Responsive image
博碩士論文 etd-0631113-162832 詳細資訊
Title page for etd-0631113-162832
論文名稱
Title
雙雷射束畫線製程應用於薄膜太陽能電池之研究
A Study on the Double-Beam Laser Scribing Process for CIGS Thin Film Solar Cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-17
繳交日期
Date of Submission
2013-07-31
關鍵字
Keywords
雙雷射束畫線、銅銦鎵硒薄膜太陽能電池、P1製程
Pattern 1, Double-Beam Laser Scribing, CIGS Thin Film Solar Cells
統計
Statistics
本論文已被瀏覽 5692 次,被下載 453
The thesis/dissertation has been browsed 5692 times, has been downloaded 453 times.
中文摘要
本研究主要利用有限元素法模擬,探討雙雷射束加工參數對銅銦鎵硒薄膜太陽能電池P1畫線製程之影響。希利用雷射能量聚集且加工精準的特性,使玻璃基板上之鉬薄膜快速升溫至汽化點,達到P1圖案化的效果。文中採用熱-彈-塑有限元素模式,配合隨溫度變化之材料特性,針對單雷射束及雙雷射束畫線製程進行利弊分析,並決定P1製程所使用之雷射波長。文中就輸出功率、雷射速率、雙雷射束間距等參數對材料溫度、畫線潛力及圖案化結果之影響,加以比較分析。期望本研究所提出之雙雷射束畫線技術,能藉由雙雷射能量疊加,得到平坦化之溫度場及平整的加工邊緣,進而達成P1製程之需求。
文中亦設定雷射光點大小與雙雷射束間距相同,分別依畫線速率提出高速、中速、低速雷射畫線三項雙雷射束畫線製程,及各製程適宜之加工參數,並分析此三項製程中,材料之溫度場及熱應力分布。文中並利用有限元素套裝軟體MSC. Marc中之移除元素之功能,觀察後雷射畫線結束後之殘留應力分布及影響。文中除顯示有限元素法應用於雷射畫線加工模擬之可行性,亦提出數種雙雷射離焦畫線之可能製程,希能提供目前大面積太陽能電池P1製程之參考。
Abstract
The finite element method has been employed to simulate the double-beam laser scribing on the Pattern 1 process of CuInGaSe2-based thin film solar cells (CIGS). The advantages of high concentrated power and manufacturing accuracy of laser beam have been used to remove the Mo thin film on the substrate. The thermal-elastic-plastic finite element models in company with temperature dependent material properties are applied to characterize the heating process during the laser scribing. The effects of laser scribing parameters, e.g. power, scribing speed, and the distance of two lasers, on the single-beam and double-beam laser scribing of Pattern 1 process are also studied in this work respectively.
Three double-beam laser scribing processes with different speed have been proposed and investigated. The temperature and thermal stress distributions around the vaporizing pools during the scribing process have been simulated and studied. The distributions of residual stress induced in this scribing process have also been studied by employed the inactive elements method in MARC software.
目次 Table of Contents
謝誌 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 x
符號說明 xi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 組織章節 6
第二章 研究理論與數值方法 7
2.1 CIGS薄膜太陽能電池 7
2.2 熱-力耦合分析模式 10
2.3 熱傳分析理論 15
2.4 力學分析理論 16
2.5 牛頓-拉弗森法 17
第三章 有限元素模型與分析方法 21
3.1 研究流程 21
3.2 分析模式與假設 24
3.2.1 材料性質與模型幾何 24
3.2.2 初始條件與邊界條件 31
3.3 建模方法與設定 36
3.3.1 網格切割與收斂性分析 36
3.3.2 模擬過程之運算設定 43
第四章 結果與討論 45
4.1 參數規劃 45
4.2 單一雷射熱源 48
4.2.1 雷射波長 48
4.2.2 雷射功率 53
4.2.3 雷射畫線速率 56
4.2.4 雷射光點大小 59
4.3 雙熱源配置之參數分析 62
4.3.1 雙雷射束間距與光點大小 62
4.3.2 雷射功率 67
4.3.3 雷射畫線速率 70
4.3.4 單雙雷射畫線製程之比較 73
4.4 雙雷射束畫線製程 77
4.4.1 高速雙雷射束畫線製程 77
4.4.2 中速雙雷射束畫線製程 84
4.4.3 低速雙雷射束畫線製程 91
第五章 結論與未來工作 99
5.1 結論 99
5.2 未來工作 100
參考文獻 101
參考文獻 References
[1] Liu J., Cao G., Yang Z., Wang D., Dubois D., Zhou X., Graff G. L., Pederson L. R., and Zhang J. G., “Oriented Nanostructures for Energy Conversion and Storage,” ChemSusChem, 5, pp. 676-697, 2008.
[2] US DOE OFFICE of Basic Energy Sciences, “Basic Research Needs for Solar Energy Utilization: Report of the Basic Energy Sciences Workshop on Solar Energy Utilization,” Thee U.S. Department of Energy Office 2006.
[3] Ligate D., “Green energy?,” Engineering Science and Education Journal, 5(1), pp. 221-227, 1992.
[4] 曾衍彰,「太陽能電池原理與材料技術」,經濟部工業局,台北,2004。
[5] Zweibel K., Harnessing Solar Power: the Photovoltaic Challenge, Plenum Press, New York, 1990.
[6] Adams W. G. and Day R. E., “The Action of Light on Selenium,” Philosophical Proceedings of the Royal Society of London, 167, pp. 341-349, 1877.
[7] Simon M. Sze and Ming-Kwei Lee, Semiconductor Device: Physics and Technology, 3th Edition, John Wiley & Sons, New York, 2012.
[8] 施敏著,黃調元譯,半導體元件物理與製作技術,台北,2010。
[9] Arnulf J. W., “PV Status Report 2010,” JRC59708, 2010.
[10] Chiba Y., Islam A., Kakutani K., Komiya R., Koide N., and Han L., “High Efficiency Dye Sensitized Solar Cells,” Technical Digest of 15th International Photovoltaic Science and Engineering Conference, pp. 665-666, 2005.
[11] Yang J., Banerjee A., Sugiyama S., and Guha S., “Recent Progress in Amorphous Silicon Alloy Leading to 13% Stable Cell Efficiency. Conference Record,” IEEE Photovoltaic Specialists Conference, 26, pp. 563-568, 1997.
[12] Wu X., Keane J. C., Dhere R. G., DeHart C., Albin D., Duda A., Gessert T. A., Asher S., Levi D. H., and Sheldon P, “16.5%-Efficient CdS/CdTe Polycrystalline Thin-Film Solar Cell,” Proceedings of the 17th European Photovoltaic Solar Energy Conference, 2, pp. 995-1000, 2007.
[13] Green M. A., Emery K., Hishikawa Y., and Warta W., “Solar Cell Efficiency Tables,” Progress in Photovoltaics: Research and Applications, 19, pp. 84-92, 2011.
[14] Shah A. V., Schade H., Vanecek M., Meier J., Vallat-sauvain E., Wyrsch N., Kroll U., Droz C., and Bailat J., “Thin-film Silicon Solar Cell Technology,” Progress in Photovoltaics: Research and Applications, 12, pp. 113-142, 2004.
[15] Eberhardt G., Banse H., Wagner U, and Peschel T., “Structuring of Thin Film Solar Cells”, Photonics West 2010 Proc. SPIE, 7585, pp. 75850, 2010.
[16] Hedstrom J., Ohlsen H., Bodegard M., Kylner A., Stolt L., Hariskos D., Ruckh M., Schock H. W., “ZnO/CdS/Cu(In,Ga)Se2 Thin Film Solar Cells with Improved Performance,” IEEE Photovoltaic Specialists Conference, 23, pp. 364-371, 1993.
[17] Ramanathan K., Kannan R, Miguel A. C., Craig L. P., Sally A., Falah S. H., James K., David Y., Manuel R., Wyatt M., Rommel N., James W., and Anna D., “Properties of 19.2% Efficiency ZnO/CdS/CuInGaSe2 Thin-film Solar Cells,” Progress in Photovoltaics: Research and Applications, 11(4), pp.225-230, 2003.
[18] Green M. A., Emery K., Hishikawa Y., and Warta W., “Solar Cell Efficiency Tables,” Progress in Photovoltaics: Research and Applications, 19, pp. 84-92, 2011.
[19] Arya R. R., Lommasson T. C., Wiedeman S., Russell L., Skibo S., and Fogleboch J., “Solar Cell and Submodules on CIS Prepared by EDCF Method,” IEEE Photovoltaic Specialists Conference, 23, pp. 516-520, 1993.
[20] Quercia L., Avagliano S., Parretta A., Salza, E., and Menna P., “Laser Patterning of CuInSe2/Mo/SLS Structures for the Fabrication of CuInSe 2 Submodules,” Materials Science Forum, 173-174, pp. 53-58, 1995.
[21] Matulionis I., Nakade S., and Compaan A. D., “Wavelength and Pulse Duration Effects in Laser Scribing of Thin Films,” IEEE Photovoltaic Specialists Conference, 26,pp. 491-494, 1997.
[22] Compaan A. D., Matulionis I., and Nakade S., “Laser Scribing of Polycrystalline Thin Films,” Optics and Laser in Engineering, 34, pp. 15-45, 2000.
[23] Haas S., Gordijn A., and Stiebig H., “Influence of the Laser Parameters on the Patterning Quality of Thin-Film Silicon modules,” SPIE Optics and Photonics, 6651, pp. 66510H-1-10, 2007.
[24] Grunewald P., “Laser Processing Technologies for Thin-film Solar Cells,” Japan Laser Processing Society of the 69th Laser Materials Processing Conference, 85, pp. 85-91, 2007.
[25] Heather, “Laser Processing in Industrial Solar Module Manufacturing,” JLMN-Journal of Laser Micro/Nanoengineering, 5(3), pp. 183-191, 2010.
[26] Powalla M., Hariskos D., Lotter E., Oerte M., Springer J., Stellbogen D., Dimmler, B., and Schaffler R., “Large-Area CIGS Modules: Processes and Properties,” Thin Solid Films, 431-432, pp. 523-533, 2003.
[27] Powalla M., Cemernjaka M., Eberhardta J., Kesslera F., Kniesea R, Mohringa H.D., Dimmlerb B., “Large­Area CIGS Modules: Pilot Line Production and New Developments,” Solar Energy Materials & Solar Cells , 90, pp. 3158-3164, 2006.
[28] Dunsky C. M. and Colville F., “Solid State Laser Applications in Photovoltaics Manufacturing,” Proceeding SPIE, 6871, pp. 687129-1, 2008.
[29] Westin P.O, Zimmermann U., and Edoff M., “Laser Patterning of P2 Interconnect Via in Thin Film CIGS PV Modules,” Solar Energy Materials & Solar Cells, 92, pp. 1230-1235, 2008
[30] Bovatsek J., Tamhankar A., Patel R. S., Bulgakova N. M., and Bonse, J., “Thin Film Removal Mechanisms in ns-laser Processing of Photovoltaic Materials,” Thin Solid Films, 518, pp. 2897-2904, 2010.
[31] Pern F. J., Mansfield L., Glynn S., DeHart C., Nikumb S., Dinkel C., Rekow M., Murison R., Panarello T., and Dunsky C., “All Laser Scribing for Thin-film CuInGaSe2 Solar Cells,” IEEE Photovoltaic Specialists Conference, 35, 2010.
[32] Stephen J. Chapman, Electric Machinery Fundamentals, 4th Edition, Mc.Graw Hill, 2005.
[33] Sefano Selleri, Member, Alessio Bosio, Annamaria Cucinotta, Michele Sozzi, Daniele Menossi, Yves Hernandez, Anthony Bertrand, and Charles Duterte, “Optimization of Pulsed Fiber Laser Scribing for CdTe and CIGS Solar Cells,” IEEE Transparent Optical Networks (ICTON), pp. 1-4, 2012.
[34] Rockett A., Granath K., Asher S., Jassim M. A., Hasoon F., Matson R., Basol B., Kapur V., Britt J. S., Gillespie T., and Marshall C., “Na Incorporation in Mo and CuInSe2 from Production Processes,” Solar Energy Materials & Solar Cells, 59, pp. 255-264, 1999.
[35] Grant R. W., Kraut E. A., Waldrop J. R., and Kowalcyzk S. P., edited by Capasso F. and Margaritondo G., Heterojunction Band Discontinuities, Elsevier, Amsterdam, 1987.
[36] Turnes M. J., Clough R. W., Martin H. C., and Topp, J. L., “Stiffness and Deflection Analysis of Complex Structures,” Journal of Aeronautical Science, 23(9), pp. 805-824, 1956.
[37] Chandrupatla, T. R., Belegundu, and A. D., Introduction to Finite Elements in Engineering, 3rd edition, Prentice Hall, New Jersey, 2002.
[38] MSC. Software Corporation, MSC. MARC Product Documentation Volume A: Theory and User Information, MSC. Software Corporation, 2010.
[39] Zacharia, T., David, S. A., Vitek, J. M.,and Debroy T., “Weld Pool Development During GTA and Laser Beam Welding of Type 304 Stainless Steel Part I. Theoretical Analysis,” Welding Journal, 68, pp.499-509, 1989.
[40] Zacharia, T., David, S. A., Vitek, J. M., and Debroy T., “Weld Pool Development During GTA and Laser Beam Welding of Type 304 Stainless Steel Part II. Experimental Correlation,” Welding Journal, 68, pp.510-519, 1989.
[41] Zacharia, T., David, S. A., Vitek, J. M., and Debroy T., “Heat Transfer During Nd:YAG Pulsed Laser Welding and Its Effect on Solidification Structure of Austenitic Stainless Steels,” Metallurgical Transactions A, 20A, pp.957-967, 1989.
[42] MSC. Software Corporation, MSC. MARC Product Documentation Volume B: Element Library, MSC. Software Corporation, 2010.
[43] MSC. Software Corporation, MSC. MARC Product Documentation Volume D: User Subroutines and Special Routines, MSC. Software Corporation, 2010.
[44] Ion J. C., Laser Processing of Engineering Materials, Elsevier Ltd., United Kingdom, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code