Responsive image
博碩士論文 etd-0630120-155130 詳細資訊
Title page for etd-0630120-155130
論文名稱
Title
以改良型生物可分解界面活性劑整治受塔底油污染土壤
Application of modified and biodegradable surfactant for the remediation of Tar contaminated soil
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-07-15
繳交日期
Date of Submission
2020-07-30
關鍵字
Keywords
界面活性劑、塔底油、界面活性劑現地沖排法、增溶作用、總石油碳氫化合物
tar, total petroleum hydrocarbon, surfactant, surfactant enhanced aquifer remediation, solubilization
統計
Statistics
本論文已被瀏覽 5628 次,被下載 0
The thesis/dissertation has been browsed 5628 times, has been downloaded 0 times.
中文摘要
總石油碳氫化合物(total petroleum hydrocarbon, TPH)是許多不同化合物所組成的混合物。人們可藉由許多途徑,包括加油幫浦、灑在道路上的油、工作上或家中的化學物質的使用而暴露於總石油碳氫化合物中。某些總石油碳氫化合物會影響到神經系統,導致頭痛及暈眩。總石油碳氫化合物會形成重質非水相液體(dense non-aqueous phase liquid, DNAPL)在污染源區域,被污染的土壤會吸附總石油碳氫化合物,使得總石油碳氫化合物是一個持久性有機污染物(persistent organic pollutant),因此整治受總石油碳氫化合物污染是一項挑戰。總石油碳氫化合物的整治難度取決於多種因素,包括土壤質地、地下水位、污染物種類等等。台灣過去快速的工業增長,人口活動生活,造成各種類的總石油碳氫化合物污染,常見污染物有柴油、汽油、機油、燃料油和塔底油等等。塔底油由碳氫化合物和游離碳形成的深棕色粘性液體。它是通過破壞性蒸餾從多種有機材料中獲得的。塔底油可以由煤炭,木材,石油,泥煤,礦物產品(如化石碳氫化合物)(例如石油)生產。塔底油也可以由煤炭生產,作為塔底油生產的副產品。由石油或煤製得的塔底油因苯含量高而被認為具有毒性和致癌性,儘管低濃度的煤焦油可用作局部用藥。這些焦油有刺鼻的氣味。因此,本研究以3種不同界面活性劑(LAS, SP07, SP19)作批次實驗,評估不同種類界面活性劑移除總石油碳氫化合物能力,再選定效果最佳之界面活性劑,進行時間效應與管柱實驗,模擬界面活性劑整治實際場址之效果與特性。結果顯示,在批次實驗中添加不同的界面活性劑及不同濃度評估移除總石油碳氫化合物試驗,總石油碳氫化合物均有被增溶移除,當中SP19較佳。因此往後實驗探討SP19之浸泡污染物效果,利用管柱實驗模擬地下水整治,利用界面活性劑現地沖排法(surfactant enhanced aquifer remediation, SEAR)測試。SP19-5%在時間效應實驗72小時最佳有36.90%,而管柱實驗中10PV可移除20.79%TPH。當中接觸角在PV1-4、PV5-8和PV9-10顯示出界面活性劑在管柱內不同階段累積界面活性劑濃度、達到(critical micelle concentration, CMC)、增溶污染物等過程。本實驗結果,有助於發展一套迅速有效之生物可分解界面活性劑整治之綠色工法,供相關污染場址整治之應用。
Abstract
Total petroleum hydrocarbon (TPH) is a mixture of many different compounds. People can be exposed to total petroleum hydrocarbons by many means, including pumping fuel, oil spilled on roads, use of chemicals at work or at home. Certain total petroleum hydrocarbons can affect the nervous system, causing headaches and dizziness. Total petroleum hydrocarbon will form dense non-aqueous phase liquid (DNAPL). In the pollution source area, the contaminated soil will adsorb the total petroleum hydrocarbon, making the total petroleum hydrocarbon a persistent organic pollutants, so remediation of total petroleum hydrocarbon pollution is a challenge. The difficulty of remediation of total petroleum hydrocarbons depends on a variety of factors, including soil texture, groundwater level, and types of pollutants. Taiwan’s rapid industrial growth and population activities in the past have caused various types of total petroleum hydrocarbon pollution. Common pollutants include diesel, gasoline, motor oil, fuel oil and tar. Tar is a dark brown viscous liquid formed from hydrocarbons and free carbon. It is obtained from a variety of organic materials through destructive distillation. Tar can be produced from coal, wood, petroleum, peat, mineral products (such as fossil hydrocarbons like petroleum). tar can also be produced from coal as a by-product. tar made from petroleum or coal are considered to be toxic and carcinogenic due to their high benzene content, although low concentrations of coal tar can be used as topical drugs. These tars have a pungent smell. Therefore, in this study, three different surfactants were used as experiments to evaluate the ability of different types of surfactants to remove total petroleum hydrocarbons, and then the surfactant with the best effect was selected to perform time effect and column experiments to simulate The effect and characteristics of surfactants to rectify the actual site. The results show that in the batch experiment, adding different surfactants and different concentrations to evaluate the removal of total petroleum hydrocarbons, the total petroleum hydrocarbons were all solubilized and removed, of which SP19 is better. Therefore, the experiment explored the effect of SP19's immersion pollutants, the column experiment was simulating groundwater remediation, and surfactant enhanced aquifer remediation (SEAR) test. SP19-5% had the best 36.90% in the 72-hour time effect experiment, and 10PV could remove 20.79% TPH in the column experiment. Among them, the contact angles in PV1-4, PV5-8 and PV9-10 showed the process of surfactant accumulation in different stages in the column, reaching (critical micelle concentration, CMC), solubilizing pollutants and other processes. The results of this experiment may help to develop a set of rapid and effective green bio-degradable Surfactant remediation method for the application of total petroleum hydrocarbon pollution site remediation.
目次 Table of Contents
論文審定書 i
誌謝………………………. ii
摘要…………. iii
Abstract………….. v
目錄……… vii
圖目錄………….. x
表目錄…… xii
第一章 前言 13
1.1 研究源起 13
1.2 研究目的 14
第二章 文獻回顧 16
2.1 總石油碳氫化合物對土壤與地下水造成之污染 16
2.1.1 總石油碳氫化合物類型 16
2.1.2 總石油碳氫化合物來源 17
2.1.3 總石油碳氫化合物理化特性 19
2.1.4 總石油碳氫化合物危害 21
2.2 總石油碳氫化合物土水污染常見工法 30
2.3 界面活性劑沖排法介紹 35
2.3.1 界面活性劑之原理 35
2.3.2 界面活性劑之種類 36
2.3.3 界面活性劑之功效 44
2.4 界面活性劑現地沖排法之研究 45
2.5 傳統界面活性劑使用限制 51
2.5.1 界面活性劑親水端的影響 51
2.5.2 界面活性劑疏水端的影響 52
2.5.3 HLB值的影響 52
2.5.4 溫度的影響 53
2.5.5 界面活性劑類型的影響 54
第三章 實驗設備與方法 55
3.1 研究流程 55
3.2 實驗材料設備 57
3.2.1 實驗材料 57
3.2.2 實驗設備 57
3.2.3 污染物 58
3.2.4 界面活性劑 58
3.2.5 供試土壤 59
3.3 實驗設計 60
3.3.1 界面活性劑淋洗塔底油批次實驗 60
3.3.2 界面活性劑之時間效應批次實驗 61
3.3.3 界面活性劑淋洗塔底油之管柱實驗 61
3.4 實驗分析項目 63
3.4.1 總石油碳氫化合物土樣萃取 63
3.4.2 總石油碳氫化合物水樣萃取 63
3.4.3 接觸角之量測 63
3.4.4 儀器分析 65
第四章 結果與討論 67
4.1 受污染土基本特性 67
4.2 批次實驗 68
4.2.1 界面活性劑淋洗塔底油批次實驗 68
4.2.2 界面活性劑之時間效應實驗 77
4.3 界面活性劑淋洗塔底油之管柱實驗 82
4.4 界面活性劑淋洗塔底油移除成效與成本效益評估 89
第五章 結論與建議 91
5.1 結論 91
5.2 建議 92
參考文獻 ……………………………………………………………………..93


圖目錄
圖2-1 地下水污染來源示意圖(Forum, 1998) 18
圖2- 2 總石油碳氫化合物中常見化合物結構,(1)苯,(2)甲苯,(3)乙苯,(4)二甲基苯,(5)萘,(6)菲,(7)芘(8)苯并[a]芘,(9)蒄,(10)二苯并[a,h]蒽。(Khan et al., 2018b) 20
圖2-3 美國環保署統計美國應用於污染場址整治技術(EPA, 2007) 31
圖2-4 表面張力,界面張力和污染物溶解度與界面活性劑之間的關係(Lamichhane et al., 2017) 35
圖2-5 界面活性劑增強污染土壤修復的示意圖 44
圖2-6 現地沖排法示意圖(Cheng et al., 2017) 45

圖3-1 研究流程圖 56
圖3-2 塔底油原液 58
圖3-3 土壤管柱示意圖 62
圖3-4 平面(a)、凹(b)和凸(c)表面上的液滴接觸角示意圖。(Jasper and Anand, 2019) 64
圖3-5 表面上不同潤濕性之示意圖(Förch et al., 2009) 65

圖4-1 美國農業部(USDA)的土壤質地三角形(Agriculture-USDA, 2017) 68
圖4-2 嚴重乳化之LAS萃取液 69
圖4-3 不同界面活性劑濃度批次實驗之移除率 70
圖4-4 不同界面活性劑濃度批次實驗之接觸角關係圖 71
圖4-5 不同浸泡時間之總石油碳氫化合物移除率 79
圖4-6 不同浸泡時間之時間效應實驗之接觸角關係圖 80
圖4-7灌注後各PV之淋洗液 82
圖4-8 SP19-5%管柱實驗之移除率關係圖 84
圖4-9 SP19-5%管柱實驗之接觸角關係圖 84

表目錄

表2- 1 石油烴的種類和特點(Ossai et al., 2020) 16
表2- 2 總石油碳氫化合物對植物的毒性概述 24
表2-3 總石油碳氫化合物對無脊椎動物、細菌和黴菌的毒性概述 28
表2- 4 不同界面活劑的種類(Mao et al., 2015) 38
表2-5 界面活性劑使用案例(Mao et al., 2015) 47

表3-1 供試土壤質地分析 60
表3-2 土壤基本性質 60

表4-1 界面活性劑在不同濃度批次實驗總石油碳氫化合物濃度結果 72
表4-2 LAS在不同濃度批次實驗接觸角結果 73
表4-3 SP07在不同濃度批次實驗接觸角結果 74
表4-4 SP19在不同濃度批次實驗接觸角結果 75
表4- 5 BK批次實驗接觸角結果 76
表4- 6不同浸泡時間之時間效應實驗總石油碳氫化合物濃度結果 81
表4-7 SP19-5%淋洗管柱之淋洗液中總石油碳氫化合物濃度 85
表4-8 SP19-5%淋洗管柱之淋洗液中接觸角結果 86
表4-9 SP19-5%淋洗管柱之塔底油污染土壤中總石油碳氫化合物濃度 88
表4- 10 效益成本率 90
參考文獻 References
Abe, M., Ohsato, M., Kawamura, T., Ogino, K., 1985. Interaction between anionic surfactants and oil dyes in the aqueous solutions: V. The effects of the oxyethylene chain length and/or the alkyl chain length in surfactant molecule on the tautomerism of an azo dye. Journal of Colloid and Interface Science 104, 228-233.
Abu-Hamdiyyah, M., Rahman, I.A., 1985. Strengthening of hydrophobic bonding and the increase in the degree of micellar ionization by amphiphiles and the micelle-water distribution coefficient as a function of the surfactant chain length in sodium alkyl sulfates. The Journal of Physical Chemistry 89, 2377-2384.
Abu-Hamdiyyah, M., Rahman, I.A., 1987. Distribution coefficients of nonpolar additives and factors determining the solubilization tendency as a function of surfactant chain length in aqueous solutions of sodium alkyl sulfates. The Journal of Physical Chemistry 91, 1530-1535.
Agriculture-USDA, U.S.D.o., 2017. Soil texture calculator. NRCS USA.
Ahn, C.K., Kim, Y.M., Woo, S.H., Park, J.M., 2008. Soil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon. Journal of Hazardous Materials 154, 153-160.
Albanese, S., Breward, N., 2011. Sources of anthropogenic contaminants in the urban environment.
Alcántara, M.T., Gómez, J., Pazos, M., Sanromán, M.A., 2009. PAHs soil decontamination in two steps: Desorption and electrochemical treatment. Journal of Hazardous Materials 166, 462-468.
Atlas, R.M., Philp, J., 2005. Bioremediation. Applied microbial solutions for real-world environmental cleanup. ASM press.
Atsdr, U.J.C.S.i.e.m.h.w.a.c.g.H.C.c.h., 1997. Agency for toxic substances and disease registry.
Baker, J.J.E.P., 1970. The effects of oils on plants. 1, 27-44.
Balseiro-Romero, M., Monterroso, C.J.T., Chemistry, E., 2014. Phytotoxicity of fuel to crop plants: influence of soil properties, fuel type, and plant tolerance. 96, 1162-1173.
Baud-Grasset, F., Baud-Grasset, S., Safferman, S.I.J.C., 1993. Evaluation of the bioremediation of a contaminated soil with phytotoxicity tests. 26, 1365-1374.
Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J.L.J.E.p., 2010. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. 158, 2282-2287.
Befkadu, A.A., Chen, Q., 2018. Surfactant-Enhanced Soil Washing for Removal of Petroleum Hydrocarbons from Contaminated Soils: A Review. Pedosphere 28, 383-410.
Bejarano, A.C., Michel, J., 2010. Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: Environmental legacy after twelve years of the Gulf war oil spill. Environmental Pollution 158, 1561-1569.
Belousova, N.I., Baryshnikova, L.M., Shkidchenko, A.N., 2002. Selection of Microorganisms Capable of Degrading Petroleum and Its Products at Low Temperatures. Applied Biochemistry and Microbiology 38, 437-440.
Bob, M.M., Brooks, M.C., Mravik, S.C., Wood, A.L., 2008. A modified light transmission visualization method for DNAPL saturation measurements in 2-D models. Advances in Water Resources 31, 727-742.
Booth, L., Heppelthwaite, V., O’Halloran, K.J.J.o.S., Sediments, 2005. Effects-based Assays in the Earthworm Aporrectodea caliginosa: Their Utilisation for Evaluation of Contaminated Sites before and after Remediation (8 pp). 5, 87-94.
Brassington, K., Pollard, S.J., Coulon, F.J.H.o.M.o.H., Oils, Lipids, 2010. Weathered hydrocarbon biotransformation: implications for bioremediation, analysis and risk assessment. Springer Verlag Berlin Heidelberg, pp. 2487-25001.
Brassington, K.J., Hough, R.L., Paton, G.I., Semple, K.T., Risdon, G.C., Crossley, J., Hay, I., Askari, K., Pollard, S.J.J.C.R.i.E.S., Technology, 2007. Weathered hydrocarbon wastes: a risk management primer. 37, 199-232.
Cermak, J.H., Stephenson, G.L., Birkholz, D., Wang, Z., Dixon, D.G.J.E.T., 29, C.V., 2010a. Toxicity of petroleum hydrocarbon distillates to soil organisms. 2685-2694.
Cermak, J.H., Stephenson, G.L., Birkholz, D., Wang, Z., Dixon, D.G.J.E.t., chemistry, 2010b. Toxicity of petroleum hydrocarbon distillates to soil organisms. 29, 2685-2694.
Chaineau, C., Morel, J.-L., Oudot, J.J.J.o.E.Q., 1997. Phytotoxicity and plant uptake of fuel oil hydrocarbons. 26, 1478-1483.
Chaineau, C., Yepremian, C., Vidalie, J., Ducreux, J., Ballerini, D.J.W., Air,, Pollution, S., 2003. Bioremediation of a crude oil-polluted soil: biodegradation, leaching and toxicity assessments. 144, 419-440.
Chang, Y.-C.J.J.o.N., Neurosurgery, Psychiatry, 1987. Neurotoxic effects of n-hexane on the human central nervous system: evoked potential abnormalities in n-hexane polyneuropathy. 50, 269-274.
Chen, C.S., Hseu, Y.C., Liang, S.H., Kuo, J.-Y., Chen, S.C.J.J.o.h.m., 2008. Assessment of genotoxicity of methyl-tert-butyl ether, benzene, toluene, ethylbenzene, and xylene to human lymphocytes using comet assay. 153, 351-356.
Cheng, M., Zeng, G., Huang, D., Yang, C., Lai, C., Zhang, C., Liu, Y., 2017. Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds. Chemical Engineering Journal 314, 98-113.
Chikere, C.B., Okpokwasili, G.C., Chikere, B.O.J.B., 2011. Monitoring of microbial hydrocarbon remediation in the soil. 1, 117-138.
Couto, M.N.P., Basto, M.C.P., Vasconcelos, M.T.S.J.E.S., Research, P., 2012. Suitability of Scirpus maritimus for petroleum hydrocarbons remediation in a refinery environment. 19, 86-95.
Dawson, J.J.C., Godsiffe, E., Thompson, I.P., Ralebitso-Senior, T.K., Killham, K.S., Paton, G.I.J.S.B., Biochemistry, 2007. Application of biological indicators to assess recovery of hydrocarbon impacted soils. 39, 164-177.
Deppe, U., Richnow, H.-H., Michaelis, W., Antranikian, G., 2005. Degradation of crude oil by an arctic microbial consortium. Extremophiles 9, 461-470.
Deshpande, S., Shiau, B.J., Wade, D., Sabatini, D.A., Harwell, J.H., 1999. Surfactant selection for enhancing ex situ soil washing. Water Research 33, 351-360.
Diallo, M.S., Abriola, L.M., Weber, W.J., 1994. Solubilization of Nonaqueous Phase Liquid Hydrocarbons in Micellar Solutions of Dodecyl Alcohol Ethoxylates. Environmental Science & Technology 28, 1829-1837.
Dİndar, E., Șağban, F.O.T., Bașkaya, H.S., 2013. Bioremediation of petroleum-contaminated soil. Journal of Biological & Environmental Sciences 7, 39-47.
Do, S.-H., Jo, J.-H., Jo, Y.-H., Lee, H.-K., Kong, S.-H., 2009. Application of a peroxymonosulfate/cobalt (PMS/Co(II)) system to treat diesel-contaminated soil. Chemosphere 77, 1127-1131.
Dorn, P.B., Salanitro, J.P.J.C., 2000. Temporal ecological assessment of oil contaminated soils before and after bioremediation. 40, 419-426.
Dorn, P.B., Vipond, T.E., Salanitro, J.P., Wisniewski, H.L.J.C., 1998. Assessment of the acute toxicity of crude oils in soils using earthworms, microtox®, and plants. 37, 845-860.
Edwards, C.A., Bohlen, P.J., 1996. Biology and ecology of earthworms. Springer Science & Business Media.
Edwards, D.A., Luthy, R.G., Liu, Z., 1991. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environmental Science & Technology 25, 127-133.
Eljack, M.D., Hussam, A.J.J.o.E.S., Health, P.A., 2014. Extraction and solubilization of crude oil and volatile petroleum hydrocarbons by purified humic and fulvic acids and sodium dodecylbenzenesulfonate. 49, 1623-1630.
EPA, E., 2007. Treatment technologies for site cleanup: Annual status report. Washington.
Förch, R., Schönherr, H., Jenkins, A.T.A., 2009. Surface design: applications in bioscience and nanotechnology. John Wiley & Sons.
Fabbri, D., Prevot, A.B., Zelano, V., Ginepro, M., Pramauro, E.J.C., 2008. Removal and degradation of aromatic compounds from a highly polluted site by coupling soil washing with photocatalysis. 71, 59-65.
Forrester, S., Janik, L., McLaughlin, M., 2010. An infrared spectroscopic test for total petroleum hydrocarbon (TPH) contamination in soils. Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, 1-6 August 2010. Working Group 1.5 Soil sense: rapid soil measurements. International Union of Soil Sciences (IUSS), c/o Institut für Bodenforschung …, pp. 13-16.
Forum, U.G., 1998. Environmental objectives for groundwater. in: Forum, U.G. (Ed.).
Fountain, J.C., Klimek, A., Beikirch, M.G., Middleton, T.M., 1991. The use of surfactants for in situ extraction of organic pollutants from a contaminated aquifer. Journal of Hazardous Materials 28, 295-311.
Fritsche, W., Hofrichter, M.J.B.N.Y.J.W., Sons, 2000. Aerobic degradation by microorganisms. 11, 146-164.
Gennadiev, A.N., Pikovskii, Y.I., Tsibart, A.S., Smirnova, M.A., 2015. Hydrocarbons in soils: Origin, composition, and behavior (Review). Eurasian Soil Science 48, 1076-1089.
Guo, L., Cutright, T.J.J.E.S., Research, P., 2014a. Remediation of acid mine drainage (AMD)-contaminated soil by Phragmites australis and rhizosphere bacteria. 21, 7350-7360.
Guo, S., Fan, R., Li, T., Hartog, N., Li, F., Yang, X., 2014b. Synergistic effects of bioremediation and electrokinetics in the remediation of petroleum-contaminated soil. Chemosphere 109, 226-233.
Höss, S., Jänsch, S., Moser, T., Junker, T., Römbke, J.J.E., Safety, E., 2009. Assessing the toxicity of contaminated soils using the nematode Caenorhabditis elegans as test organism. 72, 1811-1818.
Haigh, S.D., 1996. A review of the interaction of surfactants with organic contaminants in soil. Science of The Total Environment 185, 161-170.
Hanna, S.H.S., Weaver, R.J.P., soil, 2002. Earthworm survival in oil contaminated soil. 240, 127-132.
Haritash, A., Kaushik, C.J.J.o.h.m., 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. 169, 1-15.
Hentati, O., Lachhab, R., Ayadi, M., Ksibi, M., 2013a. Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environmental Monitoring and Assessment 185, 2989-2998.
Hentati, O., Lachhab, R., Ayadi, M., Ksibi, M.J.E.m., assessment, 2013b. Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. 185, 2989-2998.
Huang, X.-D., El-Alawi, Y., Penrose, D.M., Glick, B.R., Greenberg, B.M.J.E.P., 2004. Responses of three grass species to creosote during phytoremediation. 130, 453-463.
Hubálek, T., Vosáhlová, S., Matějů, V., Kováčová, N., Novotný, Č.J.A.o.E.C., Toxicology, 2007. Ecotoxicity monitoring of hydrocarbon-contaminated soil during bioremediation: a case study. 52, 1-7.
Iturbe, R., Flores, C., Chavez, C., Bautista, G., Torres, L.G.J.J.o.s., sediments, 2004. Remediation of contaminated soil using soil washing and biopile methodologies at a field level. 4, 115.
Jasper, W.J., Anand, N., 2019. A generalized variational approach for predicting contact angles of sessile nano-droplets on both flat and curved surfaces. Journal of Molecular Liquids 281, 196-203.
Jesus, J.M., Danko, A.S., Fiúza, A., Borges, M.-T., 2015. Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environmental Science and Pollution Research 22, 6511-6525.
Jonker, M.T., Brils, J.M., Sinke, A.J., Murk, A.J., Koelmans, A.A.J.E.T., Journal, C.A.I., 2006. Weathering and toxicity of marine sediments contaminated with oils and polycyclic aromatic hydrocarbons. 25, 1345-1353.
Joynt, J., Bischoff, M., Turco, R., Konopka, A., Nakatsu, C.H.J.M.E., 2006. Microbial community analysis of soils contaminated with lead, chromium and petroleum hydrocarbons. 51, 209-219.
Kannel, P.R., Gan, T.Y.J.J.o.E.S., Health, P.A., 2012. Naphthenic acids degradation and toxicity mitigation in tailings wastewater systems and aquatic environments: a review. 47, 1-21.
Kay, J.H., Kohn, F.E., Calandra, J.C., 1965. Subacute oral toxicity of a biodegradable, linear alkylbenzene sulfonate. Toxicology and Applied Pharmacology 7, 812-818.
Keramitsoglou, I., Cartalis, C., Kassomenos, P., 2003. Decision Support System for Managing Oil Spill Events. Environmental Management 32, 290-298.
Khalladi, R., Benhabiles, O., Bentahar, F., Moulai-Mostefa, N., 2009a. Surfactant remediation of diesel fuel polluted soil. Journal of Hazardous Materials 164, 1179-1184.
Khalladi, R., Benhabiles, O., Bentahar, F., Moulai-Mostefa, N.J.J.o.H.M., 2009b. Surfactant remediation of diesel fuel polluted soil. 164, 1179-1184.
Khan, M.A.I., Biswas, B., Smith, E., Mahmud, S.A., Hasan, N.A., Khan, M.A.W., Naidu, R., Megharaj, M.J.E., safety, e., 2018a. Microbial diversity changes with rhizosphere and hydrocarbons in contrasting soils. 156, 434-442.
Khan, M.A.I., Biswas, B., Smith, E., Naidu, R., Megharaj, M., 2018b. Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil- a review. Chemosphere 212, 755-767.
Khan, M.A.I., Biswas, B., Smith, E., Naidu, R., Megharaj, M.J.C., 2018c. Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil-a review. 212, 755-767.
Kirk, J.L., Beaudette, L.A., Hart, M., Moutoglis, P., Klironomos, J.N., Lee, H., Trevors, J.T.J.J.o.m.m., 2004. Methods of studying soil microbial diversity. 58, 169-188.
Kirk, J.L., Klironomos, J.N., Lee, H., Trevors, J.T.J.E.p., 2005. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. 133, 455-465.
Lai, C.-C., Huang, Y.-C., Wei, Y.-H., Chang, J.-S., 2009. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. Journal of Hazardous Materials 167, 609-614.
Lamichhane, S., Bal Krishna, K.C., Sarukkalige, R., 2017. Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review. Journal of Environmental Management 199, 46-61.
Lansdell, S., McConnell, S., 2003. Ecological considerations in setting soil criteria for total petroleum hydrocarbons (< C15) and naphthalene. Proceedings of the fifth national workshop on the assessment of site contamination. Adelaide: NEPC Service Corporation.
Leahy, J.G., Colwell, R.R.J.M., Reviews, M.B., 1990. Microbial degradation of hydrocarbons in the environment. 54, 305-315.
Lee, J.K., Park, D., Kim, B.-U., Dong, J.-I., Lee, S., 1998. Remediation of petroleum-contaminated soils by fluidized thermal desorption. Waste Management 18, 503-507.
Lee, M., Kang, H., Do, W.J.W.r., 2005. Application of nonionic surfactant-enhanced in situ flushing to a diesel contaminated site. 39, 139-146.
Lim, M.W., Lau, E.V., Poh, P.E., 2016. A comprehensive guide of remediation technologies for oil contaminated soil — Present works and future directions. Marine Pollution Bulletin 109, 14-45.
Lionetto, M.G., Calisi, A., Schettino, T.J.S.h., management, l.u., 2012. Earthworm biomarkers as tools for soil pollution assessment. 305-332.
Liste, H.-H., Prutz, I.J.C., 2006. Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil. 62, 1411-1420.
LNAPL, C., 2005. COST AND PERFORMANCE.
Loehr, R., Webster, M.J.E.A.E.i.S., 1997. Effect of treatment on contaminant availability, mobility, and toxicity. 137-386.
Logeshwaran, P., Megharaj, M., Chadalavada, S., Bowman, M., Naidu, R.J.E.T., Innovation, 2018. Petroleum hydrocarbons (PH) in groundwater aquifers: An overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches. 10, 175-193.
Loibner, A.P., Szolar, O.H., Braun, R., Hirmann, D.J.C.a.o.c.l., 2009. 10 Ecological assessment and toxicity screening in contaminated land analysis. 229.
Loomis, D., Guyton, K.Z., Grosse, Y., El Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L., Guha, N., Vilahur, N., Mattock, H., Straif, K.J.T.L.O., 2017. Carcinogenicity of benzene. 18, 1574-1575.
Lu, M., Zhang, Z., Qiao, W., Wei, X., Guan, Y., Ma, Q., Guan, Y., 2010. Remediation of petroleum-contaminated soil after composting by sequential treatment with Fenton-like oxidation and biodegradation. Bioresource Technology 101, 2106-2113.
MacNaughton, S.J., Stephen, J.R., Venosa, A.D., Davis, G.A., Chang, Y.-J., White, D.C.J.A.E.M., 1999. Microbial population changes during bioremediation of an experimental oil spill. 65, 3566-3574.
Mao, X., Jiang, R., Xiao, W., Yu, J., 2015. Use of surfactants for the remediation of contaminated soils: A review. Journal of Hazardous Materials 285, 419-435.
Margesin, R., Labbé, D., Schinner, F., Greer, C.W., Whyte, L.G., 2003. Characterization of Hydrocarbon-Degrading Microbial Populations in Contaminated and Pristine Alpine Soils. Applied and Environmental Microbiology 69, 3085.
Margesin, R., Schinner, F., 2005. Manual for soil analysis-monitoring and assessing soil bioremediation. Springer Science & Business Media.
Margesin, R., Schinner, F.J.C., 1999. Biodegradation of diesel oil by cold-adapted microorganisms in presence of sodium dodecyl sulfate. 38, 3463-3472.
Margesin, R., Walder, G., Schinner, F.J.A.B., 2000. The impact of hydrocarbon remediation (diesel oil and polycyclic aromatic hydrocarbons) on enzyme activities and microbial properties of soil. 20, 313-333.
Mayer, P., Holmstrup, M.J.E.s., technology, 2008. Passive dosing of soil invertebrates with polycyclic aromatic hydrocarbons: Limited chemical activity explains toxicity cutoff. 42, 7516-7521.
McBain, J.W., Richards, P.H., 1946. Solubilization of Insoluble Organic Liquids by Detergents. Industrial & Engineering Chemistry 38, 642-646.
McHale, C.M., Zhang, L., Smith, M.T.J.C., 2012. Current understanding of the mechanism of benzene-induced leukemia in humans: implications for risk assessment. 33, 240-252.
Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., Naidu, R.J.E.i., 2011. Bioremediation approaches for organic pollutants: a critical perspective. 37, 1362-1375.
Molina-Barahona, L., Vega-Loyo, L., Guerrero, M., Ramirez, S., Romero, I., Vega-Jarquin, C., Albores, A., 2005. Ecotoxicol. Evaluation of Diesel-Contaminated Soil Before and After a Bioremediation Process.
Moroizumi, T., Sasaki, Y., 2008. Estimating the Nonaqueous-Phase Liquid Content in Saturated Sandy Soil Using Amplitude Domain Reflectometry. Soil Science Society of America Journal 72, 1520-1526.
Ni, H., Zhou, W., Zhu, L., 2014. Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-Tween 80 mixed surfactants. Journal of Environmental Sciences 26, 1071-1079.
Oboh, B., Adeyinka, Y., Awonuga, S., Akinola, M., 2007. Impact of soil types and petroleum effluents on the earthworm, Eudrilus eugeniae.
Ollivier, B., Magot, M., 2005. Petroleum microbiology. ASM Press Washington, DC.
Ossai, I.C., Ahmed, A., Hassan, A., Hamid, F.S., 2020. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology & Innovation 17, 100526.
Palmer, C.D., Fish, W., 1992. Chemical Enhancements to Pump-and-Treat Remediation. Ground Water Issue, 19.
Paria, S., Yuet, P.K., 2006. Solubilization of Naphthalene by Pure and Mixed Surfactants. Industrial & Engineering Chemistry Research 45, 3552-3558.
Paria, S.J.A.i.c., science, i., 2008. Surfactant-enhanced remediation of organic contaminated soil and water. 138, 24-58.
Païssé, S., Goñi-Urriza, M., Coulon, F., Duran, R.J.M.e., 2010. How a bacterial community originating from a contaminated coastal sediment responds to an oil input. 60, 394-405.
Peng, Z., Darnault, C., Tian, F., Baveye, P., Hu, H.J.W., 2017. Influence of anionic surfactant on saturated hydraulic conductivity of loamy sand and sandy loam soils. 9, 433.
Płaza, G., Nałęcz-Jawecki, G., Ulfig, K., Brigmon, R.L.J.C., 2005. The application of bioassays as indicators of petroleum-contaminated soil remediation. 59, 289-296.
Prince, R.C., Amande, T.J., McGenity, T.J.J.T., Genomics, Microbes, E.o.H.-D., 2019. Prokaryotic hydrocarbon degraders. 1-39.
Rahal, S., Khalladi, R., Moulai-Mostefa, N.J.A.J.f.S., Engineering, 2016. Solubilization of crude oil by extended and other anionic surfactants. 41, 111-117.
Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., Sethunathan, N., Naidu, R., 2011. Mixtures of environmental pollutants: effects on microorganisms and their activities in soils. Reviews of Environmental Contamination and Toxicology Volume 211. Springer, pp. 63-120.
Rao, P., He, M., 2006. Adsorption of anionic and nonionic surfactant mixtures from synthetic detergents on soils. Chemosphere 63, 1214-1221.
Roelofs, D., Bicho, R.C., de Boer, T.E., Castro‐Ferreira, M.P., Montagne‐Wajer, K., van Gestel, C.A., Soares, A.M., van Straalen, N.M., Amorim, M.J.J.E.t., chemistry, 2016. Mechanisms of phenanthrene toxicity in the soil invertebrate, Enchytraeus crypticus. 35, 2713-2720.
Rosen, J.J.N.Y., NY, 1978. Surfactants and Interfacial Phenomena John Wiley.
Rousseau, M.-C., Straif, K., Siemiatycki, J.J.E.h.p., 2005. IARC carcinogen update. 113, A580-A581.
Saito, H., Shinoda, K., 1967. The solubilization of hydrocarbons in aqueous solutions of nonionic surfactants. Journal of Colloid and Interface Science 24, 10-15.
Sajna, K.V., Sukumaran, R.K., Gottumukkala, L.D., Pandey, A., 2015. Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth. Bioresource Technology 191, 133-139.
Salanitro, J.P., Dorn, P.B., Huesemann, M.H., Moore, K.O., Rhodes, I.A., Rice Jackson, L.M., Vipond, T.E., Western, M.M., Wisniewski, H.L.J.E.S., Technology, 1997. Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. 31, 1769-1776.
Saterbak, A., Toy, R.J., Wong, D.C., McMain, B.J., Williams, M.P., Dorn, P.B., Brzuzy, L.P., Chai, E.Y., Salanitro, J.P.J.E.T., Journal, C.A.I., 1999. Ecotoxicological and analytical assessment of hydrocarbon‐contaminated soils and application to ecological risk assessment. 18, 1591-1607.
Schifano, V., MacLeod, C., Hadlow, N., Dudeney, R., 2007. Evaluation of quicklime mixing for the remediation of petroleum contaminated soils. Journal of Hazardous Materials 141, 395-409.
Scullion, J.J.N., 2006. Remediating polluted soils. 93, 51-65.
Semple, K.T., Morriss, A., Paton, G.I.J.E.j.o.s.s., 2003. Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. 54, 809-818.
Shiau, B., Brammer, J.M., Sabatini, D.A., Harwell, J., Knox, R.C., 2003. Recent development of low concentration surfactant flushing for NAPL-impacted site remediation and pollution prevention. Petroleum Hydrocarbons and Organic Chemicals in Ground Water/Prevention, Assessment, and Remediation Twentieth Annual Conference and Exposition, Costa Mesa, CA.
Shin, K.H., Jung, H., Chang, P., Choi, H., Kim, K.W.J.E.T., Journal, C.A.I., 2005. Earthworm toxicity during chemical oxidation of diesel‐contaminated sand. 24, 1924-1929.
Sikkema, J., de Bont, J.A., Poolman, B.J.M.M.B.R., 1995. Mechanisms of membrane toxicity of hydrocarbons. 59, 201-222.
Smith, D.L.J.J.o.t.A.O.C.S., 1997. Impact of composition on the performance of sodium linear alkylbenzenesulfonate (NaLAS). 74, 837-845.
Souza, E.C., Vessoni-Penna, T.C., de Souza Oliveira, R.P., 2014. Biosurfactant-enhanced hydrocarbon bioremediation: An overview. International Biodeterioration & Biodegradation 89, 88-94.
Sri Ranjan, R., Qian, Y., Krishnapillai, M.J.E.t., 2006. Effects of electrokinetics and cationic surfactant cetyltrimethylammonium bromide [CTAB] on the hydrocarbon removal and retention from contaminated soils. 27, 767-776.
Steliga, T., Jakubowicz, P., Kapusta, P.J.J.o.C.T., Biotechnology, 2015. Changes in toxicity during treatment of wastewater from oil plant contaminated with petroleum hydrocarbons. 90, 1408-1418.
Strbak, L.J.N.N.o.E.S.F.R.f.U.E.P.A., Office of Solid Waste, Emergency Response Technology Innovation Office, W., DC, 2000. In situ flushing with surfactants and cosolvents.
Strickland, M.S., Rousk, J.J.S.B., Biochemistry, 2010. Considering fungal: bacterial dominance in soils–methods, controls, and ecosystem implications. 42, 1385-1395.
Stroud, J., Paton, G., Semple, K.T.J.J.o.A.M., 2007. Microbe‐aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. 102, 1239-1253.
Tang, J., Wang, M., Wang, F., Sun, Q., Zhou, Q.J.J.o.E.S., 2011. Eco-toxicity of petroleum hydrocarbon contaminated soil. 23, 845-851.
Thavamani, P., Malik, S., Beer, M., Megharaj, M., Naidu, R.J.J.o.e.m., 2012. Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals. 99, 10-17.
Thavamani, P., Smith, E., Kavitha, R., Mathieson, G., Megharaj, M., Srivastava, P., Naidu, R.J.E.T., Innovation, 2015. Risk based land management requires focus beyond the target contaminants—a case study involving weathered hydrocarbon contaminated soils. 4, 98-109.
Tokiwa, F., 1968. Solubilization behavior of mixed surfactant micelles in connection with their zeta potentials. Journal of Colloid and Interface Science 28, 145-148.
Trindade, P., Sobral, L., Rizzo, A., Leite, S., Soriano, A.J.C., 2005. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study. 58, 515-522.
Trivedi, S.P., Kumar, M., Mishra, A., Banerjee, I., Soni, A., 2001. Impact of linear alkyl benzene sulphonate (LAS) on phosphatase activity in testis of the teleostean fish, Heteropneustes fossilis (Bloch). J Environ Biol 22, 263-266.
van Gestel, C.A., Borgman, E., Verweij, R.A., Ortiz, M.D.J.E., safety, e., 2011. The influence of soil properties on the toxicity of molybdenum to three species of soil invertebrates. 74, 1-9.
van Gestel, C.A., van der Waarde, J.J., Derksen, J., van der Hoek, E.E., Veul, M.F., Bouwens, S., Rusch, B., Kronenburg, R., Stokman, G.N.J.E.T., Journal, C.A.I., 2001. The use of acute and chronic bioassays to determine the ecological risk and bioremediation efficiency of oil‐polluted soils. 20, 1438-1449.
Villa, R.D., Trovó, A.G., Nogueira, R.F.P., 2010. Soil remediation using a coupled process: soil washing with surfactant followed by photo-Fenton oxidation. Journal of Hazardous Materials 174, 770-775.
Vreysen, S., Maes, A.J.J.o.S., Sediments, 2005. Remediation of a diesel contaminated, sandy-loam soil using low concentrated surfactant solutions (5 pp). 5, 240-244.
Wang, Y., Tian, Z., Zhu, H., Cheng, Z., Kang, M., Luo, C., Li, J., Zhang, G., 2012. Polycyclic aromatic hydrocarbons (PAHs) in soils and vegetation near an e-waste recycling site in South China: Concentration, distribution, source, and risk assessment. Science of The Total Environment 439, 187-193.
Wang, Z., Xu, Y., Zhao, J., Li, F., Gao, D., Xing, B., 2011. Remediation of petroleum contaminated soils through composting and rhizosphere degradation. Journal of Hazardous Materials 190, 677-685.
Wu, G., Kechavarzi, C., Li, X., Sui, H., Pollard, S.J., Coulon, F.J.C., 2013. Influence of mature compost amendment on total and bioavailable polycyclic aromatic hydrocarbons in contaminated soils. 90, 2240-2246.
Xiarchos, I., Doulia, D., 2006. Effect of nonionic surfactants on the solubilization of alachlor. Journal of Hazardous Materials 136, 882-888.
Yang, X., Beckmann, D., Fiorenza, S., Niedermeier, C., 2005. Field Study of Pulsed Air Sparging for Remediation of Petroleum Hydrocarbon Contaminated Soil and Groundwater. Environmental Science & Technology 39, 7279-7286.
Yen, C.-H., Chen, K.-F., Kao, C.-M., Liang, S.-H., Chen, T.-Y., 2011. Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: Feasibility and comparison with common oxidants. Journal of Hazardous Materials 186, 2097-2102.
Yeom, I.T., Ghosh, M.M., Cox, C.D., Robinson, K.G., 1995. Micellar Solubilization of Polynuclear Aromatic Hydrocarbons In Coal Tar-Contaminated Soils. Environmental Science & Technology 29, 3015-3021.
Zappi, M.E., Rogers, B.A., Teeter, C.L., Gunnison, D., Bajpai, R.J.J.o.H.M., 1996. Bioslurry treatment of a soil contaminated with low concentrations of total petroleum hydrocarbons. 46, 1-12.
Zhang, J., Fan, S.-k.J.J.o.e.m., 2016. Consistency between health risks and microbial response mechanism of various petroleum components in a typical wastewater-irrigated farmland. 174, 55-61.
Zhou, C., Zhang, B., Mu, C., Chu, Z., Sun, L., 2019. Multi-objective optimization considering cost-benefit ratio for the placement of gas detectors in oil refinery installations. Journal of Loss Prevention in the Process Industries 62, 103956.
Zhou, M., Rhue, R.D., 2000. Screening Commercial Surfactants Suitable for Remediating DNAPL Source Zones by Solubilization. Environmental Science & Technology 34, 1985-1990.
Zhu, K., Hart, W., Yang, J.J.J.o.E.S., Health, 2005. Remediation of petroleum-contaminated loess soil by surfactant-enhanced flushing technique. 40, 1877-1893.
Zhu, L., Feng, S., 2003. Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic–nonionic surfactants. Chemosphere 53, 459-467.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.196.106.106
論文開放下載的時間是 校外不公開

Your IP address is 54.196.106.106
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code