Responsive image
博碩士論文 etd-0631113-231027 詳細資訊
Title page for etd-0631113-231027
論文名稱
Title
二氧化矽摻雜氧化鉿薄膜電阻式記憶體之特性研究
Study on characteristics of SiO2-doped HfO2 thin film resistance random access memory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-28
繳交日期
Date of Submission
2013-09-09
關鍵字
Keywords
氧化鉿、高K值、電阻式記憶體、二氧化矽、能量逸散速率、低K值、臨界能量
RRAM, SiO2, High-K, HfO2, energy dissipation rate, Low-K, critical energy
統計
Statistics
本論文已被瀏覽 5683 次,被下載 1660
The thesis/dissertation has been browsed 5683 times, has been downloaded 1660 times.
中文摘要
本論文研究在氧化鉿(HfO2)薄膜中摻雜二氧化矽SiO2,形成在高k值介電材料中摻雜低k值介電材料,並且使用多層堆疊結構的方式進一步提升電阻式記憶體(RRAM)特性。氧化鉿本身因為阻值切換速度非常的快,很容易造成電流過載崩潰的現象,由實驗結果顯示,透過摻雜SiO2方式確實可以提升其穩定性,元件可在85℃下經過一萬秒後依然可保持良好的記憶特性,多層堆疊的方式更能夠降低RRAM操作電流,並且操作次數可達到80萬次。
本論文第二部分使用快速量測(Fast IV)系統,其解析時間最快可達10 ns,輸入一個三角波的負偏壓脈衝,使RRAM進行reset過程,隨著脈衝時間加長,reset電壓就下降。由實驗數據分析,在時間無窮大時可得到一個最小電壓值,就是RRAM元件reset的臨界電壓;RRAM元件在切換時,若操作速度慢,其能量會有所逸散。而透過Fast IV的快速量測方式,可以得到除了掃描的電壓及電流外,還有時間,能夠計算reset發生所需的能量。藉由不同的脈衝上升時間,進而得到能量逸散速率,以及臨界reset能量;當set限流越大,其能量逸散速率及臨界能量越大,可以判斷是因阻絲與TiN端電極距離較近,散熱面積較大;而透過低溫的量測,發現在低溫的操作之下,RRAM元件會因為溫度較低,其反應速率較慢,造成阻絲較細的情況。
Abstract
In this thesis, silicon dioxide (SiO2) doped hafnium oxide (HfO2) is applied to form low-k doped high-k materials, and the multilayer structure is used to enhance the resistive random access memory (RRAM) properties. Hafnium oxide RRAM device has very fast switching speed, so that it is easy to occure overshooting. The experimental results show that doping through this way can improve its retention. The resistive state was kept stable over 104 second at 85℃, and RRAM with multilayer structure could be operated over 80 million times.
The second part of this work has applied Fast IV systems to analyze the RRAM electric properties. The response time could be shortened up to 10 ns. To track the reset process of RRAM devices a negative triangle wave pulse bias is applied. It is found that the reset voltage decreases with the increased rising time of the applied pulse. To analyze the experimental data, a critical voltage was defined when the rising time is infinity. When the RRAM device is at reset, and if the operation is slow, the energy will be dissipated. Through the Fast IV measurement method can obtain voltage, current then the time, the energy required before RRAM reset can be calculated. The critical energy and energy dissipation rate can be obtained by varying different raising time of the fast I-V measurement. When the set compliance current is enlarged, the critical energy and energy dissipation rate becomes greater, and the dissipation area become greater. By measuring at low temperature, RRAM filament will be thinner, because the oxidation reaction rates become slow.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 ix
表目錄 xiii
第一章 概論 1
1-1 前言 1
1-2 研究目的與動機 2
第二章 文獻回顧 3
2-1 記憶體簡介 3
2-1-1 鐵電式記憶體(FeRAM) 4
2-1-2 相變化記憶體(PCRAM) 4
2-1-3 磁阻式記憶體(MRAM) 4
2-1-4 電阻式記憶體(RRAM) 5
2-2 電阻式記憶體材料 7
2-2-1 鈣鈦礦 7
2-2-2 高分子材料 8
2-2-3 過度金屬氧化物 8
2-3 電阻式記憶體切換機制 9
2-3-1 阻絲模型 9
2-3-2 焦耳熱效應 9
2-3-3 陽離子遷移 10
2-4 絕緣體載子傳導機制 12
2-4-1 歐姆傳導(Ohmic Conduction) [25] 12
2-4-2 穿隧(Tunneling) [26] 12
2-4-3 蕭基發射(Schottky emission) [27] 13
2-4-4 普爾-法蘭克發射(Poole-Frenkel emission) [28] 14
2-4-5 空間電荷限制電流(Space Charge Limit Current) [29] 15
2-4-6 跳躍傳導(Hopping Conduction)[30] 16
第三章 半導體精準電性量測系統與原理 17
第四章 實驗流程 19
4-1 RRAM元件基板準備 19
4-1-1 基板準備 19
4-1-2 基板清洗與切割 19
4-2 RRAM元件製備 20
4-2-1 RRAM 元件切換層薄膜製備方法 20
4-2-2 氧化鉿薄膜製備 (HfO2 RRAM元件) 20
4-2-3 二氧化矽摻雜氧化鉿薄膜RRAM製備(SiO2 : HfO2 RRAM) 20
4-3 電性量測 22
4-4 材料分析 23
第五章 雙層結構二氧化矽摻雜氧化鉿之電阻式記憶體 24
5-1 HfO2 RRAM元件分析 24
5-1-1 HfO2薄膜材料分析 24
5-1-2 HfO2 RRAM元件基本特性之分析 25
5-1-3 HfO2 RRAM元件電流傳導機制分析 27
5-2 Double layer SiO2 : HfO2 RRAM 分析 28
5-2-1 SiO2 : HfO2 薄膜材料分析 28
5-2-2 SiO2 : HfO2 RRAM 基本特性 31
5-2-3 HfO2 RRAM與SiO2 : HfO2 RRAM 基本特性比較 33
5-2-4 SiO2 : HfO2 RRAM 電流傳導機制分析 36
5-3 Double layer SiO2 : HfO2 RRAM之電流傳導機制驗證 39
5-3-1 Double layer SiO2 : HfO2 RRAM之LRS不同溫度Fast IV量測 39
5-3-2 COMSOL建立模型模擬電場分布 42
第六章 三層結構二氧化矽摻雜氧化鉿之電阻式記憶體 46
6-1 Triple layer SiO2 : HfO2 RRAM 分析 46
6-1-1 Triple layer SiO2 : HfO2 RRAM 材料分析 46
6-1-2 Triple layer SiO2 : HfO2 RRAM 基本特性分析 49
6-1-3 Triple layer SiO2 : HfO2 RRAM 電流傳導機制分析 51
6-1-4 Triple layer SiO2 : HfO2 RRAM HRS不同溫度量測 53
6-2 Double layer與Triple layer SiO2 : HfO2 RRAM電阻切換特性分析之比較 56
6-2-1 Double layer與Triple layer SiO2 : HfO2 RRAM基本特性之比較 56
6-2-3 Double layer與Triple layer SiO2 : HfO2 RRAM HRS模型建立[30] 58
第七章 臨界reset能量及能量逸散速率 61
7-1 Reset 臨界電壓 61
7-1-1 臨界reset電壓之量測 62
7-1-2 臨界reset電壓之判讀 64
7-2 臨界reset能量與逸散速率 66
7-2-1 reset能量之計算 66
7-2-2 臨界reset能量以及能量逸散速率之判讀 67
7-3 臨界reset能量與逸散速率與DC set限流及溫度的關係 68
7-3-1 不同限流之臨界reset能量與能量逸散速率 68
7-3-2 不同限流之臨界reset能量與能量逸散速率之模型探討 69
7-3-3 不同溫度之臨界reset能量與能量逸散速率 74
第八章 結論 79
參考文獻 81
參考文獻 References
[1] S. Lai, "Non-Volatile Memory Technologies: The Quest for Ever Lower Cost," Int. Electron Devices Meet., San Francisco, CA, Dec. 15-17, 2008, p. 11.
[2] D. A. Buck, "Ferroelectrics for Digital Information Storage and Switching," S.M. Master's thesis, Electrical Engi., M.I.T., 1952.
[3] S. Lai, "Current status of the phase change memory and its future," Int. Electron Devices Meet., Washington, DC, USA, Dec. 8-10, 2003, p. 255.
[4] 葉林秀, 李佳謀, 徐明豐, and 吳德和, "磁阻式隨機存取記憶體技術的發展—現在與未來," 物理雙月刊, 26, 607 (2004).
[5] C. Schindler, "Bipolar and Unipolar Resistive Switching in Cu-Doped SiO2," IEEE Trans. Electron Devices, 54, 2762 (2007).
[6] K. Kinoshita, "New Model Proposed for Switching Mechanisms of ReRAM," Non-Volatile Semiconductor Memory Workshop, Monterey, CA, USA, 2006, p. 84.
[7] T. Mikolajick, "FeRAM technology for high density applications," Microelectron. Reliab., 41, 947 (2001).
[8] K. Kim and S. J. Ahn, "Reliability investigations for manufacturable high density PRAM," Proc. IRPS, April 17-21, 2005, p. 157.
[9] L. Zhang, "The Parasitic Effects Induced by the Contact in RRAM with MIM Structure," Int. Conf. on Solid-State and Integrated-Circuit Tech., Beijing, Oct. 20-23, 2008, p. 932.
[10] K. M. Kim, B. J. Choi, and C. S. Hwang, "Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films," Appl. Phys. Lett., 90, 242906 (2007).
[11] S. S. Sheu, "Fast-Write Resistive RAM (RRAM) for Embedded Applications," IEEE Design & Test of Computers, 28, 64 (2011).
[12] S. R. Lee, "Multi-level Switching of Triple-layered TaOX RRAM with Excellent Reliability for Storage Class Memory," VLSI Technology (VLSIT), Honolulu, HI, June 12-14, 2012, p. 71.
[13] C. C. Lin, "Resistive Switching Mechanisms of V-Doped SrZrO3 Memory Films," IEEE Electron Device Lett., 27, 725 (2006).
[14] C. Y. Liu, "Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film," IEEE Electron Device Lett., 26, 351 (2005).
[15] A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, "Reproducible switching effect in thin oxide films for memory applications," Appl. Phys. Lett., 77, 139 (2000).
[16] L. P. Ma, J. Liu, and Y. Yang, "Organic electrical bistable devices and rewritable memory cells," Appl. Phys. Lett., 80, 2997 (2002).
[17] M. Y. Chan, T. Zhang, V. Ho, and P. S. Lee, "Resistive switching effects of HfO2 high-k dielectric," Microelectron. Engi., 85, 2420 (2008).
[18] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, "Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications," Appl. Phys. Lett., 92, 022110 (2008).
[19] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, et al., "Reproducible resistance switching in polycrystalline NiO films," Appl. Phys. Lett., 85, 5655 (2004).
[20] C. Y. Lin, D. Y. Lee, S. Y. Wang, C. C. Lin, and T. Y. Tseng, "Effect of thermal treatment on resistive switching characteristics in Pt/Ti/Al2O3/Pt devices," Surf. and Coat. Tech., 203, 628 (2008).
[21] J. J. Huang, C. W. Kuo, W. C. Chang, and T. H. Hou, "Transition of stable rectification to resistive-switching in Ti/TiO2/Pt oxide diode," Appl. Phys. Lett., 96, 262901 (2010).
[22] A. Sawa, "Resistive switching in transition metal oxides," Mater. Today, 11, 28 (2008).
[23] S. H. Chang, S. C. Chae, S. B. Lee, C. Liu, T. W. Noh, J. S. Lee, et al., "Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors," Appl. Phys. Lett., 92, 183507 (2008).
[24] X. Guo, C. Schindler, S. Menzel, and R. Waser, "Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems," Appl. Phys. Lett., 91, 133513 (2007).
[25] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed., John Wiley & Sons, Inc., Hoboken, 2006, p. 227.
[26] R. W. Gurney and E. U. Condon, "Quantum Mechanics and Radioactive Disintegration," Phys. Rev., 33, 127 (1929).
[27] E. L. Murphy and J. R. H. Good, "Thermionic Emission, Field Emission, and the Transition Region," Phys. Rev., 102, 1464 (1956).
[28] J. Frenkel, "On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors," Phys. Rev., 54, 647 (1938).
[29] C. D. Child, "Discharge From Hot CaO," Phys. Rev., 32, 492 (1911).
[30] D. Ielmini and Y. Zhang, "Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices," J. Appl. Phys., 102, 054517 (2007).
[31] M. Wang, "Study of One Dimension Thickness Scaling on Cu/HfOX/Pt Based RRAM Device Performance," Int. Memory Workshop, Milan, May 20-23, 2012, p. 1.
[32] M. J. Lee, "A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-X/TaO2-X bilayer structures," Nature Mater., 10, 625 (2011).
[33] H. C. Tseng, T. C. Chang, J. J. Huang, P. C. Yang, Y. T. Chen, F. Y. Jian, et al., "Investigating the improvement of resistive switching trends after post-forming negative bias stress treatment," Appl. Phys. Lett., 99, 132104 (2011).
[34] T. C. Chen, "Characterization of the Ultrathin HfO2 and Hf-Silicate Films Grown by Atomic Layer Deposition," IEEE Trans. Electron Devices, 54, 759 (2007).
[35] Y. E. Syu, T. C. Chang, J. H. Lou, T. M. Tsai, K. C. Chang, M. J. Tsai, et al., "Atomic-level quantized reaction of HfOX memristor," Appl. Phys. Lett., 102, 172903 (2013).
[36] 劉峻豪, "氧化鉿薄膜電阻式記憶體轉態物理機制之研究," 碩士論文, 物理學系, 國立中山大學, 2012.
[37] F. Ay and A. Aydinli, "Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides," Opt. Mater., 26, 33 (2004).
[38] Q. Hu, H. Suzuki, H. Gao, H. Araki, W. Yang, and T. Noda, "High-frequency FTIR absorption of SiO2-Si nanowires," Chem. Phys. Lett., 378, 299 (2003).
[39] Q. Fang, J. Y. Zhang, Z. Wang, M. Modreanu, B. J. O'Sullivan, P. K. Hurley, et al., "Interface of ultrathin HfO2 films deposited by UV-photo-CVD," Thin Solid Films, 453-454, 203 (2004).
[40] I. Gouzman, M. Dubey, M. D. Carolus, J. Schwartz, and S. L. Bernasek, "Monolayer vs. multilayer self-assembled alkylphosphonate films X-ray photoelectron spectroscopy studies," Surf. Sci., 600, 773 (2006).
[41] W. L. Liua, H. R. Xia, X. Q. Wang, H. Han, P. Zhao, Y. B. Lü, et al., "Adsorption and decomposition of 1,3-disilabutane on Si (111)-7x7," Thin Solid Films, 461, 266 (2004).
[42] T. Schroeder, M. Adelt, B. Richter, M. Naschitzki, M. Baeumer, and H.-J. Freund, "Growth of well-ordered silicon dioxide films on Mo(1 1 2)," Microelectron Reliab, 40, 841 (2000).
[43] W. Nelson, Applied Life Data Analysis, John Wiley & Sons, Inc., New York, 2005, pp. 36, 115.
[44] T.-M. Tsai, "Performance and characteristics of double layer porous silicon oxide resistance random access memory," Appl. Phys. Lett., 102, 253509 (2013).
[45] C. Hong, "Electric field enhancement caused by porosity in ultra-low-k dielectrics," Int. Symp. Semicond. Manuf., San Jose, CA, Sept. 13-15, 2005, p. 434.
[46] S.-C. Lee, "Fundamental understanding of porous low-k dielectric breakdown," Int. Reliability Phy. Symp., Montreal, QC, April 26-30, 2009, p. 481.
[47] Y.-T. Tsai, "Influence of Nanocrystals on Resistive Switching Characteristic in Binary Metal Oxides Memory Devices," Electrochem. Solid-State Lett., 14, H135 (2011).
[48] J.-W. Huang, "The effect of high/low permittivity in bilayer HfO2/BN resistance random access memory," Appl. Phys. Lett., 102, 203507 (2013).
[49] M. Frigge, "Some Implementations of the Boxplot," Am. Stat., 43, 50 (1989).
[50] NIST/SEMATECH, e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/.
[51] C. Walczyk, C. Wenger, R. Sohal, M. Lukosius, and A. Fox, "Pulse-induced low-power resistive switching in HfO2 metal-insulator-metal diodes for nonvolatile memory applications," J. Appl. Phys., 105, 114103 (2009).
[52] M.-C. Chen, "Bipolar Resistive Switching Characteristics of Transparent Indium Gallium Zinc Oxide Resistive Random Access Memory," Electrochem. Solid-State Lett., 13, H191 (2010).
[53] S. K. Sahoo, "Leakage current mechanisms in high performance alumina-silicone nanolaminate dielectrics," Appl. Phys. Lett., 101, 142903 (2012).
[54] S. Yu, X. Guan, and H. S. P. Wong, "Conduction mechanism of TiN/HfOX/Pt resistive switching memory: A trap-assisted-tunneling model," Appl. Phys. Lett., 99, 063507 (2011).
[55] W. H. Hayt, Engineering Electromagnetics, McGraw-Hill, 1993.
[56] G. D. Wilk, R. M. Wallace, and J. M. Anthony, "High-κ gate dielectrics: Current status and materials properties considerations," J. Appl. Phys., 89, 5243 (2001).
[57] Y.-E. Syu, "Asymmetric Carrier Conduction Mechanism by Tip Electric Field in WSiOX Resistance Switching Device," IEEE Electron Device Lett., 33, 342 (2012).
[58] Y.-T. Chen, T.-C. Chang, H.-K. Peng, H.-C. Tseng, J.-J. Huang, J.-B. Yang, et al., "Insertion of a Si layer to reduce operation current for resistive random access memory applications," Appl. Phys. Lett., 102, 252902 (2013).
[59] J. W. Keister, J. E. Rowe, J. J. Kolodziej, and H. Niimi, "Band offsets for ultrathin SiO2 and Si3N4 films on Si(111) and Si(100) from photoemission spectroscopy," J. Vac. Sci. Technol., B, 17, 1831 (2009).
[60] Y. Fu, H. Du, S. Zhang, and W. Huang, "XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate," Mater. Sci. Eng., A, 403, 25 (2005).
[61] J. Finster, "SiO2 in 6:3 (stishovite) and 4:2 Co-ordination—Characterization by core level spectroscopy (XPS/XAES)," Surf. Interface Anal., 12, 309 (1988).
[62] T.-J. Chu and T.-C. Chang, "Charge Quantity Influence on Resistance Switching Characteristic During Forming Process," IEEE Electron Device Lett., 34, 502 (2013).
[63] B. G. E. and G. G. V., "Oxygen coordination and the Si-O bond," Am. Mineral., 54, 1528 (1969).
[64] T. M. Tsai, "Origin of Hopping Conduction in Sn-Doped Silicon Oxide RRAM With Supercritical CO2 Fluid Treatment," IEEE Electron Device Lett., 33, 1693 (2012).
[65] Y. E. Syu, "Redox Reaction Switching Mechanism in RRAM Device With Pt/CoSiOX/TiN Structure," IEEE Electron Device Lett., 32, 545 (2011).
[66] D. Ielmini, "Modeling the Universal Set/Reset Characteristics of Bipolar RRAM by Field- and Temperature-Driven Filament Growth," IEEE Trans. Electron Devices, 58, 4309 (2011).
[67] U. Russo, "Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM," Int. Electron Devices Meet., Washington, DC, 10-12 Dec., 2007, p. 775.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code