. Zhou, E. Lee, and S. He, “Open-cavity Fabry-Pérot interferometer based on etched side-hole fiber for microfluidic sensing,” IEEE Photon. Technol. Lett., vol.27, 2015.
[31] M. Deng, C. Tang, T. Zhu, Y. Rao, L. Xu, and M. Han1, “Refractive index measurement using photonic crystal fiber-based Fabry-Pérot interferometer,” Appl. Opt., vol. 49, pp. 1593-1598, 2010.
[32] Q. Wang, L. Zhang, Ch. Sun, and Q. Yu, “Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement,” IEEE Sensors Journal, vol. 8, pp. 1879-1883, 2008.
[33] G. Coviello, V. Finazzi1, J. Villatoro1, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000℃,” Opt., Express, vol. 17, pp. 21551-21559, 2009.
[34] Z. Li, C. Liao, Y. Wang, L. Xu, D. Wang, X. Dong, S. Liu, Q. Wang, K. Yang, and J. Zhou, “Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer,” Opt., Express, vol. 23, pp. 6673-6678, 2015.
[35] M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Pérot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett., vol. 40, pp. 4891-4894, 2015.
[36] C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Pérot interferometer for pressure measurement,” Opt. Lett., vol. 39, pp. 2827-2830, 2014.
[37] B. Xu, Y. M. Liu, D. N. Wang, and J. Q. Li, “Fiber Fabry-Pérot interferometer for measurement of gas pressure and temperature,” Journal of Lightwave Technol., vol. 34, pp. 4920-4925, 2014.
[38] B. Xu, Y. Liu, D. Wang, D. Jia, and C. Jiang, “Optical Fiber Fabry-Pérot interferometer based on an air cavity for gas pressure sensing,” IEEE photon. journal, vol. 9, pp. 7102309-1-7102309-10, 2017.
[39] F. Xu, D. Ren, X. Shi, C. Li, L. Lu, W. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry-Pérot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett., vol. 37, pp. 133-135, 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code