Responsive image
博碩士論文 etd-0631113-225921 詳細資訊
Title page for etd-0631113-225921
論文名稱
Title
以長效型基質處理受三氯乙烯污染之地下水
Application of long-lasting substrate to remediate TCE-contaminated groundwater
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-19
繳交日期
Date of Submission
2013-08-27
關鍵字
Keywords
還原脫氯、三氯乙烯、乳化油、菌相分析、長效型基質、奈米零價鐵
nanoscale zero-valent iron, long-lasting substrate, trichlorethene (TCE), microbial analysis, emulsified oil, reductive dechlorination
統計
Statistics
本論文已被瀏覽 5746 次,被下載 0
The thesis/dissertation has been browsed 5746 times, has been downloaded 0 times.
中文摘要
含氯有機溶劑如三氯乙烯(trichloroethylene, TCE)具有潛在之基因突變性及致癌性等毒性特徵,一旦發生三氯乙烯洩漏,將可能經由飲用水等多種暴露途徑,對鄰近民眾之健康造成嚴重危害。本研究以TCE做為目標污染物,藉由發展長效型基質,以有效處理受TCE污染之地下水。研究中結合可提升厭氧環境下生物分解能力之乳化油基質與可快速還原脫氯之奈米零價鐵(nanoscale zero-valent iron, nZVI),形成一長效型基質(long-lasting substrate),在厭氧生物及物化機制之雙重作用下,以有效降解TCE並控制其污染團之擴散。本研究針對自行合成之長效型基質進行基本性質分析以及批次試驗瞭解其生物降解能力,並以變性梯度膠體電泳(denaturing gradient gel electrophoresis, DGGE)及定序技術瞭解菌相之分佈與優勢菌種之生成與變化。研究結果顯示,長效型基質經光學顯微鏡觀測,可發現乳化油將大部分奈米零價鐵包覆其中,平均粒徑為0.705 μm,且在懸浮性試驗結果中看到,惟經過六天反應後,單純奈米零價鐵之總鐵多已沉澱至底部,而長效型基質懸浮率較穩定不易沉降,顯示改質後之奈米零價鐵能有效分散於水中,增加與污染物接觸機會。批次試驗方面,各組之降解效率以長效型基質組為最佳降解方式,其在130天試驗中可持續且穩定地降解99%TCE污染物,符合地下水污染管制標準(0.05 mg/L)且無污染物濃度回彈現象發生。藉由菌相分析之DGGE圖譜及菌種定序結果可知,長效型基質可促使環境中產生可降解TCE之相關微生物(包括Dechloromonas sp.、Clostridium sp.、Perchlorate-reducing bacterium、Beta proteobacterium、Delta proteobacterium、Burkholderiales bacterium、Geobacter lovleyi sp.、Aquabacterium parvum strain、Acidovorax sp.、Iron-reducing bacterium、Methanogenic bacterium等菌種),證實長效型基質可持續刺激現地微生物生長,達到有效降解污染物之目的,而且不會對微生物有抑制生長之情形,為一有效加強式自然生物降解法,與常見之物理或化學整治工法,更具有對環境友善以及綠色整治之概念。
Abstract
Chlorinated organic solvents such as trichlorethene (TCE) has the potential of gene mutation and carcinogenic toxic characteristics. Leakage of TCE into the subsurface will cause the contamination of drinking water and result in the human health problems. In this study, emulsified oil and nanoscale zero-valent iron (nZVI) were produced and combined to form the long-lasting substrate (LS), which can enhance the growth of TCE-degraders. TCE concentrations in groundwater can be reduced through the reductive dechlorination process under anaerobic conditions and through the physical adsorption mechanism. Thus, the spreading of TCE can be effectively controlled. In this study, batch experiments were performed to evaluate the characteristics of the developed substrates. Furthermore, denaturing gradient gel electrophoresis (DGGE) was adopted to investigate the variations in microbial communities during the TCE dechlorination. The results from optical microscope observation show that the emulsified oil coated with nZVI had an averaged particle diameter of 0.705 μm. Results from the suspension test show that only 3% of nZVI remained in the suspension after 6 days in the test using pure nZVI. However, more than 30% of the nZVI remained in the suspension after 30 days when the LS was used. Results indicate that the LS avoided the nZVI agglomeration between nZVI particles. This would increase the opportunities for nZVI to contact with contaminants. Results of the batch experiments show that the LS could enhance the TCE removal and caused a significant TCE removal efficiency. Approximately 99% of the TCE can be removed after 130 days of operation, and the remaining TCE concentrations met the groundwater pollution control standards (0.05 mg/L). Results of microbial analysis and the DNA sequencing test show that the LS can enhance the growth of TCE-degraders (including Dechloromonas sp.、Clostridium sp.、Perchlorate-reducing bacterium、Beta proteobacterium、Delta proteobacterium、Burkholderiales bacterium、Geobacter lovleyi sp.、Aquabacterium parvum strain、Acidovorax sp.、Iron-reducing bacterium、Methanogenic bacterium). Results confirmed that LS enhance the growth of TCE-degrading bacteria, and achieved effective TCE degradation rates.
目次 Table of Contents
謝誌 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 3
2.1 含氯有機污染物 3
2.1.1含氯有機物污染概況 3
2.1.2三氯乙烯之性質與危害 6
2.1.3三氯乙烯在地下環境之傳輸行為 10
2.2土壤與地下水污染整治技術 11
2.2.1物化處理技術 11
2.2.2生物復育技術 13
2.2.3綠色整治技術 17
2.3三氯乙烯生物反應機制 19
2.3.1好氧共代謝機制 19
2.3.2厭氧還原脫氯機制 22
2.4奈米零價鐵之應用機制 24
2.5加強式生物整治 28
2.6乳化零價鐵 31
第三章 實驗設備與方法 35
3.1研究流程 35
3.2實驗材料與設備 37
3.2.1實驗材料 37
3.2.2實驗設備 38
3.3基質製備程序 40
3.3.1奈米零價鐵之製備 40
3.3.2乳化油基質之製備 41
3.3.3長效型基質之製備 42
3.4批次實驗 43
3.5實驗分析方法 45
3.5.1成分分析 45
3.5.2水質分析 47
3.5.3分子生物菌相分析 49
第四章 結果與討論 53
4.1奈米零價鐵基本性質 53
4.1.1表面微觀結構分析 53
4.1.2比表面積分析 55
4.1.3粒徑分析 55
4.1.4氧化還原電位與酸鹼度分析 56
4.2乳化油基本性質 57
4.3長效型基質基本性質 59
4.3.1表面微觀結構分析 59
4.3.2粒徑分析 60
4.3.3懸浮性試驗 61
4.4微生物批次試驗 63
4.4.1自然生物降解組 64
4.4.2乳化油基質組 67
4.4.3奈米零價鐵組 70
4.4.4長效型基質組 73
4.4.5各基質共代謝降解效率比較 76
4.4.6長效型基質批次試驗後XRD掃描分析 82
4.5菌相之分析結果 83
第五章 結論與建議 91
5.1 結論 91
5.2 建議 92
參考文獻 93
參考文獻 References
中華民國環境工程學會,2008,土壤與地下水污染整治:原理與應用。
王有盛,2003,促進厭氧生物處理四氯乙烯代謝方式之探討,國立中興大學環境工程研究所碩士論文。
台南市政府環境保護局網站,2012,二仁溪同安段NPL污染場址全國首創低碳生活綠色整治,水質與土壤管理科。
行政院環保署,2006,油品類儲槽系統土壤及地下水污染整治技術選取、系統設計要點與注意事項參考手冊。
行政院環保署,2013,土壤污染管制標準,環署土字第1000008495號令。
行政院環保署,2013,地下水污染管制標準,環署土字第1000010141號令。
行政院環保署,2009,98年度土壤及地下水污染整治年報。
行政院環保署土壤及地下整治網,2013,國內土壤及地下水場址列管情形,(http://sgw.epa.gov.tw/public/0401.asp)。
行政院環境保護署,2008,土壤及地下水受比水重非水相液體污染場址整治技術選取系統設計要點與注意事項參考手冊。
何佳諺,2003,懸浮式連續流甲苯共代謝三氯乙烯之研究,國立成功大學環境工程學研究所碩士論文。
李曉嵐,2003,奈米鐵粉結合電動力法處理含硝酸鹽土壤之研究,國立中山大學 環境工程研究所碩士論文。
林財富,2008,土壤與地下水污染整治:原理與應用,中華民國環境工程學會。
林靜齡,2010,乳化奈米零價鐵於地下水之傳輸性評估,國立中興大學環境工程學系碩士論文。
美國環保署整治技術研究論譠(RTDF),2001,透水性反應牆整治場址案例。
桃園縣環保局,2012,六家工廠檢出土壤及地下水污染,水質保護科。
涂秀娟,2007,奈米級零價鐵懸浮液之應用性探討:不同環境氣氛下對於水溶液中TCE之降解反應途徑與成效、在土體中之傳輸現象及對菌落數之影響,國立中山大學環境工程研究所碩士論文。
張永宜,2007,乳化奈米級零價鐵處理水溶液中之三氯乙烯,國立中山大學環境工程研究所碩士論文。
梁敦傑,2008,以奈米零價鐵促進三氯乙烯厭氧生物降解,國立中山大學環境工程研究所碩士論文。
許藝騰,2011,以奈米級零價鐵處理實廠含鉻電鍍廢水之研究,國立暨南國際大學土木工程研究所碩士論文。
陳逸明,2010,以乳化型基質處理受三氯乙烯污染之地下水,國立中山大學環境工程研究所碩士論文。
勞工安全衛生研究所,2013,物質安全資料表。
黃聖智,2012,奈米級零價鐵分散劑之生物可降解性及其對三氯乙烯自然生物降解影響之研究,國立暨南國際大學土木工程研究所碩士論文。
楊金鐘、洪志雄、張永宜,2007,環境友善之奈米級零價鐵合成技術開發,第四屆環境保護與奈米科技學術研討會論文集,第271-274 頁。
楊金鐘,2007,綠色奈米技術之開發及應用:環境友善性奈米級零價鐵模擬現地整治土壤/地下水污染技術開發及應用,行政院環境保護署計畫成果。
楊嘉葦,2011,奈米零價鐵去除養豬廢水中硫化氫之研究,國立高雄大學土木與環境工程學系碩士論文。
經濟部工業局,2004,土壤及地下水污染整治技術手冊-生物處理技術。
經濟部水利署,2012,自來水供水普及率半年報。
劉嘉庭,2011,利用乳化型釋碳基質提昇三氯乙烯污染地水之生物降解效率:現地模場試驗,國立中山大學環境工程研究所碩士論文。
簡華逸,2010,應用現地生物整治技術去除三氯乙烯污染之地下水,國立中山大學環境工程研究所博士論文。
洪詩怡,2011,飽和含水層中四氯乙烯厭氧分解之菌相分佈研究:管柱試驗,中興大學環境工程學系所碩士論文。
Adrian, L., Szewzyk, U., Wecke, J., Gorisch, H. (2000) Bacterial dehalorespiration with chlorinated benzenes. Nature 408, 580-583.
Alessi, D., Li, S.Z. (2001) Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent iron. Environmental Science and Technology 35, 3713-3717.
Alvarez-Cohen, L., Speitel, Jr., GE. (2001) Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12, 105-126.
Aulenta, F., Fuoco, M., Canosa, A., Papini, M.P., Majone, M. (2008) Use of poly-beta-hydroxy-butyrate as a slow-release electron donor for the microbial reductive dechlorination of TCE. Water Science Technology 57, 921-925.
Aulenta, F., Potalivo, M., Majone, M., Papini, M.P., Tandoi, V. (2006) Anaerobic bioremediation of groundwater containing a mixture of 1, 1, 2, 2-tetrachloroethane and chloroethenes, Biodegradation 17, 193-206.
Bennett, P., Gandhi, D., Warner, S., Bussey, J. (2007) In situ reductive dechlorination of chlorinated ethenes in high nitrate groundwater. Journal of hazardous materials 149, 568-573.
Borden, R. C. (2006) Protocol for enhanced in situ bioremediation using emulsified edible oil. Industrial and Environmental Services.
Borden, R. C. (2007) Effective distribution of emulsified edible oil for enhanced anaerobic bioremediation. Journal of Contaminant Hydrology 94, 1-12.
Borden, R.C., Lieberman, T., Leeson, A., Harre, B. (2010) Edible Oil Barriers for Treatment of Chlorinated Solvent and Perchlorate-Contaminated Groundwater. Environmental security technology certification program office, 1-51.
Chang, H.L., Alvarez-Cohen, L. (1995a) Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol. Biotechnology and Bioengineering 45, 440-449.
Chen, Y.M., Lin, T.F., Huang, C., Lin, J.C., Hsieh, F.M. (2007) Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. Journal of Hazardous Materials 148, 660-670.
Chiu, H.Y., Liu, J.K., Chien, H.Y., ASCE, M., Surampalli, R. Y., ASCE, F., Kao, C. M., ASCE, F. (2013) Evaluation of enhanced reductive dechlorination of trichloroethylene using gene analysis: Pilot-scale study. Journal of environmental engineering 139,428-437.
Corinne, M. (2012) Comparison of EHC®, EOS®, and Solid Potassium Permanganate Pilot Studies for Reducing Residual TCE Contaminant Mass, URS Corporation.
Da Silva, M.L.B., Daprato, R.C., Gomez, D.E., Hughes, J.B., Ward, C.H., Alvarez, P. J. (2006) Comparison of bioaugmentation and biostimulation for the enhancement of dense nonaqueous phase liquid source zone bioremediation. Water Environmental Research 78, 2456-2465.
Faybishenko, B., Hazen, T.C., Long, P.E., Brodie, E.L., Conrad, M.E., Hubbard, S.S., Christensen, J.N., Joyner, D., Borglin, S.E., Chakraborty, R., Williams, K.H., Peterson, J.E., Chen, J.S., Brown, S.T., Tokunaga, T.K., Wan, J.M., Firestone, M., Newcomer, D.R., Resch, C.T., Cantrell, K.J., Willett, A., Koenigsberg, S. (2008) In situ long-term reductive bioimmobilization of Cr(VI) in groundwater using hydrogen release compound. Environmental Science and Technology 42, 8478-8485.
Fergusion, J.F., Pietari, J.M.H. (2000) Anaerobic transformations and bioremediation of chlorinated solvents. Environmental Pollution 2, 209-215.
Fletcher, K.E., Ritalahti, K.M., Pennell, K.D., Takamizawa, K., Loffler, F.E. (2008) Resolution of culture Clostridium bifermentans DPH-1 into two populations, a Clostridium sp and tetrachloroethene-dechlorinating Desulfitobacterium hafniense strain JH1. Applied and Environmental Microbiology 74, 6141-6143.
Freedman, D.L., Gossett, J.M. (1989). Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Applied and environmental microbiology 55, 2144-2151.
Harkness, M.R. (2000) Economic considerations in enhanced anaerobic biodegradation. Second International Conference on Remediation of Chlorinated and Racalcitrant Compounds, 9-14.
He, F., Zhao, D. (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in Water. Environmental Science and Technology 39, 3314-3320.
He, J., Sung, Y., Krajmalnik-Brown, R., Ritalahti, K.M., Loffler, F.E. (2005) Isolation and characterization of dehalococcoides sp. Strain FL2, a trichloroethene (TCE) and cis-1,2-dichloroethene-respiring anaerobe. Environmental Microbiology 7, 1442-1450.
Heimann, A.C., Friis, A.K., Jakobsen, R. (2005) Effects of sulfate on anaerobic chloroethene degradation by an enriched culture under transient and steady-state hydrogen supply. Water Research 39, 3579-3586.
Hunter, W.J. (2002) Bioremediation of chlorate or perchlorate contaminated water using permeable barriers containing vegetable oil. Current Microbiology 45, 287-292.
Hunter, W.J. (2005) Injection of innocuous oils to create reactive barriers for bioremediation: laboratory studies. Journal of Contaminant Hydrology 80, 31-48.
Interstate Technology and Regulatory Council, ITRC. (2000) Dense non-aqueous phase liquids (DNAPLs): Review of emerging characterization and remediation technologies. Technical/Regulatory Guidance. Washington, DC
Interstate Technology and Regulatory Council, ITRC. (2002) DNAPL source reduction: Facing the challenge, Technical/Regulatory Guidance. Washington, DC.
Interstate Technology and Regulatory Council, ITRC. (2008) In Situ Bioremediation of Chlorinated Ethene DNAPL Source Zones.
Kao, C. M., Chen, K. F., Chen, Y. L., Chen. T. Y. (2004) Biobarrier system for remediation of TCE-contaminated aquifers. Bulletin of Environmental Contamination and Toxicology 37, 87-93.
Kwon, T.S., Yang, J.S., Baek, K., Lee, J.Y., Yang, J.W. (2006) Silicone emulsion-enhanced recovery of chlorinated solvents: Batch and column studies. Journal of Hazardous Materials 136, 610-617.
Lee, G.T., Ro, H.M., Lee, S.M. (2007) Effects of triethyl phosphate and nitrate on electrokinetically enhanced biodegradation of diesel in low permeability soils. Environmental Technology 28, 853-860.
Lee, I. S., Bae, J. H., McCarty, P. L. (2007) Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE. Journal of contaminant hydrology 94, 76-85.
Lee, M.H., Clingenpeel, S.C., Leiser, O.P., Wymore, R.A., Sorenson, K.S., Watwood, M.E. (2008) Activity-dependent labeling of oxygenase enzymes in a trichloroethene-contaminated groundwater site. Environmental Pollution 153, 238-246.
Lenczewski, M., Jardine, P., McKay, L., Layton, A. (2003) Natural attenuation of trichloroethylene in fractured shale bedrock. Journal of contaminant hydrology 64, 151-168.
Lieberman, M.T., Borden, R.C., Zawtocki, C., May, I., Casey, C. (2005) Long term TCE source area remediation using short term emulsified oil substrate (EOS®) recirculation, The 21st Annual International Conference on Soils, Sediments, and Water,University of Massachusetts at Amherst, 17-20.
Lien, H.L., Zhang, W.X. (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloid Surface 191, 97-105.
Long, C.M., Borden, R.C. (2006) Enhanced reductive dechlorination in columns treated with edible oil emulsion. Journal of Contaminant Hydrology 87, 54-72.
Long, T., Ramsburg, C.A. (2011) Encapsulation of nZVI particles using a Gum Arabic stabilized oil-in-water emulsion. Journal of Hazardous Material 189, 801-808.
Maier, R.M., Pepper, I.L., Gerba, C.P. (2009) Environmental Microbiology, 2nd edition, Academic Press, San Diego, CA.
Mamie, N.I., Kate, M.S., Dennis, E.R. (2005) Reduction of Perchlorate and Nitrate by Microbial Communities in Vadose Soil. Application Environmental Microbiology 7, 3928-3934.
Matheson, L.J., Tratnyek, P.G. (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science and Technology 28, 2045-2053.
Mattes, T. E., Alexander, A. K., Coleman, N. V. (2010) Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution, FEMS Microbiology Reviews 34, 445-475.
Mera, N., Iwasaki, K. (2007) Use of plate-wash samples to monitor the fates of culturable bacteria in mercury- and trichloroethylene-contaminated soils. Applied microbiology and biotechnology 77, 437-445.
Miller, T. R., Franklin, M. P., Halden, R. U. (2007) Bacterial community analysis of shallow groundwater undergoing sequential anaerobic and aerobic chloroethene biotransformation, FEMS Microbiol. Ecol 60, 299-311.
Nakatsu, T., Ichiyama, S., Hiratake, J., Saldanha, A., Kobashi, N., Sakata, K., Kato, H. (2006) Structural basis for the spectral difference in luciferase bioluminescence. Nature 440, 372-376.
Pfeiffer, P., Bielefeldt, A.R., Illangasekare, T., Henry, B. (2005) Partitioning of dissolved chlorinated ethenes into vegetable oil. Water Research 39, 4521-4527.
Quinn, J. (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science and Technology 39, 1309-1318.
Ralston, A.W. Hoerr, C.W. (1942) The solubilities of the normal saturated fatty acids. Journal of Organic Chemistry 7, 546-555.
Ray S., Chowdhury, N., Lalman, J.A., Seth, R. Biswas, N. (2008) Impact of initial pH and linoleic acid (C18 : 2) on hydrogen production by a mesophilic anaerobic mixed culture. Journal of Environmental Engineering-ASCE 34, 110-117.
René Filion. (2011) In-situ Bioremediation of Chlorinated Solvents - Case Study. Remediation Technologies Symposium, 67.
Revesz, S., Sipos, R., Kende, A., Rikker, T., Romsics, C., Meszaros, E., Mohr, A., Tancsics, A., Marialigeti, K. (2006) Bacterial community changes in TCE biodegradation detected in microcosm experiments. International Biodeterioration and Biodegradation 58, 239-247.
Ritalahti, K.M., Amos, B. K., Sung, Y. Q., Wu, S. S. Koenigsberg, F. E. Löffler. (2006). Quantitative PCR targeting 16S rRNA and teductive dehalogenase genes simultaneously monitors multiple Dehalococcoides Strains. Application Environmental Microbiology 72, 2765-2774.
Sin C.T. (2001) Use of vegetable oil in reductive dechlorination of tetrachloroethene. Environmental pollution 107, 209-215.
Su, C., Puls, R.W., Krug, T.A., Watling, M.T., O’Hara, S.K., Quinn, J.W., Ruiz, N.E. (2013) A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water research 46, 5071-5084.
Su, C., Puls, R.W., Krug, T.A., Watling, M.T., O’Hara, S.K., Quinn, J.W., Ruiz, N.E. (2013) Travel distance and transformation of injected emulsified zerovalent iron nanoparticles in the subsurface during two and half years. Water research 12, 4095-4106.
Sung, Y., Fletcher, K.F., Ritalaliti, K.M., Apkarian, R.P., Ramos-Hernandez, N., Sanford, R.A., Mesbah, N.M., Loffler, F.E. (2006). Clostridium sp nov strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Application Environmental Microbiology 72, 2775-2782.
U.S Environmental Protection Agency, USEPA. (1999) Monitored Natural Attenuation of Chlorinated Solvents, 600.
U.S Environmental Protection Agency, USEPA. (2008) Green remediation: incorporating sustainable environmental practices into remediation of contaminated site, water, University of Massachusetts at Amherst, 17-20.
U.S. Environmental Protection Agency, USEPA. (1999) Monitored natural attenuation of Chlorinated solvent: U.S. EPA remedial technology fact sheet. Hazardous Material 600, 610-617.
Vogel, T.M., Criddle, C.S., McCarty, P.L. (1987) Transformations of Halogenated Aliphatic Compounds. Environmental Science and Technology 21, 722-736.
Vroblesky, D.A., Petkewich M.D., Lowery, M. A., Conlon, K.J., Casey, C.C. (2010) Groundwater Hydrology and Chemistry in and near an Emulsified Vegetable-Oil Injection Zone, Solid Waste Management Unit 17, Naval Weapons Station Charleston, North Charleston, South Carolina.
Xueyuan, Y., Christopher, A., Marc, A., Deshusses, Mark, R., Matsumoto. (2007) Perchlorate Reduction by Autotrophic Bacteria Attached to Zerovalent Iron in a Flow-Through Reactor. Environmental Science and Technology 41, 990-997.
Yan, W., Herzing, A.A., Kiely, C.J., Zhang, W.X. (2010) Nanocale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water. Journal of Contaminant Hydrology 118, 96-104.
Yang, Y., McCarty, P.L. (2002) Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution. Environmental Science and Technology 36, 3400-3404.
Zawtocki, C. (2005) Naturally cleaner groundwater – Soybean-based emulsion is proving to decontaminate groundwater more quickly than traditional remediation methods. The Military Engineer 97, 55-56.
Zenker, M.J., Borden, R.C., Barlaz, M.A., Lieberman, M.T., Lee, M.D. (2000) Insoluble substrates for reductive dehalogenation in permeable reactive barriers. Bioremediation and Phytoremediation of Chlorinated and Recalcitrant Compounds, 47-53.
Zhang, W. (2003) Nanoscale iron particles for environmental remediation: an overview. Journal of Nanopartical Research 5, 323–332.
Zhang, W.X., Li, X.Q., Brown, D.G. (2007) Stabilization of biosolids with nanoscale zero-valentiron (nZVI). Journal of Nanoparticle Research 9, 233-243.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.234.139.149
論文開放下載的時間是 校外不公開

Your IP address is 18.234.139.149
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code