Responsive image
博碩士論文 etd-0631113-141333 詳細資訊
Title page for etd-0631113-141333
論文名稱
Title
一個具有本體抬高式與雙嵌入氧化物之高速度且低成本非傳統互補金氧半
A High Speed and Low Cost Non-Classical CMOS with Elevated Body and Double-Embedded Oxide
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-18
繳交日期
Date of Submission
2013-08-06
關鍵字
Keywords
本體抬高式與雙嵌入氧化物、評量指標、共享輸出、傳遞延遲時間、反轉層電流、單載子互補金氧半、貫穿電流
share-terminal output, propagation delay time, inversion current, Unipolar CMOS, EBDEO, figure of merit, punch through current
統計
Statistics
本論文已被瀏覽 5689 次,被下載 0
The thesis/dissertation has been browsed 5689 times, has been downloaded 0 times.
中文摘要
在本論文中,我們提出一個具有本體抬高式與雙嵌入氧化物之高速度且低成本非傳統單載子互補金氧半反相器(Unipolar CMOS)。單載子互補金氧半反相器之原理為利用負型金氧半(NMOS)負載去取代在傳統互補金氧半電路中的正型金氧半(PMOS)負載,此時電路中的傳輸載子都為電子,整體速度會大幅提升。在此非傳統互補式金氧半反相器中,負載端利用本體抬高式雙嵌入氧化物之NMOS去抑制反轉層電流,使得主要操作電流由貫穿電流所主導。
根據結果顯示,本論文所提出之非傳統單載子互補金氧半反相器在邏輯電路上均有正確的邏輯特性,在利用貫穿效應的機制下,傳遞延遲時間比傳統互補式金氧半反相器下降了41 %。我們同時延伸利用平帶電壓去取代臨限電壓,此時元件會操作在弱反轉區域,在抑制反轉層電流與漏電流上獲得大大的改善,所以在評量指標上比傳統互補金氧半反相器減少了44 %,達成超低節能之次臨界型單載子互補金氧半反相器。另外,在製程方面,由於驅動器與負載端皆為NMOS,所以可以免除N型井區的製程步驟。在規劃佈局之面積上因為有共享輸出,使得與傳統互補金氧半反相器比較可節省75 %面積,達成降低成本之目的。
Abstract
In this thesis, we propose a high speed and low cost non-classical CMOS with elevated body and double-embedded oxide (EBDEO). This unipolar CMOS is composed of a NMOS driver and an EBDEO NMOS which replaces a PMOS as load. A high speed characteristic can be reached due to channel carriers are constituted by electrons only. Among them, the EBDEO scheme can suppress the inversion current, so the punch through current can be used as dominant current in the EBDEO NMOS load. According to the simulation results, the propagation delay time of the non-classical unipolar CMOS can reduce 41 % when compared with the conventional CMOS. In addition, the sub-threshold region unipolar CMOS can be formed by using the flat-band voltage to replace the threshold voltage. On the figure of merit (FOM), it can improve 44 % when compared with the conventional CMOS. Because of all NMOS devices are exploited, the N-well process can be eliminated. It also has share-terminal output, so the layout area can be reduced more than 75 %, as compared with the conventional CMOS.
目次 Table of Contents
第一章 緒論 1
1.1 背景 1
1.2 動機 3
第二章 貫穿效應之操作原理 5
2.1 貫穿效應 5
2.2 傳統互補式金氧半反相器之架構與操作原理 7
2.3 傳統互補式金氧半反相器之負載線 8
2.4 傳統互補式金氧半反相器之電壓與電流轉移特性曲線 9
2.5 具有本體抬高式雙嵌入氧化物之非傳統單載子傳輸操作原理 11
2.6 非傳統單載子傳輸之負載線 14
2.7 非傳統單載子傳輸之電壓與電流轉移特性曲線 16
2.8非傳統單載子傳輸之電流向量 17
第三章 元件架構設計與製程步驟 19
第四章 電性討論與分析 21
4.1 模擬使用之物理模型 21
4.2 元件模擬電性結果之分析與討論 22
4.2.1 具有本體抬高式雙嵌入氧化物負型金氧半負載之非傳統單極性互補金氧半反相器 22
4.3 數位邏輯電路模擬之應用 38
4.3.1 反或閘(NOR Gate) 38
4.3.2 反及閘(NAND Gate) 40
4.3.3 環形震盪器(Ring Oscillator) 42
4.3.4 全加器(Full adder) 43
4.4 傳遞延遲時間(Propagation delay time)與評量指標(FOM)之比較 44
4.5 具有本體抬高式雙嵌入氧化物負型金氧半負載單載子互補金氧半與傳統互補金氧半之面積比較 47
4.6 次臨界型之應用與探討 48
4.6.1 次臨界型單載子互補金氧半反相器 49
4.6.2 次臨界型數位邏輯電路模擬之應用 51
4.6.3 次臨界型傳遞延遲時間(Propagation delay time)與評量指標(FOM)之比較 53
4.6.4 次臨界型之VDD變化 56
4.7 實際量測結果 57
第五章 結論與未來展望 60
5.1結論 60
5.2 未來展望 61
參考文獻 62
附錄 67
A 汲極與源極空乏區寬度計算 67
B 閘極所控制之空乏區寬度 68
C 平帶電壓 70
D 功函數差 70
E 臨限電壓 71
F 模擬元件參數設定 71
附錄參考文獻 72
個人著作 73
共同著作 74
參考文獻 References
[1] G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics, vol. 38, no. 8, Apr. 1965.
[2] W. J. Dennehy, A. G. Holmes-Siedle, and W. F. Leopold, “Transient Radiation Response of Complementary-Symmetry MOS Integrated Circuits,” IEEE Trans. Nucl. Sci., vol. 16, no. 6, pp. 114-119, Dec. 1969.
[3] A. S. Sedra and K. C. Smith, microelectronic circuits. 4th ed. New York: Oxford University Press, 1998.
[4] S. M. Sze, Semiconductor Devices, Physics and Technology. 2nd ed. New York: John Wiley & Sons, 2001.
[5] R. H. Yan, A. Ourmazd, and K. F. Lee, “Scaling the Si MOSFET: From Bulk to SOI to Bulk,” IEEE Trans. Electron Devices, vol. 39, no. 7, pp. 1704-1710, Jul. 1992.
[6] C. P. Auth and J. D. Plummer, “Scaling Theory for Cylindrical Fully Depleted, Surrounding Gate MOSFETs,” IEEE Electron Device Lett., vol. 18, no. 2, pp. 74-76, Feb. 1997.
[7] R. A. Donaton, D. Chidambarrao, J. Johnson, P. Chang, Y. Liu, W. K.Henson, J. Holt, X. Li, J. Li, A. Domenicucci, A. Madan, K. Rim, and C. Wann, “Design and Fabrication of MOSFETs With a Reverse Embedded SiGe (Rev. e-SiGe) Structure,” in Proc. IEEE Tech. Dig. Int. Electron Meet., Dec. 2006, pp. 465-468.
[8] K. W. Ang, J. Lin, C.-H. Tung, N. Balasubramanian, G. S. Samudra, and Y.-C. Yeo, “Strained n-MOSFET With Embedded Source/Drain Stressors and Strain-Transfer Structure (STS) for Enhanced Transistor Performance,” IEEE Trans. Electron Devices, vol. 55, no. 3, pp. 850-857, Mar. 2008.
[9] C. L. Royer, M. Cassé, F. Andrieu, O. Weber, O. Weber, P. Perreau, J.-F. Damlencourt, S. Baudot, C. Tabone, F. Allain, P. Scheiblin, C. Rauer, L. Hutin, C. Figuet*, C. Aulnette*, N. Daval*, B.-Y. Nguyen*, and K. K. Bourdelle*, “Dual Channel and Strain for CMOS Co-Integration in FDSOI Device Architecture,” in Proc. IEEE Eur. Solid State Device Res. Conf., Sep. 2010, pp. 206-209.
[10] H. Hussin, N. M. Zain, and A. S. Zoolfakar, “Investigation of Si3N4 Capping Layer and Embedded SiGe Effect on 90 nm CMOS Devices,” in Proc. IEEE 2ndInt. Conf. Intelligent Syst., Model. Simul., pp. 410-415, Jan. 2011.
[11] C.-H. Fu, K.-S. Chang-Liao, L.-J. Liu, H.-C. Hsieh, C.-C. Lu, C.-C. Li, T.-K. Wang, and D.-W. Heh, “Enhanced Hole Mobility and Low Tinv for pMOSFET by a Novel Epitaxial Si/Ge Superlattice Channel,” IEEE Electron Device Lett., vol. 33, no. 2, pp. 188-190, Feb. 2012.
[12] M. Takenaka, R. Zhang, and S. Takagi, “MOS Interface Engineering for High-Mobility Ge CMOS,” in Proc. IEEE Int. Reliab. Phys. Symp., Apr. 2013, pp. 4C.1.1- 4C.1.8.
[13] W.-K. Yeh, Y.-T. Chen, F.-S. Huang, C.-W. Hsu, C.-Y. Chen, Y.-K. Fang, K.-J. Gan, and P.-Y. Chen, “The Improvement of High-k/Metal Gate pMOSFET Performance and Reliability Using Optimized Si Cap/SiGe Channel Structure,” IEEE Trans. Device Mater. Reliab., vol. 11, no. 1, pp. 7-12, Mar. 2011.
[14] C. Ren, H. Y. Yu, J. F. Kang, X. P. Wang, H. H. H. Ma, Y.-C. Yeo, D. S. H. Chan, M.-F. Li, and D.-L. Kwong, “A Dual-Metal Gate Integration Process for CMOS With Sub-1-nm EOT HfO2 by Using HfN Replacement Gate,” IEEE Electron Device Lett., vol. 25, no. 8, pp. 580-582, Aug. 2004.
[15] C. Ortolland, Y. Okuno, P. Verheyen, C. Kerner, C. Stapelmann, M. Aoulaiche, N. Horiguchi, and T. Hoffmann, “Stress Memorization Technique—Fundamental Understanding and Low-Cost Integration for Advanced CMOS Technology Using a Nonselective Process,” IEEE Trans. Electron Devices, vol. 56, no. 8, pp. 1690-1697, Aug. 2009.
[16] K. Y. Lim, H. Lee, C. Ryu, K. I. Seo, U. Kwon, S. Kim, J. Choi, K. Oh, H. K. Jeon, C. Song, T. O. Kwon, J. Cho, S. Lee, Y. Sohn, H. S. Yoon, J. Park, K. Lee, W. Kim, E. Lee, S. P. Sim, C. G. Koh, S. B. Kang, S. Choi, and C. Chung, “Novel Stress-Memorization-Technology (SMT) for High Electron Mobility Enhancement of Gate Last High-K/Metal Gate Devices,” in Proc. IEEE Tech. Dig. Int. Electron Meet., Dec. 2010, pp. 10.1.1-10.1.4.
[17] M. Saitoh, Y. Nakabayashi, K. Ota, K. Uchida, and T. Numata, “Performance Improvement by Stress Memorization Technique in Trigate Silicon Nanowire MOSFETs,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 8-10, Jan. 2012.
[18] M. Im, J.-W. Han, H. Lee, L.-E. Yu, S. Kim, C.-H. Kim, S.-C. Jeon, K.-H. Kim, G. Lee, J.-S. Oh, Y.-C. Park, H.-M. Lee, and Y.-K. Choi, “Multiple-Gate CMOS Thin-Film Transistor With Polysilicon Nanowire,” IEEE Electron Device Lett., vol. 29, no. 1, pp.102-105, Jan. 2008.
[19] K. Uejima, K. Yako, N. Ikarashi, M. Narihiro, M. Tanaka, T. Nagumo, A. Mineji, S. Shishiguchi, and M. Hane, “Novel Diffusion-less Ultra-Shallow Junction Engineering based on Millisecond Annealing for Sub-30 nm Gate Length Planar Bulk CMOSFET,” in Proc. IEEE 8th Int. Workshop Junction Technol., pp. 62-67, May 2008.
[20] H. S. Tan, N. Mathews, T. Cahyadi, F. R. Zhu, and S. G. Mhaisalkar, “The Effect of Dielectric Constant on Device Mobilities of High-Performance, Flexible Organic Field Effect Transistors,” Appl. Phys. Lett., vol. 94, no. 26, Jul. 2009.
[21] N. Xu, B. Ho, F. Andrieu, L. Smith, B.-Y. Nguyen, O. Weber, T. Poiroux, O. Faynot, and T.-J. K. Liu, “Carrier-Mobility Enhancement via Strain Engineering in Future Thin-Body MOSFETs,” IEEE Electron Device Lett., vol. 33, no. 3, pp. 318-320, Mar. 2012.
[22] L.-J. Liu, K.-S. Chang-Liao, C.-H. Fu, H.-C. Hsieh, C.-C. Lu, T.-K. Wang, P. Y. Gu, and M. J. Tsai, “High-performance pMOSFETs With High-K Gate Dielectric and Dislocation-Free Epitaxial Si/Ge Super-Lattice Channel,” in Proc. IEEE Silicon Nanoelectronics Workshop, Jun. 2012, pp.1-2.
[23] L.-J. Liu, K.-S. Chang-Liao, Y.-C. Jian, J.-W. Cheng, T.-K. Wang, and M.-J. Tsai, “Performance Enhancement on p-Channel Charge-Trapping Flash Memory Device With Epitaxial Si/Ge Super-Lattice Channel,” IEEE Electron Device Lett., vol. 34, no. 5, pp. 587-589, May 2013.
[24] T.-P. Ma, “Proposes Unipolar CMOS,” Semiconductor International, Oct. 2008.
[25] E. Gili, V. D. Kunz, T. Uchino, M. M. A. Hakim, C. H. de Groot, P. Ashburn, and S. Hall, “Asymmetric Gate-Induced Drain Leakage and Body Leakage in Vertical MOSFETs With Reduced Parasitic Capacitance,” IEEE Trans. Electron Devices, vol. 53, no. 5, pp. 1080-1087, May 2006.
[26] J.-T. Lin, H.-H. Chen, K.-Y. Lu, C.-H. Sun, Y.-C. Eng, C.-H. Kuo, P.-H. Lin, T.-Y. Lai, and F.-L. Yang, “Design Theory and Fabrication Process of 90 nm Unipolar-CMOS,” in Proc. IEEE Silicon Nanoelectronics Workshop, Jun. 2010, pp.1-2.
[27] C.-H. Lin, J-T Lin, H.-H. Chen, Y.-C. Eng, and S.-W. Wang, “Unipolar CMOS Inverter Based on Punch-Through Effect With Two Embedded Oxide Structure,” in Proc. IEEE Int. Conf. Electron Devices Solid-State Circuits, Nov. 2011, pp. 1-2.
[28] 施敏, 伍國鈺著 張鼎張, 劉柏村譯, 半導體元件物理學. 國立交通大學第三版.
[29] B. G. Streetman, S. K. Banerjee著 吳孟奇, 洪勝富, 連振炘, 龔正, 吳忠義譯, 半導體元件. 東華書局第六版.
[30] D. A. Neamen, Fundamental of Semiconductor Physics and Devices, New York: McGraw-Hill, 2005.
[31] F.-C. Hsu, R. S. Muller, C. Hu, and P.-K. Ko, “A Simple Punchthrough Model for Short-Channel MOSFETs,” IEEE Trans. Electron Devices, vol. 30, no. 10, pp. 1354-1359, Oct. 1983.
[32] ATHENA User’s Manual: Device Simulation Software, Silvaco International Inc., Santa Clara, Sep. 2010.
[33] ATLAS User’s Manual: Device Simulation Software, Silvaco International Inc., Santa Clara, Sep. 2010.
[34] C. P. Auth and J. D. Plummer, “An Ultra-Low-Power Memory With a Subthreshold Power Supply Voltage,” IEEE J. Solid State Circuits, vol. 41, no. 10, pp. 2344-2353, Oct. 2006.
[35] J. Chen, L. T. Clark, and T.-H. Chen, “SPICE-Based Performance Analysis of Trigate Silicon Nanowire CMOS Circuits,” IEEE Trans. Electron Devices, vol. 60, no. 4, pp. 1451-1456, Apr. 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.119.132.223
論文開放下載的時間是 校外不公開

Your IP address is 18.119.132.223
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code