Responsive image
博碩士論文 etd-0630120-170104 詳細資訊
Title page for etd-0630120-170104
論文名稱
Title
以資源化沸石複合二氧化鈦光觸媒氧化法對水中氟化物脫氟之研究
Defluorination of Fluoride in Water by Modified Zeolite Composite Photocatalyst Oxidation Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-07-10
繳交日期
Date of Submission
2020-07-30
關鍵字
Keywords
複合材料、微波合成、溶膠凝膠法、沸石、光催化反應溶膠凝膠法、有機氟化物、二氧化鈦
Photocatalytic reaction, Organic fluoride, Titanium dioxide, Microwave synthesis, Zeolite, Sol-gel
統計
Statistics
本論文已被瀏覽 5628 次,被下載 0
The thesis/dissertation has been browsed 5628 times, has been downloaded 0 times.
中文摘要
本研究以溶膠-凝膠法製備二氧化鈦光觸媒(TiO2),並與採用廢玻璃及二次鋁渣合成之再生沸石載體進行複合。探討此複合材料於紫外光照射下對五氟丙酸光降解反應之影響,其原理為結合多孔吸附材料沸石載體上,載體能有效抑制TiO2晶粒尺寸增長,載體充當吸附劑以富集污染物,導致電子空穴對分離和轉移加快光催化處理能力。降解後之濃度以離子層析儀(IC)分析,並以氟離子濃度觀察其降解礦化情形。
研究數據顯示(最佳條件)在UV紫外光、劑量效應控制為0.5g與鹼性條件下,TiO2與Zeolite/TiO2複合材料光催化五氟丙酸反應8小時後分別處理效率為44.8% 與54.5 %。Zeolite/TiO2總處理效率高於光觸媒9.70%。在透過實驗計算法與統計變異數分析,歸納各因子的效應關係與最佳參數的範圍。藉由變異數分析的主因子效應顯示,研究顯示之劑量濃度與pH值為影響本次實驗最重要之兩項因子,在鹼性環境有較佳處理效率,推測主要原因是產生高反應性之.OH氫氧自由基對五氟丙酸進行降解反應曲面法結果透過最佳預測參數,所得到之最佳預測效益為60.2%之去除效率。本研究選用廢玻璃及鋁渣合成沸石,其多孔性結構可作為光觸媒附著的載體,而實驗結果證實沸石載體之添加確實可提升降解之效果。
Abstract
In this study, a sol-gel method was used to prepare titanium dioxide photocatalyst (TiO2) and composite it with a regenerated zeolite carrier synthesized from waste glass and secondary aluminum slag. To investigate the effect of this composite material on the photodegradation reaction of perfluoropropionic acid under ultraviolet light irradiation. The principle is to combine the porous adsorbent material zeolite support. The support can effectively inhibit the growth of TiO2 grain size, and the support acts as an adsorbent to enrich pollutants , Resulting in the separation and transfer of electron-hole pairs to speed up the photocatalytic processing capability. The concentration after degradation was analyzed by ion chromatography (IC), and the degradation and mineralization of the fluoride ion concentration was observed.
The research data shows that (optimum conditions) under UV ultraviolet light, dose effect control of 0.5g and alkaline conditions, TiO2 and Zeolite / TiO2 composite materials photocatalyzed pentafluoropropionic acid after 8 hours of reaction efficiency of 44.8% and 54.5 %, The total processing efficiency of Zeolite / TiO2 is 9.70% higher than that of photocatalyst. This study speculates that Zeolite / TiO2 is higher than TiO2. It is presumed that TiO2 nanoparticles are combined with porous adsorbent zeolite carrier. The carrier can effectively inhibit the growth of TiO2 grain size. The carrier acts as an adsorbent to enrich the pollutants, leading to the separation of The transfer accelerates the photocatalytic processing capacity. In this study, the microwave hydrothermal synthesis method is used, which can effectively reduce the synthesis time, reduce the temperature and save energy efficiency, and use secondary aluminum slag and waste glass recycled zeolite to achieve the effect of waste reduction and recycling and the vision of recycling economy.
目次 Table of Contents
論文審定書 .....................................................................................................................i
摘要................................................................................................................................ii
ABSTRACT.................................................................................................................. iii
目錄...............................................................................................................................iv
圖目錄...........................................................................................................................ix
表目錄..........................................................................................................................xii
第一章 前言.................................................................................................................... 1
1-1 研究緣起........................................................................................................... 1
1-2 研究目的........................................................................................................... 2
第二章 文獻回顧 ............................................................................................................ 3
2-1有機氟化物基本特性與用途 ............................................................................ 3
2-1-1 全氟化合物 ............................................................................................ 4
2-1-2 全氟羧酸環境宿命 ................................................................................ 4
2-1-3 全氟羧酸人體健康之影響 ..................................................................... 5
2-1-4 全氟羧酸濃度規範 ................................................................................ 6
2-1-5 有機氟化物的處理技術現況 ................................................................. 8
2-2光催化反應(photocatalytic reactions) ................................................................ 9
2-2-1 光催化光解模式與能帶位置 ............................................................... 10
2-3光觸媒(Photocatalyst) ................................................................................ 11
2-3-1 二氧化鈦(TiO₂) .................................................................................... 13
2-3-2二氧化鈦晶相物理性質 ....................................................................... 14
2-3-3二氧化鈦結構 ...................................................................................... 15
2-3-4二氧化鈦晶相相變 .............................................................................. 16
2-3-5 二氧化鈦光觸媒能隙 .......................................................................... 18
2-4二氧化鈦合成技術 ......................................................................................... 20
2-4-1化學氣相沉積法(Chemical vapour deposition , CVD) .................... 21
2-4-2真空濺鍍法(Vacumn sputtering) ..................................................... 22
2-4-3 陽極氧化法 (anodic oxidation)............................................................ 22
2-4-4溶膠-凝膠法(Sol-Gel) .......................................................................... 23
2-5 廢棄物資源化再利用 ..................................................................................... 25
2-5-1廢玻璃 .................................................................................................. 25
2-5-2廢鋁渣 .................................................................................................. 26
2-5-3廢棄物再生沸石 .................................................................................. 27
2-5-4沸石基本特性 ...................................................................................... 29
2-6光觸媒結合沸石多孔性載體材料 .................................................................. 30
2-7固定二氧化鈦載體技術 .................................................................................. 32
2-7-1含浸法(impregnation) ........................................................................... 32
2-7-2共沉澱法 (Co-precipitation Method) .................................................... 33
第三章 研究方法與流程 .............................................................................................. 34
3-1研究流程 ......................................................................................................... 34
3-2實驗規劃與材料製備方法 .............................................................................. 36
3-2-1 前置作業與實驗規劃 .......................................................................... 36
3-2-2 控制因子與操作因子 .......................................................................... 38
3-2-3 實驗設計法 .......................................................................................... 40
3-3 實驗使用之檢測方法及儀器設備 .................................................................. 42
3-3-1 實驗耗材與藥品 .................................................................................. 42
3-3-2 實驗儀器與設備 .................................................................................. 43
3-4品保及品管 (QA&QC) ................................................................................... 50
第四章 結果與討論 ...................................................................................................... 51
4-1 感應耦合電漿質譜儀 (ICP-OES)微量金屬元素分析 .................................... 51
4-2 材料基本性質分析 ......................................................................................... 53
4-2-1光觸媒晶相分析 .................................................................................. 53
4-2-2沸石結構鑑定 ...................................................................................... 55
4-3環境掃描式顯微鏡分析二次鋁渣 .................................................................. 57
4-3-1環境掃描式顯微鏡分析合成沸石載體 ................................................ 58
4-3-2環境掃描式顯微鏡分析合成光觸媒.................................................... 60
4-3-3環境掃描式顯微鏡分析光觸媒結合沸石載體 .................................... 62
4-3-4能量分散式光譜儀分析沸石載體材料 ................................................ 64
4-3-5能量分散式光譜儀分析光觸媒結合沸石載體複合材料 ..................... 65
4-4表面積分析儀分析光觸媒與沸石 .................................................................. 67
4-5光催化降解脫氟五氟丙酸之研究 .................................................................. 68
4-5-1背景實驗-直接光解 ............................................................................. 69
4-5-3 pH對於光催化降解脫氟五氟丙酸之影響 .......................................... 70
4-5-4 溫度對於光催化降解脫氟五氟丙酸之影響 ........................................ 71
4-5-5 劑量對於光催化降解脫氟五氟丙酸之影響 ........................................ 72
4-5-6複合材料混合比對於光催化降解脫氟五氟丙酸之影響 ..................... 73
4-6複合材料光催化降解脫氟之反應條件因次分析 ........................................... 74
4-6-1複合材料搭配紫外光對五氟丙酸脫氟之最佳應用 ............................ 76
4-6-2主因子效應之各因子水準分析 ........................................................... 76
4-6-3主因子效應之各因子水準分析 ........................................................... 78
4-6-4主因子效應之常態性與殘差分析 ....................................................... 79
4-7 複合材料於紫外光環境降解脫氟之反應條件反應曲面............................... 80
4-7-1 二次反應曲面之變異數分析 ............................................................... 82
4-7-2 二次反應曲面之常態性與殘差分析 .................................................. 83
4-7-3 二次反應曲面各因子之最佳預測效益水準分析 ............................... 84
4-8 二次反應曲面最佳參數預測效益水準分析 .................................................. 90
4-9 紫外光降解環境五氟丙酸之去除率 ............................................................. 91
4-10 成本效益分析 ............................................................................................... 93
第五章 結論與建議 ...................................................................................................... 96
5-1 結論 ................................................................................................................ 96
5-2 建議 ................................................................................................................ 97
參考文獻 ...................................................................................................................... 98
參考文獻 References
Amir D., Jamal A., Reza G. Sol-gel process applications: A mini-review. Proceedings of the Nature Research Society. 2018 ; 2 : 2008.
Apelberg B. J., Frank R. W., Julie B. H., Antonia M. C., Rolf U. H., Larry L. N., Lynn R. G. Cord Serum Concentrations of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Relation to Weight and Size at Birth. Environ Health Perspect . 2007 ;115:1670-6.
Chen J.Y., He Z.U., Ji Y.M., Li G.Y., An T.C., Choi W.Y. OH radicals determined photocatalytic degradation mechanisms of gaseous styrene in TiO2 system under 254 nm versus 185 nm irradiation: Combined experimental and theoretical studies. Applied Catalysis B: Environmental. 2019 ; 257 , 117912.
Chen M. J., Lo S. L., Lee Y. C., Kuo J., Wu C.H. Decomposition of Perfluorooctanoic Acid by Ultraviolet Light Irradiation With Pb-modified Titanium Dioxide. Journal of Hazardous Materials 2016 ; 303 : 111-118.
Fan Q., McQuillin B., Bradley D. D. C., Whitelegg S., Seddone A.B. A solid state solar cell using sol–gel processed material and a polymer. Chemical Physics Letters. 2001 ; 347 : 325-330.
Fukasawa T., Horigome A., Karism A. D., Maeda N., Huang A. N., Fukui K. Utilization of incineration fly ash from biomass power plants for zeolite synthesis from coal fly ash by microwave hydrothermal treatment. Advanced Powder Technology. 2018 ; 3 : 450-456.
He X.J., Aker G., Pelaez M., Lin Y.F., Dionysiou D., Hwang H.M. Assessment of nitrogen–fluorine-codoped TiO2 under visible light for degradation of BPA: Implication for field remediation., Journal of Photochemistry and Photobiology A: Chemistry. 2016 ; 314, 81-92.
Hsien Y. H., Chang C. F., Chen Y. H., Cheng S. Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves. Applied Catalysis B: Environmental. 2001; 31 : 241–249.
Jin L., Zhang P.Y. Photochemical decomposition of perfluorooctane sulfonate (PFOS) in an anoxic alkaline solution by 185 nm vacuum ultraviolet. Chemical Engineering Journal. 2015; 280 241-247.
Kamegawa T.S., Kido R., Yamahana D., Yamashita H. Design of TiO2-zeolite composites with enhanced photocatalytic performances under irradiation of UV and visible light., Microporous and Mesoporous Materials. 2013 ; 165, 142-147.
Kim M.S., Ryu C.S., Kim B.W. Effect of ferric ion added on phtotdegradation of alachlor in the presence of TiO2 and UV radiation. Water Research. 2005 ; 39(4) : 525-532.
Lampert D.J., Frisch M.A., Speitel G.E., McKetta J.J. Removal of perfluorooctanoic acid and perfluorooctane sulfonate from wastewater by ion exchange. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management. 2007 ; 11(1) : 60-68.
Lassoued A., Lassoued M. S., Granda S. G., Brahim D., Ammar S., Gadri A. Synthesis and characterization of Ni-doped α-Fe2O3 nanoparticles through co-precipitation method with enhanced photocatalytic activities. Journal of Materials Science: Materials in Electronics. 2018 ; 29 : 5726–5737.
Leandro G. G., Luis Z. P., Daniel P., Guevara J., Nelly F. R., García S. R., Romo M. G., Teresa H. Q., Torres J. H. Synthesis and characterization of nanostructured TiO2 and TiO2/W thin films deposited by co-sputtering. Matéria (Rio J.). 2018 ; 23 : 2.
Li A., Wang T., Chang X. X., Cai W., Zhang P., Zhang J., Gong J. L. Spatial separation of oxidation and reduction co-catalysts for efficient charge separation: Pt-TiO2-MnOx hollow spheres for photocatalytic reactions. Chem. Sci. 2016 ; 7 : 890-895.
Li G.H., Ciston S., Saponjic Z.V., Chen L., Dimitrijevic N.M., Rajh T., Gray K.A. Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications. Journal of Catalysis. 2008 ; 253(1) : 105-110.
Li Y.J., Li X.D., Li J.W., Yin J. Photocatalytic properties of TiO2 bonded active carbon composites prepared by SOL-GEL. Trans. Nonferrous Met. Soc. 2004 ; 14(6) : 1232-1237.
Linsebigler A. L., Lu G. Q., Yates J. T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995 ; 95 : 735-758.
Liu Z.Q., Zhou Y.P., Li Z.H., Wang Y.C., Ge C.C. Preparation and characterization of (metal, nitrogen)-codoped TiO2 by TiCl4 sol-gel auto-igniting synthesis. Rare Metals. 2007 ; 26(3) : 263-270.
Macwan D. P., Dave P. N., Shalini C. A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci. 2011 ; 46 : 3669–3686.
Mahinroosta M., Allahverdi A. Hazardous aluminum dross characterization and recycling strategies: A critical review. Journal of Environmental Management. 2018 ; 223 : 452-468.
Mathpal M.C., Tripathi A. K., Singh M. K., Gairola S.P., Pandey S.N., Agarwal A. Effect of annealing temperature on Raman spectra of TiO2 nanoparticles. Chemical Physics Letters. 2013 ; 555 : 182-186.
Matos J., Laine J., Herrmann J.M. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Applied Catalysis. 1998 ; 18(3-4) : 281-191.
Mo S.D., Ching W.Y. Electronic and optical properties of three phases of titanium dioxide:Rutile, anatase, and brookite. Physical Review B. 1995 ; 51(19) : 23-32.
Moody C.A., Martin J.W., Kwan W.C., Muir D.C.G., Mabury S.A. Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etobicoke creek. Environ. Sci. & Technol. 2002 ; 36(4) : 545-551.
Moriwaka A., Kamer N., Harada K., Inoue K., Yoshinaga T., Saito N., Koizumi A. The bioconcentration factor of perfluorooctane sulfonate is significantly larger than that of perfluorooctanoate in wild turtles. Ecotoxicology and Environ Safty. 2006 ; 65(1) : 14-21.
Moriwaki H., Takagi Y., Tanaka M., Tsuruho K., Okitsu K., Maeda Y. Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid., Environ. Sci. & Technol . 2005 ; 39(9), 3388-3392.
Ni C.F., Jiang F.Z., Zeng Y.W., Hu J.B. Chemically oxidative fluorination with fluoride ions., Journal of Fluorine Chemistry. 2015 ; 179, 3-13.
Noorjahan S.E., Sastry T.P. An in vivo study of hydrogels based on physiologically clotted fibrin–gelatin composites as wound‐dressing materials. Scientific and Industrial Research. 2004 ; 71B : 305-312.
Nozoe M., Fujii S., Tanaka S., Tamaka H., Yamashita N. Investigation of PFOS and PFOA in a wastewater treatment plant. Environmental Engineering Research. 2006 ; 43, 105-111.
Nozoe M., Fujii S., Tanaka S., Tamaka H., Yamashita N. Investigation of PFOS and PFOA in a wastewater treatment plant. Environmental Engineering Research. 2006 ; 43 : 105-111.
Pouchko S. V., Schitz A. K., Kulova T. L., Skundin A. M., Turevskaya E. P. Morphology Control of Electrode Materials for Li Batteries through Sol-Gel Technique. New Trends in Intercalation Compounds for Energy Storage. 2002 ; 61 : 493-496.
Sakai H., Kawahara H., Shimazaki M., Abe M. Preparation of ultrafine titanium dioxide particles using hydrolysis and condensation reactions in the inner aqueous phase of reversed micelles:Effect of alcohol addition. Langmuir. 1998 ;14(8) : 2208-2212.
Sansotera M., Persico F., Pirola C., Navarrini W., DiMichele A., Claudia L.B. Decomposition of perfluorooctanoic acid photocatalyzed by titanium dioxide: Chemical modification of the catalyst surface induced by fluoride ions. Applied Catalysis B: Environmental . 2014 ; 148–149 : 29-35.
Satoh N., Nakashima T., Yamamoto K. Metastability of anatase: size dependent and irreversible anatase-rutile phase transition in atomic-level precise titania. Scientific Reports. 2013 ; 3 : 1959.
Schultz M.M., Higgins C.P., Huset C.A., Luthy R.G., Barofsky D.F., Field J.A. Fluorochemical mass flows in a municipal wastewater treatment facility. Environ. Sci. & Technol. 2006 ; 40(23) : 7350-7357.
Shayegan Z., Lee C. S., Haghighat F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase – A review. Chemical Engineering Journal. 2018 ; 334 : 2408-2439.
Su Z.U., Zhang L.J., Jiang F.L., Hong M.C. Formation of crystalline TiO2 by anodic oxidation of titanium., Progress in Natural Science: Materials International. 2013 ; 23, 294-301.
Szabo G., Albert E., Horvolgyi Z., Muresan L. M. Protective TiO2 Coatings Prepared By Sol-Gel Method On Zinc. Studia UBB Chemia. 2015 ; 3 : 225-235.
Tadao S., Zhou X. P., Muramatsu A. Synthesis of Uniform Anatase TiO2 Nanoparticles by Gel-Sol Method. 3. Formation Process and Size Control. J Colloid Interface Sci. 2003 ; 259 : 43-52.
Tang C.Y., Fu Q.S., Criddle C.S., Leckie J.O. Effect of flux (Transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater., Environ. Sci. & Technol. 2007 ; 41(6) : 2008-2014.
Wang B., Wen C., Cui Y. Y., Chen X., Dong Y., Dai W. L. Remarkable crystal phase effect of Cu/TiO2 catalysts on the selective hydrogenation of dimethyl oxalate. RSC Adv. 2015 ; 5 : 29040-29047.
Wang J. L., Song M. R., Chen B. Y., Wang C. L., Zhu R.S. Effects of pH and H2O2 on ammonia, nitrite, and nitrate transformations during UV254nm irradiation: Implications to nitrogen removal and analysis. Chemosphere . 2017 ; 184 : 1003-1011.
Wang Y., Zhang P., Pan G., Chen H. Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254nm UV light. J. of Hazardous Materials. 2008 ; 2 : 105.
Yoldi M., Fuentes-Ordoñez E.G., Korili S.A., Gil A. Zeolite synthesis from aluminum saline slag waste., Powder Technology. 2020 ; 366, 175-184.
Yu Q., Zhang R., Deng S., Huang J., Yu G. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study. Water Research . 2009 ; 43 :1150-1158.
王承業,「氣膠一步合成法製備中孔洞矽質材料擔載金屬觸媒及其丙酮催化探討」,國立交通大學環境工程系碩士論文,2011。
石裕奬,「恆溫反應浴對水庫淤泥合成沸石礦物之影響」,國立成功大學資源工程研究所碩士論文,2014。
吳雅雯,「水熱合成方沸石之離子吸附研究」,國立成功大學資源工程研究所碩士論文,2009。
林含宇,「結合沸石擔體之固定化光觸媒光降解水中酚基丙烷之研究」,國立雲林科技大學工程科技研究所博士論文,2010。
林凱晨,「ZSM-5沸石擔載鐵基雙金屬觸媒在一氧化氮選擇性催化還原活性:酸性及金屬負載量效應研究」,國立臺灣師範大學化學系碩士論文,2015。
涂耀中,「水庫淤泥經水熱法合成沸石礦物」,國立成功大學資源工程學系碩士論文,2012。
張珮盈,「二氧化鈦奈米棒及奈米管之合成機制與特性研究」,國立交通大學材料科學與工程學系碩士論文,2004。
陳俞君,「中孔洞複合材料之合成、分析與對二氧化碳吸附之研究」,國立交通大學材料科學與工程學系碩士論文,2010。
陳彥鳴,「廢玻璃資源化再利用技術及潛勢分析」,國立臺北科技大學環境規劃與管理研究所碩士論文,2003。
陶錫富,「二次鋁渣於一貫作業煉鋼廠再利用之探討」,國立高雄應用科技大學化學工程與材料工程系碩士論文,2009。
傅泀翰,「以改質光觸媒處理二氯甲烷之研究」,國立成功大學環境工程學系碩博士班論文,2004。
傅泀翰,「以碳、氮摻雜法改質光觸媒及其催化活性研究」,國立清華大學化學工程學系碩士論文,2004。
劉凱,「沸石吸附型觸媒雙功能材料之吸脫附/觸媒催化可行性研究」,國立交通大學環境工程研究所碩士論文,2010。
羅友駿,「微波溶膠凝膠程序製備二氧化鈦及光活性之研究」,國立雲林科技大學環境與安全衛生工程系碩士論文,2008。
張國華,「實驗設計」,滄海書局,2013。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-07-30
校外 Off-campus:開放下載的時間 available 2025-07-30

您的 IP(校外) 位址是 18.118.126.241
現在時間是 2024-04-26
論文校外開放下載的時間是 2025-07-30

Your IP address is 18.118.126.241
The current date is 2024-04-26
This thesis will be available to you on 2025-07-30.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2025-07-30

QR Code