Responsive image
博碩士論文 etd-0631113-170137 詳細資訊
Title page for etd-0631113-170137
論文名稱
Title
金屬玻璃薄膜濺鍍在玻璃和316L不鏽鋼上之抗菌效果
Antimicrobial Effects of Thin Film Metallic Glasses Deposited on Glass and 316L Stainless Steel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
132
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-28
繳交日期
Date of Submission
2013-07-31
關鍵字
Keywords
316L不鏽鋼、細胞毒性、銀、疏水性、抗菌效果、金屬玻璃薄膜
silver, cytotoxic, contact angle, antimicrobial effect, thin film metallic glass
統計
Statistics
本論文已被瀏覽 5751 次,被下載 273
The thesis/dissertation has been browsed 5751 times, has been downloaded 273 times.
中文摘要
在過去的研究裡,可以知道銀是一種有效的抗菌劑。金屬玻璃薄膜具有良好的抗腐蝕性和疏水特性,藉此金屬玻璃薄膜將有助於改善醫療元件的表面特性和增進抗菌效果。然而,關於金屬玻璃薄膜的抗菌能力和生物相容性卻很少被研究。此外,關於金屬玻璃薄膜的抗菌機制依舊是個未知。因此,為了更了解金屬玻璃薄膜和細菌之間互相的關係,在本研究中比較以下3個金屬玻璃薄膜的抗菌效果,分別是Al48Ag37Ti15、Zr54Ti35Si11和Zr59Ti22Ag19。在實驗中,所有的金屬玻璃薄膜先被濺鍍在玻璃上。接著,表現良好的金屬玻璃薄膜則被另外濺鍍在生醫級的316L不鏽鋼上。在抗菌測試的部分,金黃色葡萄球菌、大腸桿菌和綠膿桿菌被培養在金屬玻璃薄膜上。經由抗菌測試的結果可得知Al48Ag37Ti15和Zr59Ti22Ag19金屬玻璃薄膜和純銀薄膜一樣皆有99%以上的抗菌效果。此外,在MTS測試結果中可被觀察到Zr54Ti35Si11 金屬玻璃薄膜不具有細胞毒性。這些研究結果預計將對醫療元件的發展有顯著的貢獻。
Abstract
Many studies show that silver is an effective antimicrobial agent. Thin film metallic glasses (TFMGs) exhibit excellent corrosion resistance and much better hydrophobic property. It follows that TFMGs might be promising for improving the surface properties and antimicrobial ability of substrates in biomedical applications. However, the development and investigation of antimicrobial ability and biocompatibility for metallic glasses are still rare. Besides, the mechanism of antimicrobial effects of TFMGs is still unknown. To understand the interaction between bacteria and TFMGs, it is investigated by comparing the antimicrobial activity between the Al48Ag37Ti15 TFMG, Zr54Ti35Si11 TFMG, and Zr59Ti22Ag19 TFMG. In this study, all the TFMGs were deposited on glass by co-sputtering processes. Afterward, the superior TFMGs were also deposited onto the modified 316L stainless steel (SS). The antimicrobial performances of the TFMGs are tested with Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa which are the most common nosocomial infection pathogens. The experimental results show that the antimicrobial effect of Al48Ag37Ti15 and Zr59Ti22Ag19 TFMG is almost similar to thin film of pure Ag. Moreover, the result of Zr54Ti35Si11 TFMG is shown to be non-cytotoxic to mouse bone marrow stem cells using an MTS assay for proliferation. These results are expected to impose significant contributions to the development of biomedical devices.
目次 Table of Contents
中文摘要 i
Abstract ii
Content iii
List of tables vi
List of figures viii
Chapter 1 Introduction 1
1.1 Amorphous alloys 1
1.2 Development of thin film metallic glasses 2
Chapter 2 Background and literature review 6
2.1 Properties of thin film metallic glasses 6
2.1.1 Mechanical properties 6
2.1.2 Corrosion properties 7
2.1.3 Empirical rules for synthesis of metallic glasses 8
2.2 Principle of physical vapor deposition 10
2.2.1 Introduction of sputtering processes 10
2.2.2 DC/RF sputtering processes 11
2.2.3 Growth of sputtered thin film 13
2.3 Biological activity of materials 14
2.3.1 Antimicrobial activity 14
2.3.2 Biocompatibility 17
2.4 Motivation 18
Chapter 3 Experimental procedures 20
3.1 Raw materials 20
3.2 Sample preparation 21
3.2.1 Substrate preparation 21
3.2.2 Thin film preparation 22
3.3 Property measurements and analyses 23
3.3.1 X-ray diffraction 24
3.3.2 Qualitative and quantitative composition analyses 24
3.3.3 3D alpha-step profilometer 25
3.3.4 Scanning electron microscopy 25
3.3.5 Atomic force microscopy 26
3.3.6 Inverted research microscope 26
3.3.7 Contact angle 27
3.3.8 Inductively coupled plasma - mass spectrometry 27
3.4 Biological assay 28
3.4.1 Antimicrobial test 28
3.4.2 MTS assay 29
Chapter 4 Results and discussion 31
4.1 Sample preparations 31
4.2 Analyses of structure and composition for Al-based and Zr-based TFMGs 33
4.3 Surface treatment of uncoated substrates 34
4.4 Morphology analysis 36
4.4.1 Surface difference between crystalline and amorphous structure 36
4.4.2 Surface physical property 38
4.5 Antimicrobial activity 39
4.6 Cytotoxicity evaluation 41
4.7 Metal ion release 43
Chapter 5 Conclusion 44
References 46
Tables 52
Figures 60
參考文獻 References
[1] A.C. Lund, C.A. Schuh, J. Appl. Phys., 95 (2004) 4815-4822.
[2] http://www.liquidmetal.com.
[3] W.L. Johnson, Mater. Res. Bull., 24 (1999) 42-56.
[4] A. Inoue, B. Shen, H. Koshiba, H. Kato, A.R. Yavari, Nat. Mater., 2 (2003) 661-663.
[5] N. H. Pryds, Mater. Sci. Eng. A, (2002) 186-193.
[6] H.S. Chou, J.C. Huang, Y.H. Lai, L.W. Chang, X.H. Du, J.P. Chu, T.G. Nieh, J. Alloys Compd., 483 (2009) 341-354.
[7] D.E. Polk, D. Turnbull, Acta Metall., 20 (1972) 493-498.
[8] X.H. Du, J.C. Huang, H.M. Chen, H.S. Chou, Y.H. Lai, K.C. Hsieh, J.S.C. Jang, P.K. Liaw, Intermetallics, 17 (2009) 607-613.
[9] W. Klement, R.H. Willens, P. Duwez, Nat., 187 (1960) 869-870.
[10] 吳學陞, 工業材料, 149 (1999) 154-165.
[11] H. S. Chen, D.T. Turnbull, Acta Metall., 17 (1969) 1021-1031.
[12] H. S. Chen, C.E. Miller, Rev. Sci. Intrum, 41 (1970) 1237-1238.
[13] H.S. Chen, Acta Metall., 22 (1974) 1505-1511.
[14] R.B. Schwarz, W.L. Johnson, Phys. Rev. Lett., 51 (1983) 415-418.
[15] E.J. Cotts, W.J. Meng, W.L. Johnson, Phys. Rev. Lett., 57 (1986) 2295-2298.
[16] Q.M. Chen, Y.D. Fan, H.D. Li, Mater. Lett., 6 (1988) 311-315.
[17] G. Minnigerode, A. Regenbrecht, K. Samwer, Z. Phys. Chem. Neue Folge, Bd., 157 (1988) 197-201.
[18] J. Dudonis, R. Brucas, A. Miniotas, Thin Solid Films, 275 (1996) 164-167.
[19] Y. Liu, S. Hata, K. Wada, A. Shimokohbe, Jpn. J. Appl. Phys., 40 (2001) 5382-5388.
[20] C.L. Chiang, J.P. Chu, F.X. Liu, P.K. Liaw, R.A. Buchanan, Appl. Phys. Lett., 88 (2006).
[21] F.X. Qin, M. Yoshimura, X.M. Wang, S.L. Zhu, A. Kawashima, K. Asami, A. Inoue, Mater. Trans., 48 (2007) 1855-1858.
[22] J.J. Oak, A. Inoue, Mater. Sci. Eng., 449 (2007) 220-224.
[23] P.T. Chiang, G.J. Chen, S.R. Jian, Y.H. Shih, J.C. Chiang, C.H Lai, Fooyin J. Health Sci., 2(1) (2010) 12-20.
[24] T.T. Hu, J.H. Hsu, J.C. Huang, S.Y. Kuan, C.J. Lee, T.G. Nieh, Appl. Phys. Lett., 101 (2012) 011902.
[25] A.S. Argon, H.Y. Kuo, Mater. Sci. Eng., 39 (1979) 101-109.
[26] F. Spaepen, Acta Metall., 25 (1977) 407-415.
[27] J.P. Chu, J.C. Huang, J.S.C. Jang, Y.C. Wang, P.K. Liaw, JOM, 62 (2010) 19-24.
[28] G. Manivasagam, D. Dhinasekaran, A. Rajamanickam, Recent Pat. Corros. Sci., 2 (2010) 40-54.
[29] D. Turnbull, Contemp. Phys., 10 (1969) 473-488.
[30] M. Sasd, M. Poulain, Mater. Sci. Forum, 19-20 (1987) 11-18.
[31] I. W. Donald, H.A. Davies, J. Non-Cryst. Solids, 30 (1978) 77-85.
[32] O. N. Senkov, D.B. Miracle, Mater. Res. Bull., 36 (2001) 2183-2198.
[33] Z. J. Yan, J. F. Li, S. R. He, Y.H. Zhou, Mater. Res. Bull., 38 (2003) 681-689.
[34] T. H. Hung, J. C. Huang, J. S. C. Jang, S.C. Lu, Mater. Trans., 48 (2007) 239-243.
[35] W. Chen, Y. Wang, J. Qiang, C. Dong, Acta Mater., 51 (2003) 1899-1907.
[36] Q. Wang, Y. M. Wang, J. B. Qiang, X. F. Zhang, C. H. Shek, C. Dong, Intermetallics, 12 (2004) 1229-1232.
[37] Y. M. Wang, W. P. Xu, J. B. Qiang, C. H. Wong, C. H. Shek, C. Dong, Mater. Sci. Eng. A, 375-377 (2004) 411-416.
[38] M. Iqbal, W. S. Sun, H. F. Zhang, J. I. Akhter, Z.Q. Hu, Mater. Sci. Eng. A, 447 (2007) 167-173.
[39] A. Inoue, Mater. Trans. JIM, 36 (1995) 866-875.
[40] A. Inoue, Mater. Sci. Eng. A, A226-228 (1997) 357-363.
[41] A. Inoue, A. Takeuchi, T. Zhang, Metall. Mater. Trans. A, 29 (1998) 1779-1793.
[42] D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Noyes publications, New Jersey, (1998).
[43] K. Seshan, Handbook of Thin-Film Deposition Processes and Techniques: Principles, Methods, Equipment and Applications, 2nd ed., Noyes Publications, Park Ridge, New Jersey, 2002.
[44] W. Zou, Synthesis of Giant Magnetoresistive Multilayers, Ph. D. Dissertation, University of Virginia, Charlottesville, Virginia 2001, p. 303
[45] K. Wasa, S. Hayakawa, Handbook of Sputter Deposition Technology, Noyes publications, New Jersey, (1992).
[46] J.M. Schierholz, L.J. Lucas, A. Rump, G. Pulverer, J. Hosp. Infect., 40 (1998) 257-262.
[47] I. Sondi, B. Salopek-Sondi, J. Coll. Interf. Sci., 275 (2004) 177-182.
[48] A.E. J. Wahlberg, Health, 11 (1989) 201-203.
[49] R.L. Williams, D.F. Williams, Biomater., 9 (1988) 206-212.
[50] P. DeVasConCellos, S. Bose, H. Beyenal, A. Bandyopadhyay, L.G. Zirkle, Mater. Sci. Eng. C, 32 (2012) 1112-1120.
[51] C. Aymonier, U. Schlotterbeck, L. Antonietti, P. Zacharias, R. Thomann, J.C. Tiller, S. Mecking, Chem. Commun., (2002) 3018-3019.
[52] J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.Y. Hwang, Y.K. Kim, Y.S. Lee, D.H. Jeong, M.H. Cho, Nanomed. Nanotechnol. Biol. Med., 3 (2007) 95-101.
[53] https://en.wikipedia.org/wiki/File:Gram-Cell-wall.svg#filehistory, Wikipedia, (2008)
[54] W.K. Jung, H.C. Koo, K.W. Kim, S. Shin, S.H. Kim, Y.H. Park, Appl. Environ. Microbiol., 74 (2008) 2171-2178.
[55] M.D. Demetriou, A. Wiest, D.C. Hofmann, W.L. Johnson, B. Han, N. Wolfson, G.Y. Wang, P.K. Liaw, JOM, 62 (2010) 83-91.
[56] J. Schroers, G. Kumar, T.M. Hodges, S. Chan, T.R. Kyriakides, JOM, 61 (2009) 21-29.
[57] S. Buzzi, K.F. Jin, P.J. Uggowitzer, S. Tosatti, T. Gerber, J.F. Loffler, Intermetallics, 14 (2006) 729-734.
[58] C.L. Qiu, Q. Chen, L. Liu, K.C. Chan, J.X. Zhou, P.P. Chen, S.M. Zhang, Scripta Mater., 55 (2006) 605-608.
[59] L. Liu, Z. Liu, K.C. Chan, H.H. Luo, Q.Z. Cai, S.M. Zhang, Scripta Mater., 58 (2008) 231-234.
[60] L. Liu, C.L. Qiu, Q. Chen, K.C. Chan, S.M. Zhang, J. Biomed. Mater. Res. A, 86A (2008) 160-169.
[61] L. Liu, C.L. Qiu, C.Y. Huang, Y. Yu, H. Huang, S.M. Zhang, Intermetallics, 17 (2009) 235-240.
[62] T. Zhang, A. Inoue, T. Masumoto, Mater. Sci. Eng. A, A182 (1994) 1423-1426.
[63] A. Inoue, N. Nishiyama, K. Amiya, T. Zhang, T. Masumoto, Mater. Lett., 19 (1994) 131-135.
[64] K. Amiya, N. Nishiyama, A. Inoue, T. Masumoto, Mater. Sci. Eng. A, 179 (1994) 692-696.
[65] Y.C. Kim, W.T. Kim, D.H. Kim, Mater. Sci. Eng. A, 375 (2004) 127-135.
[66] A. Takeuchi, A. Inoue, Mater. Trans., 46 (2005) 2817-2829.
[67] A.B.D. Cassie, S. Baxter, Trans. Faraday Soc., 40 (1944) 546-551.
[68] M. Assad, N. Lemieux, C.H. Rivard, L.H. Yahia, Biomed. Mater. Eng., 9 (1999) 1-12.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code